401
|
Selenium compounds are substrates for glutaredoxins: a novel pathway for selenium metabolism and a potential mechanism for selenium-mediated cytotoxicity. Biochem J 2010; 429:85-93. [PMID: 20408818 DOI: 10.1042/bj20100368] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Grx (glutaredoxin) proteins are oxidoreductases with a central function in maintaining the redox balance within the cell. In the present study, we have explored the reactions between selenium compounds and the glutaredoxin system. Selenite, GS-Se-SG (selenodiglutathione) and selenocystine were all shown to be substrates of human Grx1, implying a novel role for the glutaredoxins in selenium metabolism. During the past few years, selenium has further evolved as a potential therapeutic agent in cancer treatment, and a leading mechanism of cytotoxicity is the generation of ROS (reactive oxygen species). Both selenite and GS-Se-SG were reduced by Grx1 and Grx2 in a non-stoichiometric manner due to redox cycling with oxygen, which in turn generated ROS. The role of Grx in selenium toxicity was therefore explored. Cells were treated with the selenium compounds in combination with transient overexpression of, or small interfering RNA against, Grx1. The results demonstrated an increased viability of the cells during silencing of Grx1, indicating that Grx1 is contributing to selenium toxicity. This is in contrast with TrxR (thioredoxin reductase), which previously was shown to protect cells from selenium cytotoxicity, verifying a diverse role between Grx and TrxR in selenium-mediated cytotoxicity. Furthermore, selenium treatment led to a marked increase in protein glutathionylation and cysteinylation that potentially can influence the activity and function of several proteins within the cell.
Collapse
|
402
|
Singleton WCJ, McInnes KT, Cater MA, Winnall WR, McKirdy R, Yu Y, Taylor PE, Ke BX, Richardson DR, Mercer JFB, La Fontaine S. Role of glutaredoxin1 and glutathione in regulating the activity of the copper-transporting P-type ATPases, ATP7A and ATP7B. J Biol Chem 2010; 285:27111-27121. [PMID: 20566629 DOI: 10.1074/jbc.m110.154468] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The copper-transporting P-type ATPases (Cu-ATPases), ATP7A and ATP7B, are essential for the regulation of intracellular copper homeostasis. In this report we describe new roles for glutathione (GSH) and glutaredoxin1 (GRX1) in Cu homeostasis through their regulation of Cu-ATPase activity. GRX1 is a thiol oxidoreductase that catalyzes the reversible reduction of GSH-mixed disulfides to their respective sulfhydryls (deglutathionylation). Here, we demonstrated that glutathionylation of the Cu-ATPases and their interaction with GRX1 were affected by alterations in Cu levels. The data support our hypothesis that the Cu-ATPases serve as substrates for Cu-dependent GRX1-mediated deglutathionylation. This in turn liberates the Cu-ATPase cysteinyl thiol groups for Cu binding and transport. GSH depletion experiments led to reversible inhibition of the Cu-ATPases that correlated with effects on intracellular Cu levels and GRX1 activity. Finally, knockdown of GRX1 expression resulted in an increase in intracellular Cu accumulation. Together, these data directly implicate GSH and GRX1 with important new roles in redox regulation of the Cu-ATPases, through modulation of Cu binding by the Cu-ATPase cysteine motifs.
Collapse
Affiliation(s)
- William C J Singleton
- Strategic Research Centre for Molecular and Medical Research and Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, 3125 Victoria, Australia
| | - Kelly T McInnes
- Strategic Research Centre for Molecular and Medical Research and Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, 3125 Victoria, Australia
| | - Michael A Cater
- Mental Health Research Institute of Victoria, Parkville, 3052 Victoria, Australia
| | - Wendy R Winnall
- Centre for Reproduction and Development, Monash Institute of Medical Research, Clayton, 3168 Victoria, Australia
| | - Ross McKirdy
- Strategic Research Centre for Molecular and Medical Research and Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, 3125 Victoria, Australia
| | - Yu Yu
- Department of Pathology, University of Sydney, Sydney, 2006 New South Wales, Australia
| | - Philip E Taylor
- Strategic Research Centre for Molecular and Medical Research and Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, 3125 Victoria, Australia
| | - Bi-Xia Ke
- Strategic Research Centre for Molecular and Medical Research and Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, 3125 Victoria, Australia
| | - Des R Richardson
- Department of Pathology, University of Sydney, Sydney, 2006 New South Wales, Australia
| | - Julian F B Mercer
- Strategic Research Centre for Molecular and Medical Research and Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, 3125 Victoria, Australia
| | - Sharon La Fontaine
- Strategic Research Centre for Molecular and Medical Research and Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, 3125 Victoria, Australia.
| |
Collapse
|
403
|
Gallogly MM, Shelton MD, Qanungo S, Pai HV, Starke DW, Hoppel CL, Lesnefsky EJ, Mieyal JJ. Glutaredoxin regulates apoptosis in cardiomyocytes via NFkappaB targets Bcl-2 and Bcl-xL: implications for cardiac aging. Antioxid Redox Signal 2010; 12:1339-53. [PMID: 19938943 PMCID: PMC2864653 DOI: 10.1089/ars.2009.2791] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cardiomyocyte apoptosis is a well-established contributor to irreversible injury following myocardial infarction (MI). Increased cardiomyocyte apoptosis is associated also with aging in animal models, exacerbated by MI; however, mechanisms for this increased sensitivity to oxidative stress are unknown. Protein mixed-disulfide formation with glutathione (protein glutathionylation) is known to change the function of intermediates that regulate apoptosis. Since glutaredoxin (Grx) specifically catalyzes protein deglutathionylation, we examined its status with aging and its influence on regulation of apoptosis. Grx1 content and activity are decreased by approximately 40% in elderly (24-mo) Fischer 344 rat hearts compared to adult (6-mo) controls. A similar extent of Grx1 knockdown in H9c2 cardiomyocytes led to increased apoptosis, decreased NFkappaB-dependent transcriptional activity, and decreased production (mRNA and protein) of anti-apoptotic NFkappaB target genes, Bcl-2 and Bcl-xL. Knockdown of Bcl-2 and/or Bcl-xL in wild-type H9c2 cells to the same extent ( approximately 50%) as observed in Grx1-knockdown cells increased baseline apoptosis; and knockdown of Bcl-xL, but not Bcl-2, also increased oxidant-induced apoptosis analogous to Grx1-knockdown cells. Natural Grx1-deficient cardiomyocytes isolated from elderly rats also displayed diminished NFkappaB activity and Bcl-xL content. Taken together, these data indicate diminution of Grx1 in elderly animals contributes to increased apoptotic susceptibility via regulation of NFkappaB function.
