401
|
Garrett SR, Mariano G, Palmer T. Genomic analysis of the progenitor strains of Staphylococcus aureus RN6390. Access Microbiol 2022; 4:000464.v3. [PMID: 36910860 PMCID: PMC9996129 DOI: 10.1099/acmi.0.000464.v3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
RN6390 is a commonly used laboratory strain of Staphylococcus aureus derived from NCTC8325. In this study, we sequenced the RN6390 genome and compared it to available genome sequences for NCTC8325. We confirmed that three prophages, Φ11, Φ12 and Φ13, which are present in NCTC8325 are absent from the genome of RN6390, consistent with the successive curing events leading to the generation of this strain. However, we noted that a separate prophage is present in RN6390 that is not found in NCTC8325. Two separate genome sequences have been deposited for the parental strain, NCTC8325. Analysis revealed several differences between these sequences, in particular, between the copy number of esaG genes, which encode immunity proteins to the type VII secreted anti-bacterial toxin, EsaD. Single nucleotide polymorphisms were also detected in ribosomal RNA genes and genes encoding microbial surface components recognizing adhesive matrix molecules (MSCRAMM) between the two NCTC8325 sequences. Comparing each NCTC8325 sequence to other strains in the RN6390 lineage confirmed that sequence assembly errors in the earlier NCTC8325 sequence are the most likely explanation for most of the differences observed.
Collapse
Affiliation(s)
- Stephen R Garrett
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
402
|
Kazantseva OA, Buzikov RM, Pilipchuk TA, Valentovich LN, Kazantsev AN, Kalamiyets EI, Shadrin AM. The Bacteriophage Pf-10-A Component of the Biopesticide "Multiphage" Used to Control Agricultural Crop Diseases Caused by Pseudomonas syringae. Viruses 2021; 14:42. [PMID: 35062246 PMCID: PMC8779105 DOI: 10.3390/v14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Phytopathogenic pseudomonads are widespread in the world and cause a wide range of plant diseases. In this work, we describe the Pseudomonas phage Pf-10, which is a part of the biopesticide "Multiphage" used for bacterial diseases of agricultural crops caused by Pseudomonas syringae. The Pf-10 chromosome is a dsDNA molecule with two direct terminal repeats (DTRs). The phage genomic DNA is 39,424 bp long with a GC-content of 56.5%. The Pf-10 phage uses a packaging mechanism based on T7-like short DTRs, and the length of each terminal repeat is 257 bp. Electron microscopic analysis has shown that phage Pf-10 has the podovirus morphotype. Phage Pf-10 is highly stable at pH values from 5 to 10 and temperatures from 4 to 60 °C and has a lytic activity against Pseudomonas strains. Phage Pf-10 is characterized by fast adsorption rate (80% of virions attach to the host cells in 10 min), but has a relatively small number of progeny (37 ± 8.5 phage particles per infected cell). According to the phylogenetic analysis, phage Pf-10 can be classified as a new phage species belonging to the genus Pifdecavirus, subfamily Studiervirinae, family Autographiviridae, order Caudovirales.
Collapse
Affiliation(s)
- Olesya A. Kazantseva
- Laboratory of Bacteriophage Biology, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290 Pushchino, Russia;
| | - Rustam M. Buzikov
- Laboratory of Bacteriophage Biology, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290 Pushchino, Russia;
| | - Tatsiana A. Pilipchuk
- Institute of Microbiology, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.A.P.); (L.N.V.); (E.I.K.)
| | - Leonid N. Valentovich
- Institute of Microbiology, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.A.P.); (L.N.V.); (E.I.K.)
- Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus
| | - Andrey N. Kazantsev
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Pushchino Radio Astronomy Observatory, 142290 Pushchino, Russia;
| | - Emilia I. Kalamiyets
- Institute of Microbiology, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.A.P.); (L.N.V.); (E.I.K.)
| | - Andrey M. Shadrin
- Laboratory of Bacteriophage Biology, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290 Pushchino, Russia;
| |
Collapse
|
403
|
Rusanova A, Fedorchuk V, Toshchakov S, Dubiley S, Sutormin D. An Interplay between Viruses and Bacteria Associated with the White Sea Sponges Revealed by Metagenomics. Life (Basel) 2021; 12:25. [PMID: 35054418 PMCID: PMC8777954 DOI: 10.3390/life12010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 05/07/2023] Open
Abstract
Sponges are remarkable holobionts harboring extremely diverse microbial and viral communities. However, the interactions between the components within holobionts and between a holobiont and environment are largely unknown, especially for polar organisms. To investigate possible interactions within and between sponge-associated communities, we probed the microbiomes and viromes of cold-water sympatric sponges Isodictya palmata (n = 2), Halichondria panicea (n = 3), and Halichondria sitiens (n = 3) by 16S and shotgun metagenomics. We showed that the bacterial and viral communities associated with these White Sea sponges are species-specific and different from the surrounding water. Extensive mining of bacterial antiphage defense systems in the metagenomes revealed a variety of defense mechanisms. The abundance of defense systems was comparable in the metagenomes of the sponges and the surrounding water, thus distinguishing the White Sea sponges from those inhabiting the tropical seas. We developed a network-based approach for the combined analysis of CRISPR-spacers and protospacers. Using this approach, we showed that the virus-host interactions within the sponge-associated community are typically more abundant (three out of four interactions studied) than the inter-community interactions. Additionally, we detected the occurrence of viral exchanges between the communities. Our work provides the first insight into the metagenomics of the three cold-water sponge species from the White Sea and paves the way for a comprehensive analysis of the interactions between microbial communities and associated viruses.
Collapse
Affiliation(s)
- Anastasiia Rusanova
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.R.); (S.D.)
| | - Victor Fedorchuk
- The Faculty of Geology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Stepan Toshchakov
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia;
| | - Svetlana Dubiley
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.R.); (S.D.)