Collapse
Affiliation(s)
- Molly M Gallogly
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4965, USA
| | | | | | | | | | | | | | | |
Collapse
|
404
|
Yamaguchi H, Miyazaki M, Maeda H. Proteolysis approach without chemical modification for a simple and rapid analysis of disulfide bonds using thermostable protease-immobilized microreactors. Proteomics 2010; 10:2942-9. [DOI: 10.1002/pmic.201000166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
405
|
Wetzelberger K, Baba SP, Thirunavukkarasu M, Ho YS, Maulik N, Barski OA, Conklin DJ, Bhatnagar A. Postischemic deactivation of cardiac aldose reductase: role of glutathione S-transferase P and glutaredoxin in regeneration of reduced thiols from sulfenic acids. J Biol Chem 2010; 285:26135-48. [PMID: 20538586 DOI: 10.1074/jbc.m110.146423] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldose reductase (AR) is a multifunctional enzyme that catalyzes the reduction of glucose and lipid peroxidation-derived aldehydes. During myocardial ischemia, the activity of AR is increased due to the oxidation of its cysteine residues to sulfenic acids. It is not known, however, whether the activated, sulfenic form of the protein (AR-SOH) is converted back to its reduced, unactivated state (AR-SH). We report here that in perfused mouse hearts activation of AR during 15 min of global ischemia is completely reversed by 30 min of reperfusion. During reperfusion, AR-SOH was converted to a mixed disulfide (AR-SSG). Deactivation of AR and the appearance of AR-SSG during reperfusion were delayed in hearts of mice lacking glutathione S-transferase P (GSTP). In vitro, GSTP accelerated glutathiolation and inactivation of AR-SOH. Reduction of AR-SSG to AR-SH was facilitated by glutaredoxin (GRX). Ischemic activation of AR was increased in GRX-null hearts but was attenuated in the hearts of cardiospecific GRX transgenic mice. Incubation of AR-SSG with GRX led to the regeneration of the reduced form of the enzyme. In ischemic cardiospecific AR transgenic hearts, AR was co-immunoprecipitated with GSTP, whereas in reperfused hearts, the association of AR with GRX was increased. These findings suggest that upon reperfusion of the ischemic heart AR-SOH is converted to AR-SSG via GSTP-assisted glutathiolation. AR-SSG is then reduced by GRX to AR-SH. Sequential catalysis by GSTP and GRX may be a general redox switching mechanism that regulates the reduction of protein sulfenic acids to cysteines.
Collapse
Affiliation(s)
- Karin Wetzelberger
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
406
|
De Donatis GM, Moschini R, Cappiello M, Del Corso A, Mura U. Cysteinyl-glycine in the control of glutathione homeostasis in bovine lenses. Mol Vis 2010; 16:1025-33. [PMID: 20577593 PMCID: PMC2890556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 06/01/2010] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To define a possible metabolic and/or signaling role for Cys-Gly in glutathione homeostasis in bovine eye lenses. METHODS Bovine lenses were cultured up to 24 h in a medium containing 0.5 mM reduced glutathione (GSH) under different conditions. The intracellular and the extracellular contents of thiol compounds were evaluated using a free zone capillary electrophoresis method. RESULTS Culture of lenses in the presence of GSH and the gamma-glutamyl transferase inhibitor serine-borate demonstrated a 1.5 fold increase in the level of extra-lenticular glutathione with respect to the initial value. Cys-Gly exogenously added impaired the extra-lenticular accumulation of glutathione. Both cysteine and gamma-Glu-Cys were ineffective in reducing extra-lenticular glutathione accumulation. In all conditions no differences in reduced and total intra-lenticular glutathione levels were observed. CONCLUSIONS The impairment of Cys-Gly generation correlated with inhibition of gamma-glutamyl transferase by serine/borate, resulting in high extra-lenticular concentration of glutathione effluxed from the bovine lens. The possibility that Cys-Gly may intervene either in the replenishment processes for cysteine in the GSH biosynthetic step or in the function of the efflux GSH-transporters is considered.
Collapse
|
407
|
Abstract
The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein's activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora of redox signaling events. Methionine sulfoxide reductase B1 reduces methionine sulfoxide back to methionine using thioredoxin as a reductant. Several selenoproteins in the endoplasmic reticulum are involved in the regulation of protein disulfide formation and unfolded protein response signaling, although their precise biological activities have not been determined. The most widely distributed selenoprotein family in Nature is represented by the highly conserved thioredoxin-like selenoprotein W and its homologs that have not yet been assigned specific biological functions. Recent evidence suggests selenoprotein W and the six other small thioredoxin-like mammalian selenoproteins may serve to transduce hydrogen peroxide signals into regulatory disulfide bonds in specific target proteins.
Collapse
Affiliation(s)
- Wayne Chris Hawkes
- USDA Agricultural Research Service, Western Human Nutrition Research Center, University of California at Davis, Davis, USA
| | - Zeynep Alkan
- USDA Agricultural Research Service, Western Human Nutrition Research Center, University of California at Davis, Davis, USA
| |
Collapse
|
408
|
Godoy JR, Funke M, Ackermann W, Haunhorst P, Oesteritz S, Capani F, Elsässer HP, Lillig CH. Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse. Biochim Biophys Acta Gen Subj 2010; 1810:2-92. [PMID: 20682242 DOI: 10.1016/j.bbagen.2010.05.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oxidoreductases of the thioredoxin family of proteins have been thoroughly studied in numerous cellular and animal models mimicking human diseases. Despite of their well documented role in various disease conditions, no systematic information on the presence of these proteins is available. METHODS Here, we have systematically analyzed the presence of some of the major constituents of the glutaredoxin (Grx)-, peroxiredoxin (Prx)-, and thioredoxin (Trx)-systems, i.e. Grx1, Grx2, Grx3 (TXNL-2/PICOT), Grx5, nucleoredoxin (Nrx), Prx1, Prx2, Prx3, Prx4, Prx5, Prx6, Trx1, thioredoxin reductase 1 (TrxR1), Trx2, TrxR2, and γ-glutamyl cysteine synthetase (γ-GCS) in various tissues of the mouse using immunohistochemistry. RESULTS The identification of the Trx family proteins in the central nervous system, sensory organs, digestive system, lymphatic system, reproductive system, urinary system, respiratory system, endocrine system, skin, heart, and muscle revealed a number of significant differences between these proteins with respect to their distribution in these tissues. CONCLUSION Our results imply more specific functions and interactions between the proteins of this family than previously assumed. GENERAL SIGNIFICANCE Crucial functions of Trx family proteins have been demonstrated in various disease conditions. A detailed overview on their distribution in various tissues will be helpful to fully comprehend their potential role and the interactions of these proteins in the most thoroughly studied model for human diseases-the laboratory mouse. This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.
Collapse
Affiliation(s)
- José Rodrigo Godoy
- Institut für Klinische Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps Universität, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
409
|
Miron T, Listowsky I, Wilchek M. Reaction mechanisms of allicin and allyl-mixed disulfides with proteins and small thiol molecules. Eur J Med Chem 2010; 45:1912-8. [DOI: 10.1016/j.ejmech.2010.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 01/26/2023]
|
410
|
Role of nitric oxide-mediated glutathionylation in neuronal function: potential regulation of energy utilization. Biochem J 2010; 428:85-93. [PMID: 20210787 DOI: 10.1042/bj20100164] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Excessive generation of nitric oxide radical (NO*) in neuroinflammation, excitotoxicity and during age-related neurodegenerative disorders entails the localized and concerted increase in nitric oxide synthase(s) expression in glial cells and neurons. The aim of the present study was to assess the biological significance of the impact of NO* on the cell's thiol status with emphasis on S-glutathionylation of targeted proteins. Exposure of primary cortical neurons or astrocytes to increasing flow rates of NO* (0.061-0.25 microM/s) resulted in the following. (i) A decrease in GSH (glutathione) in neurons accompanied by formation of GSNO (S-nitrosoglutathione) and GSSG (glutathione disulfide); neurons were far more sensitive to NO* exposure than astrocytes. (ii) A dose-dependent oxidation of the cellular redox status: the neuron's redox potential increased approximately 42 mV and that of astrocytes approximately 23 mV. A good correlation was observed between cell viability and the cellular redox potential. The higher susceptibility of neurons to NO* can be partly explained by a reduced capacity to recover GSH through lower activities of GSNO and GSSG reductases. (iii) S-glutathionylation of a small subset of proteins, among them GAPDH (glyceraldehyde-3-phosphate dehydrogenase), the S-glutathionylation of which resulted in inhibition of enzyme activity. The quantitative analyses of changes in the cell's thiol potential upon NO* exposure and their consequences for S-glutathionylation are discussed in terms of the distinct redox environment of astrocytes and neurons.
Collapse
|
411
|
Sabens EA, Distler AM, Mieyal JJ. Levodopa deactivates enzymes that regulate thiol-disulfide homeostasis and promotes neuronal cell death: implications for therapy of Parkinson's disease. Biochemistry 2010; 49:2715-24. [PMID: 20141169 DOI: 10.1021/bi9018658] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD), characterized by dopaminergic neuronal loss, is attributed to oxidative stress, diminished glutathione (GSH) levels, mitochondrial dysfunction, and protein aggregation. Treatment of PD involves chronic administration of Levodopa (l-DOPA) which is a pro-oxidant and may disrupt sulfhydryl homeostasis. The goal of these studies is to elucidate the effects of l-DOPA on thiol homeostasis in a model akin to PD, i.e., immortalized dopaminergic neurons (SHSY5Y cells) with diminished GSH content. These neurons exhibit hypersensitivity to l-DOPA-induced cell death, which is attributable to concomitant inhibition of the intracellular thiol disulfide oxidoreductase enzymes. Glutaredoxin (Grx) was deactivated in a dose-dependent fashion, but its content was unaffected. Glutathione disulfide (GSSG) reductase (GR) activity was not altered. Selective knockdown of Grx resulted in an increased level of apoptosis, documenting the role of the Grx system in neuronal survival. l-DOPA treatments also led to decreased activities of thioredoxin (Trx) and thioredoxin reductase (TR), concomitant with diminution of their cellular contents. Selective chemical inhibition of TR activity led to an increased level of apoptosis, documenting the Trx system's contribution to neuronal viability. To investigate the mechanism of inhibition at the molecular level, we treated the each isolated enzyme with oxidized l-DOPA. GR, Trx, and TR activities were little affected. However, Grx was inactivated in a time- and concentration-dependent fashion indicative of irreversible adduction of dopaquinone to its nucleophilic active-site Cys-22, consistent with the intracellular loss of Grx activity but not Grx protein content after l-DOPA treatment. Overall l-DOPA is shown to impair the collaborative contributions of the Grx and Trx systems to neuron survival.
Collapse
Affiliation(s)
- Elizabeth A Sabens
- Department of Pharmacology, Case Western Reserve University, School of Medicine, 2109 Adelbert Road, Cleveland, Ohio 44106-4965, USA
| | | | | |
Collapse
|
412
|
Hill BG, Dranka BP, Bailey SM, Lancaster JR, Darley-Usmar VM. What part of NO don't you understand? Some answers to the cardinal questions in nitric oxide biology. J Biol Chem 2010; 285:19699-704. [PMID: 20410298 PMCID: PMC2888379 DOI: 10.1074/jbc.r110.101618] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide (NO) regulates biological processes through signaling mechanisms that exploit its unique biochemical properties as a free radical. For the last several decades, the key aspects of the chemical properties of NO relevant to biological systems have been defined, but it has been a challenge to assign these to specific cellular processes. Nevertheless, it is now clear that the high affinity of NO for transition metal centers, particularly iron, and the rapid reaction of NO with oxygen-derived free radicals can explain many of its biological and pathological properties. Emerging studies also highlight a growing importance of the secondary metabolites of NO-dependent reactions in the post-translational modification of key metabolic and signaling proteins. In this minireview, we emphasize the current understanding of the biochemistry of NO and place it in a biological context.
Collapse
Affiliation(s)
- Bradford G Hill
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2180, USA
| | | | | | | | | |
Collapse
|
413
|
Liao BC, Hsieh CW, Lin YC, Wung BS. The glutaredoxin/glutathione system modulates NF-kappaB activity by glutathionylation of p65 in cinnamaldehyde-treated endothelial cells. Toxicol Sci 2010; 116:151-63. [PMID: 20351055 DOI: 10.1093/toxsci/kfq098] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Reversible protein glutathionylation is an important posttranslational modification that provides protection against oxidation. In endothelial cells (ECs), cinnamaldehyde is an electrophilic compound that can increase the intracellular glutathione (GSH) levels or reactive oxygen species (ROS) production depending on the treatment duration. ECs treated with GSH and H(2)O(2) show increased sulfhydryl modifications of the p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB), which are responsible for NF-kappaB inactivation, and also a block in TNF-alpha-induced p65 nuclear translocation and inter-cellular adhesion molecule-1 (ICAM-1) expression. In our current study, we find that cinnamaldehyde induces p65 glutathionylation and inhibits TNF-alpha-induced p65 nuclear translocation and ICAM-1 expression within 12 h of treatment. Our analyses also reveal that p65 glutathionylation is suppressed by a GSH synthesis inhibitor, buthionine sulfoximine (BSO), and we further observed that the inhibitory effects of p65 nuclear translocation and ICAM-1 expression are also suppressed by BSO. NF-E2-related factor-2 small interfering RNA (siRNA) molecules not only inhibit glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM) induction and increases in GSH but also abolish cinnamaldehyde-induced p65 glutathionylation and its inhibitory effects. The gene expression and activity of glutaredoxin-1 (Grx-1), which catalyzes the formation of protein-glutathione mixed disulfides (protein-SSG), were also found to be increased after cinnamaldehyde treatment. A knock down of endogenous Grx-1 by siRNA or pretreatment with an inhibitor of Grx-1 activity, CdCl(2), abolishes p65-SSG formation. In addition, Grx-1 siRNA blocks the inhibition of p65 nuclear translocation and ICAM-1 expression, suggesting that this enzyme is involved in the cinnamaldehyde-mediated NF-kappaB inhibition. Our current results thus indicate that the GSH/Grx-1-dependent glutathionylation of p65 is likely to be responsible for cinnamaldehyde-mediated NF-kappaB inactivation and for the enhanced inhibitory effects of cinnamaldehyde upon TNF-alpha-treated ECs.