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Dmitry Sutormin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.R.); (S.D.)
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|
404
|
Peng W, Zeng F, Wu Z, Jin Z, Li W, Zhu M, Wang Q, Tong Y, Chen L, Bai Q. Isolation and genomic analysis of temperate phage 5W targeting multidrug-resistant Acinetobacter baumannii. Arch Microbiol 2021; 204:58. [DOI: 10.1007/s00203-021-02618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
|
405
|
Biosca EG, Català-Senent JF, Figàs-Segura À, Bertolini E, López MM, Álvarez B. Genomic Analysis of the First European Bacteriophages with Depolymerase Activity and Biocontrol Efficacy against the Phytopathogen Ralstonia solanacearum. Viruses 2021; 13:v13122539. [PMID: 34960808 PMCID: PMC8703784 DOI: 10.3390/v13122539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
Ralstonia solanacearum is the causative agent of bacterial wilt, one of the most destructive plant diseases. While chemical control has an environmental impact, biological control strategies can allow sustainable agrosystems. Three lytic bacteriophages (phages) of R. solanacearum with biocontrol capacity in environmental water and plants were isolated from river water in Europe but not fully analysed, their genomic characterization being fundamental to understand their biology. In this work, the phage genomes were sequenced and subjected to bioinformatic analysis. The morphology was also observed by electron microscopy. Phylogenetic analyses were performed with a selection of phages able to infect R. solanacearum and the closely related phytopathogenic species R. pseudosolanacearum. The results indicated that the genomes of vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 range from 40,688 to 41,158 bp with almost 59% GC-contents, 52 ORFs in vRsoP-WF2 and vRsoP-WM2, and 53 in vRsoP-WR2 but, with only 22 or 23 predicted proteins with functional homologs in databases. Among them, two lysins and one exopolysaccharide (EPS) depolymerase, this type of depolymerase being identified in R. solanacearum phages for the first time. These three European phages belong to the same novel species within the Gyeongsanvirus, Autographiviridae family (formerly Podoviridae). These genomic data will contribute to a better understanding of the abilities of these phages to damage host cells and, consequently, to an improvement in the biological control of R. solanacearum.
Collapse
Affiliation(s)
- Elena G. Biosca
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Correspondence:
| | - José Francisco Català-Senent
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Centro de Investigación Príncipe Felipe, Unidad de Bioinformática y Bioestadística, 46012 Valencia, Spain
| | - Àngela Figàs-Segura
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
| | - Edson Bertolini
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil
| | - María M. López
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain;
| | - Belén Álvarez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Departamento de Investigación Aplicada y Extensión Agraria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28800 Alcalá de Henares, Spain
| |
Collapse
|
406
|
Bolduc B, Zablocki O, Guo J, Zayed AA, Vik D, Dehal P, Wood-Charlson EM, Arkin A, Merchant N, Pett-Ridge J, Roux S, Vaughn M, Sullivan MB. iVirus 2.0: Cyberinfrastructure-supported tools and data to power DNA virus ecology. ISME COMMUNICATIONS 2021; 1:77. [PMID: 36765102 PMCID: PMC9723767 DOI: 10.1038/s43705-021-00083-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022]
Abstract
Microbes drive myriad ecosystem processes, but under strong influence from viruses. Because studying viruses in complex systems requires different tools than those for microbes, they remain underexplored. To combat this, we previously aggregated double-stranded DNA (dsDNA) virus analysis capabilities and resources into 'iVirus' on the CyVerse collaborative cyberinfrastructure. Here we substantially expand iVirus's functionality and accessibility, to iVirus 2.0, as follows. First, core iVirus apps were integrated into the Department of Energy's Systems Biology KnowledgeBase (KBase) to provide an additional analytical platform. Second, at CyVerse, 20 software tools (apps) were upgraded or added as new tools and capabilities. Third, nearly 20-fold more sequence reads were aggregated to capture new data and environments. Finally, documentation, as "live" protocols, was updated to maximize user interaction with and contribution to infrastructure development. Together, iVirus 2.0 serves as a uniquely central and accessible analytical platform for studying how viruses, particularly dsDNA viruses, impact diverse microbial ecosystems.
Collapse
Affiliation(s)
- Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Columbus, OH, USA
- EMERGE Biology Integration Institute, Columbus, OH, USA
| | - Olivier Zablocki
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Columbus, OH, USA
- EMERGE Biology Integration Institute, Columbus, OH, USA
| | - Jiarong Guo
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Columbus, OH, USA
- EMERGE Biology Integration Institute, Columbus, OH, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Columbus, OH, USA
- EMERGE Biology Integration Institute, Columbus, OH, USA
| | - Dean Vik
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Paramvir Dehal
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam Arkin
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | | | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, 95343, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew Vaughn
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Columbus, OH, USA.
- EMERGE Biology Integration Institute, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
407
|
Buckley D, Odamaki T, Xiao J, Mahony J, van Sinderen D, Bottacini F. Diversity of Human-Associated Bifidobacterial Prophage Sequences. Microorganisms 2021; 9:microorganisms9122559. [PMID: 34946160 PMCID: PMC8705816 DOI: 10.3390/microorganisms9122559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Members of Bifidobacterium play an important role in the development of the immature gut and are associated with positive long-term health outcomes for their human host. It has previously been shown that intestinal bacteriophages are detected within hours of birth, and that induced prophages constitute a significant source of such gut phages. The gut phageome can be vertically transmitted from mother to newborn and is believed to exert considerable selective pressure on target prokaryotic hosts affecting abundance levels, microbiota composition, and host characteristics. The objective of the current study was to investigate prophage-like elements and predicted CRISPR-Cas viral immune systems present in publicly available, human-associated Bifidobacterium genomes. Analysis of 585 fully sequenced bifidobacterial genomes identified 480 prophage-like elements with an occurrence of 0.82 prophages per genome. Interestingly, we also detected the presence of very similar bifidobacterial prophages and corresponding CRISPR spacers across different strains and species, thus providing an initial exploration of the human-associated bifidobacterial phageome. Our analyses show that closely related and likely functional prophages are commonly present across four different species of human-associated Bifidobacterium. Further comparative analysis of the CRISPR-Cas spacer arrays against the predicted prophages provided evidence of historical interactions between prophages and different strains at an intra- and inter-species level. Clear evidence of CRISPR-Cas acquired immunity against infection by bifidobacterial prophages across several bifidobacterial strains and species was obtained. Notably, a spacer representing a putative major capsid head protein was found on different genomes representing multiple strains across B. adolescentis, B. breve, and B. bifidum, suggesting that this gene is a preferred target to provide bifidobacterial phage immunity.
Collapse
Affiliation(s)
- Darren Buckley
- INFANT Research Centre, University College Cork, Cork, Ireland;
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Japan; (T.O.); (J.X.)
| | - Jinzhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Japan; (T.O.); (J.X.)
| | - Jennifer Mahony
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland;
| | - Douwe van Sinderen
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland;
- Correspondence: (D.v.S.); (F.B.)
| | - Francesca Bottacini
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland;
- Biological Sciences, Munster Technological University, Cork, Ireland
- Correspondence: (D.v.S.); (F.B.)
| |
Collapse
|
408
|
Shen A, Millard A. Phage Genome Annotation: Where to Begin and End. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:183-193. [PMID: 36159890 PMCID: PMC9041514 DOI: 10.1089/phage.2021.0015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the renewed interest in phage research, coupled with the rising accessibility to affordable sequencing, ever increasing numbers of phage genomes are being sequenced. Therefore, there is an increased need to assemble and annotate phage genomes. There is a plethora of tools and platforms that allow phage genomes to be assembled and annotated. The choice of tools can often be bewildering for those new to phage genome assembly. Here we provide an overview of the assembly and annotation process from obtaining raw reads to genome submission, with worked examples, providing those new to genome assembly and annotation with a guided pathway to genome submission. We focus on the use of open access tools that can be incorporated into workflows to allow easy repetition of steps, highlighting multiple tools that can be used and common pitfalls that may occur.
Collapse
Affiliation(s)
- Anastasiya Shen
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, United Kingdom
| |
Collapse
|
409
|
Happel AU, Balle C, Maust BS, Konstantinus IN, Gill K, Bekker LG, Froissart R, Passmore JA, Karaoz U, Varsani A, Jaspan H. Presence and Persistence of Putative Lytic and Temperate Bacteriophages in Vaginal Metagenomes from South African Adolescents. Viruses 2021; 13:2341. [PMID: 34960611 PMCID: PMC8708031 DOI: 10.3390/v13122341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
The interaction between gut bacterial and viral microbiota is thought to be important in human health. While fluctuations in female genital tract (FGT) bacterial microbiota similarly determine sexual health, little is known about the presence, persistence, and function of vaginal bacteriophages. We conducted shotgun metagenome sequencing of cervicovaginal samples from South African adolescents collected longitudinally, who received no antibiotics. We annotated viral reads and circular bacteriophages, identified CRISPR loci and putative prophages, and assessed their diversity, persistence, and associations with bacterial microbiota composition. Siphoviridae was the most prevalent bacteriophage family, followed by Myoviridae, Podoviridae, Herelleviridae, and Inoviridae. Full-length siphoviruses targeting bacterial vaginosis (BV)-associated bacteria were identified, suggesting their presence in vivo. CRISPR loci and prophage-like elements were common, and genomic analysis suggested higher diversity among Gardnerella than Lactobacillus prophages. We found that some prophages were highly persistent within participants, and identical prophages were present in cervicovaginal secretions of multiple participants, suggesting that prophages, and thus bacterial strains, are shared between adolescents. The number of CRISPR loci and prophages were associated with vaginal microbiota stability and absence of BV. Our analysis suggests that (pro)phages are common in the FGT and vaginal bacteria and (pro)phages may interact.
Collapse
Affiliation(s)
- Anna-Ursula Happel
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (C.B.); (I.N.K.); (J.-A.P.)
| | - Christina Balle
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (C.B.); (I.N.K.); (J.-A.P.)
| | - Brandon S. Maust
- Seattle Children’s Research Institute, 307 Westlake Ave. N, Seattle, WA 98109, USA;
- Department of Pediatrics, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Iyaloo N. Konstantinus
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (C.B.); (I.N.K.); (J.-A.P.)
- Namibia Institute of Pathology, Hosea Kutako, Windhoek 10005, Namibia
| | - Katherine Gill
- Desmond Tutu HIV Centre, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (K.G.); (L.-G.B.)
- NRF-DST CAPRISA Centre of Excellence in HIV Prevention, 719 Umbilo Road, Congella, Durban 4013, South Africa
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (K.G.); (L.-G.B.)
- NRF-DST CAPRISA Centre of Excellence in HIV Prevention, 719 Umbilo Road, Congella, Durban 4013, South Africa
| | - Rémy Froissart
- CNRS, IRD, Université Montpellier, UMR 5290, MIVEGEC, 34394 Montpellier, France;
| | - Jo-Ann Passmore
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (C.B.); (I.N.K.); (J.-A.P.)
- Desmond Tutu HIV Centre, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (K.G.); (L.-G.B.)