Collapse
Affiliation(s)
- Being-Chyuan Liao
- Department of Microbiology and Immunology, National Chiayi University, Chiayi, Taiwan
| | | | | | | |
Collapse
|
414
|
Lian KC, Chuang JJ, Hsieh CW, Wung BS, Huang GD, Jian TY, Sun YW. Dual mechanisms of NF-kappaB inhibition in carnosol-treated endothelial cells. Toxicol Appl Pharmacol 2010; 245:21-35. [PMID: 20116392 DOI: 10.1016/j.taap.2010.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/24/2009] [Accepted: 01/09/2010] [Indexed: 12/22/2022]
Abstract
The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFalpha-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein IkappaBalpha in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-beta phosphorylation in pretreatments of less than 3 h. In TNFalpha-treated ECs, NF-kappaB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFalpha-induced singling pathways through the inhibition of IKK-beta activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.
Collapse
Affiliation(s)
- Kai-Cheng Lian
- Department of Microbiology and Immunology, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
415
|
Paulsen CE, Carroll KS. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 2010; 5:47-62. [PMID: 19957967 DOI: 10.1021/cb900258z] [Citation(s) in RCA: 371] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) acts as a second messenger that can mediate intracellular signal transduction via chemoselective oxidation of cysteine residues in signaling proteins. This Review presents current mechanistic insights into signal-mediated H(2)O(2) production and highlights recent advances in methods to detect reactive oxygen species (ROS) and cysteine oxidation both in vitro and in cells. Selected examples from the recent literature are used to illustrate the diverse mechanisms by which H(2)O(2) can regulate protein function. The continued development of methods to detect and quantify discrete cysteine oxoforms should further our mechanistic understanding of redox regulation of protein function and may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Kate S. Carroll
- Chemical Biology Graduate Program
- Life Sciences Institute
- Departmentof Chemistry, University of Michigan, Ann Arbor, Michigan, 48109-2216
| |
Collapse
|
416
|
Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med 2010; 48:1-15. [PMID: 19800967 PMCID: PMC2818240 DOI: 10.1016/j.freeradbiomed.2009.09.026] [Citation(s) in RCA: 349] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/24/2009] [Accepted: 09/26/2009] [Indexed: 12/16/2022]
Abstract
Transforming growth factor beta (TGF-beta) is the most potent and ubiquitous profibrogenic cytokine, and its expression is increased in almost all the fibrotic diseases and in experimental fibrosis models. TGF-beta increases reactive oxygen species production and decreases the concentration of glutathione (GSH), the most abundant intracellular free thiol and an important antioxidant, which mediates many of the fibrogenic effects of TGF-beta in various types of cells. A decreased GSH concentration is also observed in human fibrotic diseases and in experimental fibrosis models. Although the biological significance of GSH depletion in the development of fibrosis remains obscure, GSH and N-acetylcysteine, a precursor of GSH, have been used in clinics for the treatment of fibrotic diseases. This review summarizes recent findings in the field to address the potential mechanism whereby oxidative stress mediates fibrogenesis induced by TGF-beta and the potential therapeutic value of antioxidant treatment in fibrotic diseases.
Collapse
Affiliation(s)
- R-M Liu
- Department of Environmental Health Sciences, School of Public Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | |
Collapse
|
417
|
Cellular redox potential and hemoglobin S-glutathionylation in human and rat erythrocytes: A comparative study. Blood Cells Mol Dis 2009; 44:133-9. [PMID: 19963409 DOI: 10.1016/j.bcmd.2009.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 09/30/2009] [Accepted: 11/11/2009] [Indexed: 01/22/2023]
Abstract
The rat is commonly used to evaluate responses of red blood cells (RBCs) to oxidative stress. How closely the rat RBC model predicts the human RBC human response has not been well characterized. The objective of this study was to compare human and rat RBC responses to the thiol-specific oxidant tert-butylhydroperoxide by monitoring the intraerythrocyte glutathione redox potential and its correlation with hemoglobin S-glutathionylation. Changes in redox potential did not differ significantly between rat and human RBCs under the considered conditions, and both human and rat hemoglobins were apparently S-glutathionylated by a thiol-disulfide exchange mechanism with glutathione disulfide, though the extent of S-glutathionylation in rat erythrocytes was more than 10-fold higher than in human ones. On the contrary, human and rat hemoglobin S-glutathionylation differently correlated with redox potential for the glutathione redox couple, suggesting that the formation of S-glutathionylated hemoglobin was not simply a function of glutathione disulfide concentration or glutathione/glutathione disulfide ratio and that the content of reactive cysteines in hemoglobin beta globin can strongly influence intraerythrocyte glutathione metabolism and distribution between free and hemoglobin-bound forms. This study reveals fundamental physiological differences in rat and human RBCs because of differences in rat and human beta globin cysteine and reactivity, which can have important implications for the study of rat biology as a whole and for the use of rats as models for human beings under physiological and pathological circumstances and, therefore, highlights the need for caution when extrapolating rat responses to humans.
Collapse
|
418
|
Aversa MC, Barattucci A, Bonaccorsi P. Efficient Synthesis of Unsymmetrical Disulfides through Sulfenic Acids. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900986] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
419
|
Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA. Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 2009; 11:2717-39. [PMID: 19558211 DOI: 10.1089/ars.2009.2721] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO), plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is involved in synaptic activity, neural plasticity, and memory function. Nitric oxide promotes survival and differentiation of neural cells and exerts long-lasting effects through regulation of transcription factors and modulation of gene expression. Signaling by reactive nitrogen species is carried out mainly by targeted modifications of critical cysteine residues in proteins, including S-nitrosylation and S-oxidation, as well as by lipid nitration. NO and other reactive nitrogen species are also involved in neuroinflammation and neurodegeneration, such as in Alzheimer disease, amyotrophic lateral sclerosis, Parkinson disease, multiple sclerosis, Friedreich ataxia, and Huntington disease. Susceptibility to NO and peroxynitrite exposure may depend on factors such as the intracellular reduced glutathione and cellular stress resistance signaling pathways. Thus, neurons, in contrast to astrocytes, appear particularly vulnerable to the effects of nitrosative stress. This article reviews the current understanding of the cytotoxic versus cytoprotective effects of NO in the central nervous system, highlighting the Janus-faced properties of this small molecule. The significance of NO in redox signaling and modulation of the adaptive cellular stress responses and its exciting future perspectives also are discussed.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania , Catania, Italy.
| | | | | | | | | | | |
Collapse
|
420
|
Bellia F, Calabrese V, Guarino F, Cavallaro M, Cornelius C, De Pinto V, Rizzarelli E. Carnosinase levels in aging brain: redox state induction and cellular stress response. Antioxid Redox Signal 2009; 11:2759-75. [PMID: 19583493 DOI: 10.1089/ars.2009.2738] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carnosinase is a dipeptidase found almost exclusively in brain and serum. Its natural substrate carnosine, present at high concentration in the brain, has been proposed as an antioxidant in vivo. We investigated the role of carnosinase in brain aging to establish a possible correlation with age-related changes in cellular stress response and redox status. In addition, a stable HeLa cell line expressing recombinant human serum carnosinase CN1 was established. The enzyme was purified from transfected cells, and specific antibodies were produced against it. Brain expression of CN1, Hsp72, heme oxygenase-1, and thioredoxin reductase increased with age, with a maximal induction in hippocampus and substantia nigra, followed by cerebellum, cortex, septum, and striatum. Hsps induction was associated with significant changes in total SH groups, GSH redox state, carbonyls, and HNE levels. A positive correlation between decrease in GSH and increase in Hsp72 expression was observed in all brain regions examined during aging. Increased carnosinase activity in the brain can lead to decreased carnosine levels and GSH/GSSG ratio. These results, consistent with the current notion that oxidative stress and cellular damage are characteristic hallmarks of the aging process, sustain the critical role of cellular stress-response mechanisms as possible targets for novel antiaging strategies.
Collapse
Affiliation(s)
- Francesco Bellia
- Department of Chemical Sciences, University of Catania , Catania Section, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
421
|
The cytosolic redox state of astrocytes: Maintenance, regulation and functional implications for metabolite trafficking. ACTA ACUST UNITED AC 2009; 63:177-88. [PMID: 19883686 DOI: 10.1016/j.brainresrev.2009.10.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/24/2009] [Accepted: 10/27/2009] [Indexed: 12/31/2022]
Abstract
Astrocytes have important functions in the metabolism of the brain. These cells provide neurons with metabolic substrates for energy production as well as with precursors for neurotransmitter and glutathione synthesis. Both the metabolism of astrocytes and the subsequent supply of metabolites from astrocytes to neurons are strongly affected by alterations in the cellular redox state. The cytosolic redox state of astrocytes depends predominantly on the ratios of the oxidised and reduced partners of the redox pairs NADH/NAD(+), NADPH/NADP(+) and GSH/GSSG. The NADH/NAD(+) pair is predominately in the oxidised state to accept electrons that are produced during glycolysis. In contrast, the redox pairs NADPH/NADP(+) and GSH/GSSG are biased towards the reduced state under unstressed conditions to provide electrons for reductive biosyntheses and antioxidative processes, respectively. In this review article we describe the metabolic processes that maintain the redox pairs in their desired redox states in the cytosol of astrocytes and discuss the consequences of alterations of the normal redox state for the regulation of cellular processes and for metabolite trafficking from astrocytes to neurons.
Collapse
|
422
|
Bedhomme M, Zaffagnini M, Marchand CH, Gao XH, Moslonka-Lefebvre M, Michelet L, Decottignies P, Lemaire SD. Regulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii. J Biol Chem 2009; 284:36282-36291. [PMID: 19847013 DOI: 10.1074/jbc.m109.064428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification of protein cysteine residues is emerging as an important regulatory and signaling mechanism. We have identified numerous putative targets of redox regulation in the unicellular green alga Chlamydomonas reinhardtii. One enzyme, isocitrate lyase (ICL), was identified both as a putative thioredoxin target and as an S-thiolated protein in vivo. ICL is a key enzyme of the glyoxylate cycle that allows growth on acetate as a sole source of carbon. The aim of the present study was to clarify the molecular mechanism of the redox regulation of Chlamydomonas ICL using a combination of biochemical and biophysical methods. The results clearly show that purified C. reinhardtii ICL can be inactivated by glutathionylation and reactivated by glutaredoxin, whereas thioredoxin does not appear to regulate ICL activity, and no inter- or intramolecular disulfide bond could be formed under any of the conditions tested. Glutathionylation of the protein was investigated by mass spectrometry analysis, Western blotting, and site-directed mutagenesis. The enzyme was found to be protected from irreversible oxidative inactivation by glutathionylation of its catalytic Cys(178), whereas a second residue, Cys(247), becomes artifactually glutathionylated after prolonged incubation with GSSG. The possible functional significance of this post-translational modification of ICL in Chlamydomonas and other organisms is discussed.
Collapse
Affiliation(s)
- Mariette Bedhomme
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Mirko Zaffagnini
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Christophe H Marchand
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, CNRS/Université Paris-Sud, Bâtiment 430, 91405 Orsay, Cedex, France
| | - Xing-Huang Gao
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Mathieu Moslonka-Lefebvre
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Laure Michelet
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Paulette Decottignies
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, CNRS/Université Paris-Sud, Bâtiment 430, 91405 Orsay, Cedex, France
| | - Stéphane D Lemaire
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France.
| |
Collapse
|
423
|
Mangialasche F, Polidori MC, Monastero R, Ercolani S, Camarda C, Cecchetti R, Mecocci P. Biomarkers of oxidative and nitrosative damage in Alzheimer's disease and mild cognitive impairment. Ageing Res Rev 2009; 8:285-305. [PMID: 19376275 DOI: 10.1016/j.arr.2009.04.002] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. Products of oxidative and nitrosative stress (OS and NS, respectively) accumulate with aging, which is the main risk factor for AD. This provides the basis for the involvement of OS and NS in AD pathogenesis. OS and NS occur in biological systems due to the dysregulation of the redox balance, caused by a deficiency of antioxidants and/or the overproduction of free radicals. Free radical attack against lipids, proteins, sugars and nucleic acids leads to the formation of bioproducts whose detection in fluids and tissues represents the currently available method for assessing oxidative/nitrosative damage. Post-mortem and in-vivo studies have demonstrated an accumulation of products of free radical damage in the central nervous system and in the peripheral tissues of subjects with AD or mild cognitive impairment (MCI). In addition to their individual role, biomarkers for OS and NS in AD are associated with altered bioenergetics and amyloid-beta (Abeta) metabolism. In this review we discuss the main results obtained in the field of biomarkers of oxidative/nitrosative stress in AD and MCI in humans, in addition to their potential role as a tool for diagnosis, prognosis and treatment efficacy in AD.