- NRF-DST CAPRISA Centre of Excellence in HIV Prevention, 719 Umbilo Road, Congella, Durban 4013, South Africa
- National Health Laboratory Service, Anzio Road, Cape Town 7925, South Africa
| | - Ulas Karaoz
- Earth and Environmental Science, Lawrence Berkeley National Laboratories, 1 Cyclotron Rd., Berkeley, CA 94720, USA;
| | - Arvind Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa
| | - Heather Jaspan
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (C.B.); (I.N.K.); (J.-A.P.)
- Seattle Children’s Research Institute, 307 Westlake Ave. N, Seattle, WA 98109, USA;
- Department of Pediatrics, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA
- Department of Global Health, University of Washington School of Public Health, 1510 San Juan Road NE, Seattle, WA 98195, USA
| |
Collapse
|
410
|
Villalobos AS, Wiese J, Borchert E, Rahn T, Slaby BM, Steiner LX, Künzel S, Dorador C, Imhoff JF. Micromonospora tarapacensis sp. nov., a bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 2021; 71. [PMID: 34787539 DOI: 10.1099/ijsem.0.005109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain Llam7T was isolated from microbial mat samples from the hypersaline lake Salar de Llamará, located in Taracapá region in the hyper-arid core of the Atacama Desert (Chile). Phenotypic, chemotaxonomic and genomic traits were studied. Phylogenetic analyses based on 16S rRNA gene sequences assigned the strain to the family Micromonosporaceae with affiliation to the genera Micromonospora and Salinispora. Major fatty acids were C17 : 1ω8c, iso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The cell walls contained meso-diaminopimelic acid and ll-2,6 diaminopimelic acid (ll-DAP), while major whole-cell sugars were glucose, mannose, xylose and ribose. The major menaquinones were MK-9(H4) and MK-9(H6). As polar lipids phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and several unidentified lipids, i.e. two glycolipids, one aminolipid, three phospholipids, one aminoglycolipid and one phosphoglycolipid, were detected. Genome sequencing revealed a genome size of 6.894 Mb and a DNA G+C content of 71.4 mol%. Phylogenetic analyses with complete genome sequences positioned strain Llam7T within the family Micromonosporaceae forming a distinct cluster with Micromonospora (former Xiangella) phaseoli DSM 45730T. This cluster is related to Micromonospora pelagivivens KJ-029T, Micromonospora craterilacus NA12T, and Micromonospora craniellae LHW63014T as well as to all members of the former genera Verrucosispora and Jishengella, which were re-classified as members of the genus Micromonospora, forming a clade distinct from the genus Salinispora. Pairwise whole genome average nucleotide identity (ANI) values, digital DNA-DNA hybridization (dDDH) values, the presence of the diamino acid ll-DAP, and the composition of whole sugars and polar lipids indicate that Llam7T represents a novel species, for which the name Micromonospora tarapacensis sp. nov. is proposed, with Llam7T (=DSM 109510T,=LMG 31023T) as the type strain.
Collapse
Affiliation(s)
- Alvaro S Villalobos
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany.,Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | - Tanja Rahn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | - Beate M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | - Leon X Steiner
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos Universidad de Antofagasta, Antofagasta, Chile
| | - Johannes F Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| |
Collapse
|
411
|
Wójcicki M, Średnicka P, Błażejak S, Gientka I, Kowalczyk M, Emanowicz P, Świder O, Sokołowska B, Juszczuk-Kubiak E. Characterization and Genome Study of Novel Lytic Bacteriophages against Prevailing Saprophytic Bacterial Microflora of Minimally Processed Plant-Based Food Products. Int J Mol Sci 2021; 22:12460. [PMID: 34830335 PMCID: PMC8624825 DOI: 10.3390/ijms222212460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
The food industry is still searching for novel solutions to effectively ensure the microbiological safety of food, especially fresh and minimally processed food products. Nowadays, the use of bacteriophages as potential biological control agents in microbiological food safety and preservation is a promising strategy. The aim of the study was the isolation and comprehensive characterization of novel bacteriophages with lytic activity against saprophytic bacterial microflora of minimally processed plant-based food products, such as mixed leaf salads. From 43 phages isolated from municipal sewage, four phages, namely Enterobacter phage KKP 3263, Citrobacter phage KKP 3664, Enterobacter phage KKP 3262, and Serratia phage KKP 3264 have lytic activity against Enterobacter ludwigii KKP 3083, Citrobacter freundii KKP 3655, Enterobacter cloacae KKP 3082, and Serratia fonticola KKP 3084 bacterial strains, respectively. Transmission electron microscopy (TEM) and whole-genome sequencing (WGS) identified Enterobacter phage KKP 3263 as an Autographiviridae, and Citrobacter phage KKP 3664, Enterobacter phage KKP 3262, and Serratia phage KKP 3264 as members of the Myoviridae family. Genome sequencing revealed that these phages have linear double-stranded DNA (dsDNA) with sizes of 39,418 bp (KKP 3263), 61,608 bp (KKP 3664), 84,075 bp (KKP 3262), and 148,182 bp (KKP 3264). No antibiotic resistance genes, virulence factors, integrase, recombinase, or repressors, which are the main markers of lysogenic viruses, were annotated in phage genomes. Serratia phage KKP 3264 showed the greatest growth inhibition of Serratia fonticola KKP 3084 strain. The use of MOI 1.0 caused an almost 5-fold decrease in the value of the specific growth rate coefficient. The phages retained their lytic activity in a wide range of temperatures (from -20 °C to 50 °C) and active acidity values (pH from 4 to 11). All phages retained at least 70% of lytic activity at 60 °C. At 80 °C, no lytic activity against tested bacterial strains was observed. Serratia phage KKP 3264 was the most resistant to chemical factors, by maintaining high lytic activity across a broader range of pH from 3 to 11. The results indicated that these phages could be a potential biological control agent against saprophytic bacterial microflora of minimally processed plant-based food products.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland; (S.B.); (I.G.)
| | - Iwona Gientka
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland; (S.B.); (I.G.)