Collapse
|
424
|
Determination of glutathione and glutathione disulfide in biological samples: An in-depth review. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3331-46. [DOI: 10.1016/j.jchromb.2009.06.016] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 06/02/2009] [Accepted: 06/10/2009] [Indexed: 12/13/2022]
|
425
|
Lee DW, Kaur D, Chinta SJ, Rajagopalan S, Andersen JK. A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: implications for Parkinson's disease. Antioxid Redox Signal 2009; 11:2083-94. [PMID: 19290777 PMCID: PMC2819798 DOI: 10.1089/ars.2009.2489] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is characterized by early glutathione depletion in the substantia nigra (SN). Among its various functions in the cell, glutathione acts as a substrate for the mitochondrial enzyme glutaredoxin 2 (Grx2). Grx2 is involved in glutathionylation of protein cysteine sulfhydryl residues in the mitochondria. Although monothiol glutathione-dependent oxidoreductases (Grxs) have previously been demonstrated to be involved in iron-sulfur (Fe-S) center biogenesis, including that in yeast, here we report data suggesting the involvement of mitochondrial Grx2, a dithiol Grx, in iron-sulfur biogenesis in a mammalian dopaminergic cell line. Given that mitochondrial dysfunction and increased cellular iron levels are two important hallmarks of PD, this suggests a novel potential mechanism by which glutathione depletion may affect these processes in dopaminergic neurons. We report that depletion of glutathione as substrate results in a dose-dependent Grx2 inhibition and decreased iron incorporation into a mitochondrial complex I (CI) and aconitase (m-aconitase). Mitochondrial Grx2 inhibition through siRNA results in a corresponding decrease in CI and m-aconitase activities. It also results in significant increases in iron-regulatory protein (IRP) binding, likely as a consequence of conversion of Fe-S-containing cellular aconitase to its non-Fe-S-containing IRP1 form. This is accompanied by increased transferrin receptor, decreased ferritin, and subsequent increases in mitochondrial iron levels. This suggests that glutathione depletion may affect important pathologic cellular events associated with PD through its effects on Grx2 activity and mitochondrial Fe-S biogenesis.
Collapse
Affiliation(s)
- Donna W Lee
- The Buck Institute for Age Research, Novato, California 94945, USA
| | | | | | | | | |
Collapse
|
426
|
McDonagh B, Ogueta S, Lasarte G, Padilla CA, Bárcena JA. Shotgun redox proteomics identifies specifically modified cysteines in key metabolic enzymes under oxidative stress in Saccharomyces cerevisiae. J Proteomics 2009; 72:677-89. [PMID: 19367685 DOI: 10.1016/j.jprot.2009.01.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Post-translational redox modification of thiol groups can form the molecular basis of antioxidative protection and redox control. We have implemented a shotgun redox proteomic technique to identify the precise cysteines reversibly oxidised in key proteins. The method was applied to Saccharomyces cerevisiae subjected to peroxide treatment. Enrichment by covalent redox affinity chromatography allowed the isolation of a "redox subpeptidome" that was analysed by LC-MS/MS. Unique peptides containing specific reversibly oxidised cysteines were used to identify over 70 proteins in control and treated samples of which 27 were consistently present in all replicates. In most cases, the redox modification negatively affects their function and slows down their metabolic pathways. Integration of the data provides a snapshot consistent with a metabolic defensive strategy, regulating key enzymes by redox modification, redirecting energy toward ribulose-5-phosphate recycling for NADPH production and antioxidative defence.This generally applicable method has allowed us to discover new redox regulated proteins (DAHP and carbamoylphosphate synthases, Doa1p) and to precisely identify target cysteines in a number of known ones.
Collapse
Affiliation(s)
- Brian McDonagh
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Universidad de Córdoba, Cordoba, Spain
| | | | | | | | | |
Collapse
|
427
|
Li S, Zheng MQ, Rozanski GJ. Glutathione homeostasis in ventricular myocytes from rat hearts with chronic myocardial infarction. Exp Physiol 2009; 94:815-24. [DOI: 10.1113/expphysiol.2008.046201] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
428
|
Csordás G, Hajnóczky G. SR/ER-mitochondrial local communication: calcium and ROS. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1352-62. [PMID: 19527680 DOI: 10.1016/j.bbabio.2009.06.004] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 02/07/2023]
Abstract
Mitochondria form junctions with the sarco/endoplasmic reticulum (SR/ER), which support signal transduction and biosynthetic pathways and affect organellar distribution. Recently, these junctions have received attention because of their pivotal role in mediating calcium signal propagation to the mitochondria, which is important for both ATP production and mitochondrial cell death. Many of the SR/ER-mitochondrial calcium transporters and signaling proteins are sensitive to redox regulation and are directly exposed to the reactive oxygen species (ROS) produced in the mitochondria and SR/ER. Although ROS has been emerging as a novel signaling entity, the redox signaling of the SR/ER-mitochondrial interface is yet to be elucidated. We describe here possible mechanisms of the mutual interaction between local Ca(2+) and ROS signaling in the control of SR/ER-mitochondrial function.
Collapse
Affiliation(s)
- György Csordás
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
429
|
Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009; 390:191-214. [PMID: 19166318 DOI: 10.1515/bc.2009.033] [Citation(s) in RCA: 758] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and as a result, disturbances in GSH homeostasis are implicated in the etiology and/or progression of a number of human diseases, including cancer, diseases of aging, cystic fibrosis, and cardiovascular, inflammatory, immune, metabolic, and neurodegenerative diseases. Owing to the pleiotropic effects of GSH on cell functions, it has been quite difficult to define the role of GSH in the onset and/or the expression of human diseases, although significant progress is being made. GSH levels, turnover rates, and/or oxidation state can be compromised by inherited or acquired defects in the enzymes, transporters, signaling molecules, or transcription factors that are involved in its homeostasis, or from exposure to reactive chemicals or metabolic intermediates. GSH deficiency or a decrease in the GSH/glutathione disulfide ratio manifests itself largely through an increased susceptibility to oxidative stress, and the resulting damage is thought to be involved in diseases, such as cancer, Parkinson's disease, and Alzheimer's disease. In addition, imbalances in GSH levels affect immune system function, and are thought to play a role in the aging process. Just as low intracellular GSH levels decrease cellular antioxidant capacity, elevated GSH levels generally increase antioxidant capacity and resistance to oxidative stress, and this is observed in many cancer cells. The higher GSH levels in some tumor cells are also typically associated with higher levels of GSH-related enzymes and transporters. Although neither the mechanism nor the implications of these changes are well defined, the high GSH content makes cancer cells chemoresistant, which is a major factor that limits drug treatment. The present report highlights and integrates the growing connections between imbalances in GSH homeostasis and a multitude of human diseases.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
430
|
Regazzoni L, Panusa A, Yeum KJ, Carini M, Aldini G. Hemoglobin glutathionylation can occur through cysteine sulfenic acid intermediate: electrospray ionization LTQ-Orbitrap hybrid mass spectrometry studies. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3456-61. [PMID: 19493711 DOI: 10.1016/j.jchromb.2009.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 02/04/2023]
Abstract
Glutathionylated hemoglobin (Hb-SSG) is now recognized as a promising biomarker of systemic oxidative stress. Aim of this study is to gain a mechanistic insight into its formation. The ability of GSSG to form Hb-SSG through a thiol-disulfide exchange mechanism was firstly examined. For this purpose, GSSG (ranging from 0.23 to 230micromol/g Hb, 15microM-15mM final concentrations) was incubated with 1mM Hb and the relative content of Hb-SSG determined by direct infusion mass spectrometry (Orbitrap as analyzer). No detectable Hb-SSG was observed at a GSSG concentration range found in physiopathological conditions (0.13-0.23micromol/g Hb). To reach a detectable Hb-SSG signal, the GSSG concentration was raised to 2.3micromol/g Hb (0.5% relative abundance). The relative content of Hb-GSSG dose-dependently increased to 6% and 11% at 77 and 153micromol/g Hb, respectively. The second step was to demonstrate whether Hb-SSG is formed through a sulfenic acid intermediate, a well-recognized mechanism of S-protein glutathionylation. Cys beta93 sulfenic acid was found to be formed by oxidizing Hb with 1mM H(2)O(2), as demonstrated by direct infusion and LC-ESI-MS/MS experiments and using dimedone as derivatazing agent. When H(2)O(2)-treated Hb was incubated with physiological concentrations of GSH (9micromol/g Hb), the corresponding Hb-SSG form was detected, reaching 15% of relative abundance. In summary, we here demonstrate that Hb glutathionylation can occur through a Cys sulfenic acid intermediate which is formed in oxidizing conditions. Hb glutathionylation is also mediated by a thiol-disulfide transfer mechanism, but this requires a concentration of GSSG which is far to be achieved in physiopathological conditions.