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| |
Collapse
|
412
|
Liu Y, Liu M, Hu R, Bai J, He X, Jin Y. Isolation of the Novel Phage PHB09 and Its Potential Use against the Plant Pathogen Pseudomonas syringae pv. actinidiae. Viruses 2021; 13:v13112275. [PMID: 34835081 PMCID: PMC8622976 DOI: 10.3390/v13112275] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bacteriophages are viruses that specifically infect target bacteria. Recently, bacteriophages have been considered potential biological control agents for bacterial pathogens due to their host specificity. Pseudomonas syringae pv. actinidiae (Psa) is a reemerging pathogen that causes bacterial canker of kiwifruit (Actinidia sp.). The economic impact of this pest and the development of resistance to antibiotics and copper sprays in Psa and other pathovars have led to investigation of alternative management strategies. Phage therapy may be a useful alternative to conventional treatments for controlling Psa infections. Although the efficacy of bacteriophage φ6 was evaluated for the control of Psa, the characteristics of other DNA bacteriophages infecting Psa remain unclear. In this study, the PHB09 lytic bacteriophage specific to Psa was isolated from kiwifruit orchard soil. Extensive host range testing using Psa isolated from kiwifruit orchards and other Pseudomonas strains showed PHB09 has a narrow host range. It remained stable over a wide range of temperatures (4-50 °C) and pH values (pH 3-11) and maintained stability for 50 min under ultraviolet irradiation. Complete genome sequence analysis indicated PHB09 might belong to a new myovirus genus in Caudoviricetes. Its genome contains a total of 94,844 bp and 186 predicted genes associated with phage structure, packaging, host lysis, DNA manipulation, transcription, and additional functions. The isolation and identification of PHB09 enrich the research on Pseudomonas phages and provide a promising biocontrol agent against kiwifruit bacterial canker.
Collapse
|
413
|
Evaluation of Bacteriophage Cocktails Alone and in Combination with Daptomycin Against Daptomycin-Nonsusceptible Enterococcus faecium. Antimicrob Agents Chemother 2021; 66:e0162321. [PMID: 34723631 DOI: 10.1128/aac.01623-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium(E. fcm) is a significant multidrug-resistant pathogen. Bacteriophage cocktails are being proposed to complement antibiotic therapy. After a screen of 8 E. fcm strains against 4 phages, two phages(113, 9184) with the broadest host ranges were chosen for further experiments. Transmission electron microscopy, whole-genome sequencing, comparative genome analyses, and time-kill analyses were performed. Daptomycin(DAP) plus phage cocktail(113:myophage;9184:siphopage) showed bactericidal activity in most regimens, while DAP addition prevented phage 9184 resistance against daptomycin non-susceptible E. fcm.
Collapse
|
414
|
Genome and Ecology of a Novel Alteromonas Podovirus, ZP6, Representing a New Viral Genus, Mareflavirus. Microbiol Spectr 2021; 9:e0046321. [PMID: 34643440 PMCID: PMC8515928 DOI: 10.1128/spectrum.00463-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCEAlteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
Collapse
|
415
|
Novel Freshwater Cyanophages Provide New Insights into Evolutionary Relationships between Freshwater and Marine Cyanophages. Microbiol Spectr 2021; 9:e0059321. [PMID: 34585945 PMCID: PMC8557907 DOI: 10.1128/spectrum.00593-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria and cyanophages are present widely in both freshwater and marine environments. However, freshwater cyanophages remain unknown largely due to the small numbers of cyanophage isolates despite their ecological and environmental significance. In this study, we present the characterization of two novel lytic freshwater cyanophages isolated from a tropical inland lake in Singapore, namely, cyanopodovirus S-SRP01 and cyanomyovirus S-SRM01, infecting two different strains of Synechococcus spp. Functional annotation of S-SRP01 and S-SRM01 genomes revealed a high degree of homology with marine cyanophages. Phylogenetic trees of concatenated genes and whole-genome alignment provided further evidence that S-SRP01 is close evolutionarily to marine cyanopodoviruses, while S-SRM01 is evolutionarily close to marine cyanomyoviruses. Few genetic similarities between freshwater and marine cyanophages have been identified in previous studies. The isolation of S-SRP01 and S-SRM01 expand current knowledge on freshwater cyanophages infecting Synechococcus spp. Their high degree of gene sharing provides new insights into the evolutionary relationships between freshwater and marine cyanophages. This relatedness is further supported by the discovery of similar phenomenon from other freshwater viral metagenomes. IMPORTANCE This study expands the current knowledge on freshwater cyanophage isolates and cyanophage genetic diversity, indicating that freshwater and marine cyanophages infecting Synechococcus spp. may share close genetic similarity and evolutionary relationships.
Collapse
|
416
|
Billaud M, Lamy-Besnier Q, Lossouarn J, Moncaut E, Dion MB, Moineau S, Traoré F, Le Chatelier E, Denis C, Estelle J, Achard C, Zemb O, Petit MA. Analysis of viromes and microbiomes from pig fecal samples reveals that phages and prophages rarely carry antibiotic resistance genes. ISME COMMUNICATIONS 2021; 1:55. [PMID: 37938642 PMCID: PMC9723715 DOI: 10.1038/s43705-021-00054-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 05/09/2023]
Abstract
Understanding the transmission of antibiotic resistance genes (ARGs) is critical for human health. For this, it is necessary to identify which type of mobile genetic elements is able to spread them from animal reservoirs into human pathogens. Previous research suggests that in pig feces, ARGs may be encoded by bacteriophages. However, convincing proof for phage-encoded ARGs in pig viromes is still lacking, because of bacterial DNA contaminating issues. We collected 14 pig fecal samples and performed deep sequencing on both highly purified viral fractions and total microbiota, in order to investigate phage and prophage-encoded ARGs. We show that ARGs are absent from the genomes of active, virion-forming phages (below 0.02% of viral contigs from viromes), but present in three prophages, representing 0.02% of the viral contigs identified in the microbial dataset. However, the corresponding phages were not detected in the viromes, and their genetic maps suggest they might be defective. We conclude that among pig fecal samples, phages and prophages rarely carry ARG. Furthermore, our dataset allows for the first time a comprehensive view of the interplay between prophages and viral particles, and uncovers two large clades, inoviruses and Oengus-like phages.
Collapse
Affiliation(s)
- Maud Billaud
- Université Paris- Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Pherecydes Pharma 22 Bd Benoni Goullin, Nantes, France
| | - Quentin Lamy-Besnier
- Université Paris- Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Julien Lossouarn
- Université Paris- Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elisabeth Moncaut
- Université Paris- Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Moira B Dion
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Felix D'Hérelle Reference Center for Bacterial Viruses, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | | | | | | | - Jordi Estelle
- Université Paris-Saclay, INRAE, GABI, Jouy-en-Josas, France
| | - Caroline Achard
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet-Tolosan, France
| | - Olivier Zemb
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet-Tolosan, France
| | - Marie-Agnès Petit
- Université Paris- Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
417
|
Lisotto P, Raangs EC, Couto N, Rosema S, Lokate M, Zhou X, Friedrich AW, Rossen JWA, Harmsen HJM, Bathoorn E, Chlebowicz-Fliss MA. Long-read sequencing-based in silico phage typing of vancomycin-resistant Enterococcus faecium. BMC Genomics 2021; 22:758. [PMID: 34688274 PMCID: PMC8542323 DOI: 10.1186/s12864-021-08080-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) are successful nosocomial pathogens able to cause hospital outbreaks. In the Netherlands, core-genome MLST (cgMLST) based on short-read sequencing is often used for molecular typing. Long-read sequencing is more rapid and provides useful information about the genome's structural composition but lacks the precision required for SNP-based typing and cgMLST. Here we compared prophages among 50 complete E. faecium genomes belonging to different lineages to explore whether a phage signature would be usable for typing and identifying an outbreak caused by VRE. As a proof of principle, we investigated if long-read sequencing data would allow for identifying phage signatures and thereby outbreak-related isolates. RESULTS Analysis of complete genome sequences of publicly available isolates showed variation in phage content among different lineages defined by MLST. We identified phage present in multiple STs as well as phages uniquely detected within a single lineage. Next, in silico phage typing was applied to twelve MinION sequenced isolates belonging to two different genetic backgrounds, namely ST117/CT24 and ST80/CT16. Genomic comparisons of the long-read-based assemblies allowed us to correctly identify isolates of the same complex type based on global genome architecture and specific phage signature similarity. CONCLUSIONS For rapid identification of related VRE isolates, phage content analysis in long-read sequencing data is possible. This allows software development for real-time typing analysis of long-read sequencing data, which will generate results within several hours. Future studies are required to assess the discriminatory power of this method in the investigation of ongoing outbreaks over a longer time period.
Collapse
Affiliation(s)
- Paola Lisotto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erwin C Raangs
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xuewei Zhou
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.,IDbyDNA Inc., Salt Lake City, UT, USA
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Monika A Chlebowicz-Fliss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
418
|
Bakuradze N, Merabishvili M, Makalatia K, Kakabadze E, Grdzelishvili N, Wagemans J, Lood C, Chachua I, Vaneechoutte M, Lavigne R, Pirnay JP, Abiatari I, Chanishvili N. In Vitro Evaluation of the Therapeutic Potential of Phage VA7 against Enterotoxigenic Bacteroides fragilis Infection. Viruses 2021; 13:2044. [PMID: 34696475 PMCID: PMC8538522 DOI: 10.3390/v13102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of the 20th century, bacteriophages (phages), i.e., viruses that infect bacteria, have been used as antimicrobial agents for treating various infections. Phage preparations targeting a number of bacterial pathogens are still in use in the post-Soviet states and are experiencing a revival in the Western world. However, phages have never been used to treat diseases caused by Bacteroides fragilis, the leading agent cultured in anaerobic abscesses and postoperative peritonitis. Enterotoxin-producing strains of B. fragilis have been associated with the development of inflammatory diarrhea and colorectal carcinoma. In this study, we evaluated the molecular biosafety and antimicrobial properties of novel phage species vB_BfrS_VA7 (VA7) lysate, as well as its impact on cytokine IL-8 production in an enterotoxigenic B. fragilis (ETBF)-infected colonic epithelial cell (CEC) culture model. Compared to untreated infected cells, the addition of phage VA7 to ETBF-infected CECs led to significantly reduced bacterial counts and IL-8 levels. This in vitro study confirms the potential of phage VA7 as an antibacterial agent for use in prophylaxis or in the treatment of B. fragilis infections and associated colorectal carcinoma.
Collapse
Affiliation(s)
- Nata Bakuradze
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- Department of Biology, Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Maya Merabishvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium;
- Laboratory Bacteriology Research, Ghent University, 9000 Ghent, Belgium;
| | - Khatuna Makalatia
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- Faculty of Medicine, Teaching University Geomedi, Tbilisi 0114, Georgia
| | - Elene Kakabadze
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
| | - Nino Grdzelishvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- Institute of Medical and Public Health Research, IIia State University, Tbilisi 0162, Georgia; (I.C.); (I.A.)
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (J.W.); (C.L.); (R.L.)
| | - Cedric Lood
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (J.W.); (C.L.); (R.L.)
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Irakli Chachua
- Institute of Medical and Public Health Research, IIia State University, Tbilisi 0162, Georgia; (I.C.); (I.A.)