Collapse
Affiliation(s)
- Luca Regazzoni
- Dipartimento di Scienze Farmaceutiche Pietro Pratesi, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
431
|
Gallogly MM, Starke DW, Mieyal JJ. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal 2009; 11:1059-81. [PMID: 19119916 PMCID: PMC2842129 DOI: 10.1089/ars.2008.2291] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glutaredoxins are small, heat-stable proteins that exhibit a characteristic thioredoxin fold and a CXXC/S active-site motif. A variety of glutathione (GSH)-dependent catalytic activities have been attributed to the glutaredoxins, including reduction of ribonucleotide reductase, arsenate, and dehydroascorbate; assembly of iron sulfur cluster complexes; and protein glutathionylation and deglutathionylation. Catalysis of reversible protein glutathionylation by glutaredoxins has been implicated in regulation of redox signal transduction and sulfhydryl homeostasis in numerous contexts in health and disease. This forum review is presented in two parts. Part I is focused primarily on the mechanism of the deglutathionylation reaction catalyzed by prototypical dithiol glutaredoxins, especially human Grx1 and Grx2. Grx-catalyzed protein deglutathionylation proceeds by a nucleophilic, double-displacement mechanism in which rate enhancement is attributed to special reactivity of the low pK(a) cysteine at its active site, and to increased nucleophilicity of the second substrate, GSH. Glutaredoxins (and Grx domains) have been identified in most organisms, and many exhibit deglutathionylation or other activities or both. Further characterization according to glutathionyl selectivity, physiological substrates, and intracellular roles may lead to subclassification of this family of enzymes. Part II presents potential mechanisms for in vivo regulation of Grx activity, providing avenues for future studies.
Collapse
Affiliation(s)
- Molly M Gallogly
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | |
Collapse
|
432
|
Park HA, Khanna S, Rink C, Gnyawali S, Roy S, Sen CK. Glutathione disulfide induces neural cell death via a 12-lipoxygenase pathway. Cell Death Differ 2009; 16:1167-79. [PMID: 19373248 PMCID: PMC2990696 DOI: 10.1038/cdd.2009.37] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Oxidized glutathione (GSSG) is commonly viewed as a byproduct of GSH metabolism. The pathophysiological significance of GSSG per se remains poorly understood. Adopting a microinjection approach to isolate GSSG elevation within the cell, this work identifies that GSSG can trigger neural HT4 cell death via a 12-lipoxygenase (12-Lox)-dependent mechanism. In vivo, stereotaxic injection of GSSG into the brain caused lesion in wild-type mice but less so in 12-Lox knockout mice. Microinjection of graded amounts identified 0.5 mM as the lethal [GSSG]i in resting cells. Interestingly, this threshold was shifted to the left by 20-fold (0.025 mM) in GSH-deficient cells. This is important because tissue GSH lowering is commonly noted in the context of several diseases as well as in aging. Inhibition of GSSG reductase by BCNU is known to result in GSSG accumulation and caused cell death in a 12-Lox-sensitive manner. GSSG S-glutathionylated purified 12-Lox as well as in a model of glutamate-induced HT4 cell death in vitro where V5-tagged 12-Lox was expressed in cells. Countering glutamate-induced 12-Lox S-glutathionylation by glutaredoxin-1 overexpression protected against cell death. Strategies directed at improving or arresting cellular GSSG clearance may be effective in minimizing oxidative stress-related tissue injury or potentiating the killing of tumor cells, respectively.
Collapse
Affiliation(s)
- H-A Park
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
433
|
Martínez-Ruiz A, Lamas S. Two decades of new concepts in nitric oxide signaling: from the discovery of a gas messenger to the mediation of nonenzymatic posttranslational modifications. IUBMB Life 2009; 61:91-8. [PMID: 18979538 DOI: 10.1002/iub.144] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For the past 20 years, nitric oxide (NO) has established itself as a gaseous free radical with crucial and unpredicted roles in a wide spectrum of biological functions and organisms. We present here a case whereby NO-mediated signaling can be broadly classified into classical (cGMP-mediated) and nonclassical, the latter mainly alluding to posttranslational modifications related to NO and its interaction with reactive groups in proteins.
Collapse
Affiliation(s)
- Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital de La Princesa, c/ Diego de León 62, E-28006 Madrid, Spain.
| | | |
Collapse
|
434
|
Improvement of antioxidant status in women conventionally treated for breast cancer after 12 months of a cow milk whey-based supplementation. A preliminary study. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2009. [DOI: 10.1007/s12349-009-0033-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
435
|
Oxidation of cysteine 645 of cobalamin-independent methionine synthase causes a methionine limitation in Escherichia coli. J Bacteriol 2009; 191:3407-10. [PMID: 19286805 DOI: 10.1128/jb.01722-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cobalamin-independent methionine synthase (MetE) catalyzes the final step in Escherichia coli methionine biosynthesis but is inactivated under oxidative conditions, triggering a methionine deficiency. This study demonstrates that the mutation of MetE cysteine 645 to alanine completely eliminates the methionine auxotrophy imposed by diamide treatment, suggesting that modulation of MetE activity via cysteine 645 oxidation has significant physiological consequences for oxidatively stressed cells.