- School of Medicine, New Vision University, Tbilisi 0159, Georgia
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Ghent University, 9000 Ghent, Belgium;
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (J.W.); (C.L.); (R.L.)
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium;
| | - Ivane Abiatari
- Institute of Medical and Public Health Research, IIia State University, Tbilisi 0162, Georgia; (I.C.); (I.A.)
| | - Nina Chanishvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- School of Medicine, New Vision University, Tbilisi 0159, Georgia
| |
Collapse
|
419
|
Olonade I, van Zyl LJ, Trindade M. Genomic Characterization of a Prophage, Smhb1, That Infects Salinivibrio kushneri BNH Isolated from a Namib Desert Saline Spring. Microorganisms 2021; 9:2043. [PMID: 34683373 PMCID: PMC8537503 DOI: 10.3390/microorganisms9102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022] Open
Abstract
Recent years have seen the classification and reclassification of many viruses related to the model enterobacterial phage P2. Here, we report the identification of a prophage (Smhb1) that infects Salinivibrio kushneri BNH isolated from a Namib Desert salt pan (playa). Analysis of the genome revealed that it showed the greatest similarity to P2-like phages that infect Vibrio species and showed no relation to any of the previously described Salinivibrio-infecting phages. Despite being distantly related to these Vibrio infecting phages and sharing the same modular gene arrangement as seen in most P2-like viruses, the nucleotide identity to its closest relatives suggest that, for now, Smhb1 is the lone member of the Peduovirus genus Playavirus. Although host range testing was not extensive and no secondary host could be identified for Smhb1, genomic evidence suggests that the phage is capable of infecting other Salinivibrio species, including Salinivibrio proteolyticus DV isolated from the same playa. Taken together, the analysis presented here demonstrates how adaptable the P2 phage model can be.
Collapse
Affiliation(s)
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville, Cape Town 7535, South Africa; (I.O.); (M.T.)
| | | |
Collapse
|
420
|
Pseudomonas Phage MD8: Genetic Mosaicism and Challenges of Taxonomic Classification of Lambdoid Bacteriophages. Int J Mol Sci 2021; 22:ijms221910350. [PMID: 34638693 PMCID: PMC8508860 DOI: 10.3390/ijms221910350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas phage MD8 is a temperate phage isolated from the freshwater lake Baikal. The organisation of the MD8 genome resembles the genomes of lambdoid bacteriophages. However, MD8 gene and protein sequences have little in common with classified representatives of lambda-like phages. Analysis of phage genomes revealed a group of other Pseudomonas phages related to phage MD8 and the genomic layout of MD8-like phages indicated extensive gene exchange involving even the most conservative proteins and leading to a high degree of genomic mosaicism. Multiple horizontal transfers and mosaicism of the genome of MD8, related phages and other λ-like phages raise questions about the principles of taxonomic classification of the representatives of this voluminous phage group. Comparison and analysis of various bioinformatic approaches applied to λ-like phage genomes demonstrated different efficiency and contradictory results in the estimation of genomic similarity and relatedness. However, we were able to make suggestions for the possible origin of the MD8 genome and the basic principles for the taxonomic classification of lambdoid phages. The group comprising 26 MD8-related phages was proposed to classify as two close genera belonging to a big family of λ-like phages.
Collapse
|
421
|
Gomez-Garcia J, Chavez-Carbajal A, Segundo-Arizmendi N, Baron-Pichardo MG, Mendoza-Elvira SE, Hernandez-Baltazar E, Hynes AP, Torres-Angeles O. Efficacy of Salmonella Bacteriophage S1 Delivered and Released by Alginate Beads in a Chicken Model of Infection. Viruses 2021; 13:v13101932. [PMID: 34696362 PMCID: PMC8539449 DOI: 10.3390/v13101932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023] Open
Abstract
Modern bacteriophage encapsulation methods based on polymers such as alginate have been developed recently for their use in phage therapy for veterinary purposes. In birds, it has been proven that using this delivery system allows the release of the bacteriophage in the small intestine, the site of infection by Salmonella spp. This work designed an approach for phage therapy using encapsulation by ionotropic gelation of the lytic bacteriophage S1 for Salmonella enterica in 2% w/v alginate beads using 2% w/v calcium chloride as crosslinking agent. This formulation resulted in beads with an average size of 3.73 ± 0.04 mm and an encapsulation efficiency of 70%. In vitro, the beads protected the bacteriophages from pH 3 and released them at higher pH. To confirm that this would protect the bacteriophages from gastrointestinal pH changes, we tested the phage infectivity in vivo assay. Using a model chicken (Gallus gallus domesticus) infected with Salmonella Enteritidis, we confirmed that after 3 h of the beads delivery, infective phages were present in the chicken’s duodenal and caecal sections. This study demonstrates that our phage formulation is an effective system for release and delivery of bacteriophage S1 against Salmonella Enteritidis with potential use in the poultry sector.
Collapse
Affiliation(s)
- Janeth Gomez-Garcia
- Laboratory of Microbiology and Parasitology, School of Pharmacy, Autonomous University of the State of Morelos, 1001 University Avenue, Chamilpa, Cuernavaca 62209, Mexico; (J.G.-G.); (N.S.-A.); (M.G.B.-P.); (E.H.-B.)
| | | | - Nallelyt Segundo-Arizmendi
- Laboratory of Microbiology and Parasitology, School of Pharmacy, Autonomous University of the State of Morelos, 1001 University Avenue, Chamilpa, Cuernavaca 62209, Mexico; (J.G.-G.); (N.S.-A.); (M.G.B.-P.); (E.H.-B.)
| | - Miriam G. Baron-Pichardo
- Laboratory of Microbiology and Parasitology, School of Pharmacy, Autonomous University of the State of Morelos, 1001 University Avenue, Chamilpa, Cuernavaca 62209, Mexico; (J.G.-G.); (N.S.-A.); (M.G.B.-P.); (E.H.-B.)