Collapse
|
436
|
Eckers E, Bien M, Stroobant V, Herrmann JM, Deponte M. Biochemical Characterization of Dithiol Glutaredoxin 8 from Saccharomyces cerevisiae: The Catalytic Redox Mechanism Redux. Biochemistry 2009; 48:1410-23. [DOI: 10.1021/bi801859b] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Elisabeth Eckers
- Butenandt Institute for Physiological Chemistry, Ludwig-Maximilians University, D-81377 Munich, Germany, Cell Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Melanie Bien
- Butenandt Institute for Physiological Chemistry, Ludwig-Maximilians University, D-81377 Munich, Germany, Cell Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Vincent Stroobant
- Butenandt Institute for Physiological Chemistry, Ludwig-Maximilians University, D-81377 Munich, Germany, Cell Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Johannes M. Herrmann
- Butenandt Institute for Physiological Chemistry, Ludwig-Maximilians University, D-81377 Munich, Germany, Cell Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Marcel Deponte
- Butenandt Institute for Physiological Chemistry, Ludwig-Maximilians University, D-81377 Munich, Germany, Cell Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, B-1200 Brussels, Belgium
| |
Collapse
|
437
|
Shelton MD, Distler AM, Kern TS, Mieyal JJ. Glutaredoxin regulates autocrine and paracrine proinflammatory responses in retinal glial (muller) cells. J Biol Chem 2008; 284:4760-6. [PMID: 19074435 DOI: 10.1074/jbc.m805464200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Protein S-glutathionylation is a reversible redox-dependent post-translational modification. Many cellular functions and signal transduction pathways involve proteins whose cysteine-dependent activities are modulated by glutathionylation. Glutaredoxin (Grx1) plays a key role in such regulation because it is a specific and efficient catalyst of deglutathionylation. We recently reported an increase in Grx1 in retinae of diabetic rats and in rat retinal Müller glial cells (rMC-1) cultured in high glucose. This up-regulation of Grx1 was concomitant with NFkappaB activation and induction of intercellular adhesion molecule-1 (ICAM-1). This proinflammatory response was replicated by adenoviral-directed up-regulation of Grx1 in cells in normal glucose. The site of regulation of NFkappaB was localized to the cytoplasm, where IkappaB kinase (IKK) is a master regulator of NFkappaB activation. In the current study, inhibition of IKK activity abrogated the increase in ICAM-1 induced by high glucose or by adenoviral-directed up-regulation of Grx1. Conditioned medium from the Müller cells overexpressing Grx1 was added to fresh cultures of Müller or endothelial cells and elicited increases in the Grx1 and ICAM-1 proteins in these cells. These effects correlate with a novel finding that secretion of interleukin-6 was elevated in the cultures of Grx overexpressing cells. Also, pure interleukin-6 increased Grx1 and ICAM-1 in the rMC-1 cells. Thus, Grx1 appears to play an important role in both autocrine and paracrine proinflammatory responses. Furthermore, IKKbeta isolated from Müller cells in normal glucose medium was found to be glutathionylated on Cys-179. Hence Grx-mediated activation of IKK via deglutathionylation may play a central role in diabetic complications in vivo where Grx1 is increased.
Collapse
Affiliation(s)
- Melissa D Shelton
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4965, USA
| | | | | | | |
Collapse
|
438
|
Krause RJ, Elfarra AA. Reduction of L-methionine selenoxide to seleno-L-methionine by endogenous thiols, ascorbic acid, or methimazole. Biochem Pharmacol 2008; 77:134-40. [PMID: 18930712 DOI: 10.1016/j.bcp.2008.09.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/12/2008] [Accepted: 09/17/2008] [Indexed: 11/24/2022]
Abstract
Seleno-L-methionine (SeMet) can be oxidized to L-methionine selenoxide (MetSeO) by flavin-containing monooxygenase 3 (FMO3) and rat liver microsomes in the presence of NADPH. MetSeO can be reduced by GSH to yield SeMet and GSSG. In the present study, the potential reduction of MetSeO to SeMet by other cellular components and antioxidants was investigated. Besides GSH, other thiols (L-cysteine, or N-acetyl-L-cysteine) and antioxidants (ascorbic acid and methimazole) also reduced MetSeO to SeMet. This reduction is unique to MetSeO since methionine sulfoxide was not reduced to methionine under similar conditions. The MetSeO reduction by thiols was instaneous and much faster than the reduction by ascorbic acid or methimazole. However, only one molar equivalent of ascorbic acid or methimazole was needed to complete the reduction, as opposed to two molar equivalents of thiols. Whereas the disulfides produced by the reactions of MetSeO with thiols are chemically stable, methimazole disulfide readily decomposed at pH 7.4, 37 degrees C to yield methimazole, methimazole-sulfenic acid, methimazole sulfinic acid, methimazole S-sulfonate, 1-methylimidazole (MI) and sulfite anion. Collectively, the results demonstrate reduction of MetSeO to SeMet by multiple endogenous thiols, ascorbic acid, and methimazole. Thus, oxidation of SeMet to MetSeO may result in depletion of endogenous thiols and antioxidant molecules. Furthermore, the novel reduction of MetSeO by methimazole provides clear evidence that methimazole should not be used as an alternative FMO substrate when studying FMO-mediated oxidation of SeMet.
Collapse
Affiliation(s)
- Renee J Krause
- Department of Comparative Biosciences and the Center for Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | |
Collapse
|
439
|
Shelton MD, Mieyal JJ. Regulation by reversible S-glutathionylation: molecular targets implicated in inflammatory diseases. Mol Cells 2008; 25:332-46. [PMID: 18483468 PMCID: PMC3367451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
S-glutathionylation is a reversible post-translational modification that continues to gain eminence as a redox regulatory mechanism of protein activity and associated cellular functions. Many diverse cellular proteins such as transcription factors, adhesion molecules, enzymes, and cytokines are reported to undergo glutathionylation, although the functional impact has been less well characterized. De-glutathionylation is catalyzed specifically and efficiently by glutaredoxin (GRx, aka thioltransferase), and facile reversibility is critical in determining the physiological relevance of glutathionylation as a means of protein regulation. Thus, studies with cohesive themes addressing both the glutathionylation of proteins and the corresponding impact of GRx are especially useful in advancing understanding. Reactive oxygen species (ROS) and redox regulation are well accepted as playing a role in inflammatory processes, such as leukostasis and the destruction of foreign particles by macrophages. We discuss in this review the current implications of GRx and/or glutathionylation in the inflammatory response and in diseases associated with chronic inflammation, namely diabetes, atherosclerosis, inflammatory lung disease, cancer, and Alzheimer's disease, and in viral infections.
Collapse
Affiliation(s)
- Melissa D Shelton
- Department of Pharmacology, School of Medicine, Case Western Reserve University, and Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, Ohio 44106-4965, USA
| | | |
Collapse
|