| | - Susana E. Mendoza-Elvira
- Laboratory of Virology Postgraduate Field 1, Cuautitlán School of Higher Studies, National Autonomous University of Mexico, 1st May Avenue, Sta María Guadalupe las Torres, Cuautitlán Izcalli 54740, Mexico;
| | - Efren Hernandez-Baltazar
- Laboratory of Microbiology and Parasitology, School of Pharmacy, Autonomous University of the State of Morelos, 1001 University Avenue, Chamilpa, Cuernavaca 62209, Mexico; (J.G.-G.); (N.S.-A.); (M.G.B.-P.); (E.H.-B.)
| | - Alexander P. Hynes
- Departament of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
- Correspondence: (A.P.H.); (O.T.-A.); Tel.: +1-905-525-9140 (ext. 28155) (A.P.H.); +52-777-3-29-70-00 (ext. 3373) (O.T.-A.)
| | - Oscar Torres-Angeles
- Laboratory of Microbiology and Parasitology, School of Pharmacy, Autonomous University of the State of Morelos, 1001 University Avenue, Chamilpa, Cuernavaca 62209, Mexico; (J.G.-G.); (N.S.-A.); (M.G.B.-P.); (E.H.-B.)
- Correspondence: (A.P.H.); (O.T.-A.); Tel.: +1-905-525-9140 (ext. 28155) (A.P.H.); +52-777-3-29-70-00 (ext. 3373) (O.T.-A.)
| |
Collapse
|
422
|
Zhang W, Liang Y, Zheng K, Gu C, Liu Y, Wang Z, Zhang X, Shao H, Jiang Y, Guo C, He H, Wang H, Sung YY, Mok WJ, Zhang Y, McMinn A, Wang M. Characterization and genomic analysis of the first Oceanospirillum phage, vB_OliS_GJ44, representing a novel siphoviral cluster. BMC Genomics 2021; 22:675. [PMID: 34544379 PMCID: PMC8451122 DOI: 10.1186/s12864-021-07978-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Background Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown. Results Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans. Conclusions These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage–host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07978-4.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.
| | - Kaiyang Zheng
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chengxiang Gu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yundan Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ziyue Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Malaysia
| | - Yuzhong Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Shangdong University, Qingdao, 266000, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China. .,The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
423
|
Liu Y, Zheng K, Liu B, Liang Y, You S, Zhang W, Zhang X, Jie Y, Shao H, Jiang Y, Guo C, He H, Wang H, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M. Characterization and Genomic Analysis of Marinobacter Phage vB_MalS-PS3, Representing a New Lambda-Like Temperate Siphoviral Genus Infecting Algae-Associated Bacteria. Front Microbiol 2021; 12:726074. [PMID: 34512604 PMCID: PMC8424206 DOI: 10.3389/fmicb.2021.726074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 01/12/2023] Open
Abstract
Marinobacter is the abundant and important algal-associated and hydrocarbon biodegradation bacteria in the ocean. However, little knowledge about their phages has been reported. Here, a novel siphovirus, vB_MalS-PS3, infecting Marinobacter algicola DG893(T), was isolated from the surface waters of the western Pacific Ocean. Transmission electron microscopy (TEM) indicated that vB_MalS-PS3 has the morphology of siphoviruses. VB_MalS-PS3 was stable from −20 to 55°C, and with the latent and rise periods of about 80 and 10 min, respectively. The genome sequence of VB_MalS-PS3 contains a linear, double-strand 42,168-bp DNA molecule with a G + C content of 56.23% and 54 putative open reading frames (ORFs). Nineteen conserved domains were predicted by BLASTp in NCBI. We found that vB_MalS-PS3 represent an understudied viral group with only one known isolate. The phylogenetic tree based on the amino acid sequences of whole genomes revealed that vB_MalS-PS3 has a distant evolutionary relationship with other siphoviruses, and can be grouped into a novel viral genus cluster with six uncultured assembled viral genomes from metagenomics, named here as Marinovirus. This study of the Marinobacter phage vB_MalS-PS3 genome enriched the genetic database of marine bacteriophages, in addition, will provide useful information for further research on the interaction between Marinobacter phages and their hosts, and their relationship with algal blooms and hydrocarbon biodegradation in the ocean.
Collapse
Affiliation(s)
- Yundan Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Baohong Liu
- Department of Hospital Infection Management, Qilu Hospital, Shandong University, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Siyuan You
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Wenjing Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xinran Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yaqi Jie
- College of Letters and Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China.,The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
424
|
Dunstan RA, Bamert RS, Belousoff MJ, Short FL, Barlow CK, Pickard DJ, Wilksch JJ, Schittenhelm RB, Strugnell RA, Dougan G, Lithgow T. Mechanistic Insights into the Capsule-Targeting Depolymerase from a Klebsiella pneumoniae Bacteriophage. Microbiol Spectr 2021; 9:e0102321. [PMID: 34431721 PMCID: PMC8552709 DOI: 10.1128/spectrum.01023-21] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
The production of capsular polysaccharides by Klebsiella pneumoniae protects the bacterial cell from harmful environmental factors such as antimicrobial compounds and infection by bacteriophages (phages). To bypass this protective barrier, some phages encode polysaccharide-degrading enzymes referred to as depolymerases to provide access to cell surface receptors. Here, we characterized the phage RAD2, which infects K. pneumoniae strains that produce the widespread, hypervirulence-associated K2-type capsular polysaccharide. Using transposon-directed insertion sequencing, we have shown that the production of capsule is an absolute requirement for efficient RAD2 infection by serving as a first-stage receptor. We have identified the depolymerase responsible for recognition and degradation of the capsule, determined that the depolymerase forms globular appendages on the phage virion tail tip, and present the cryo-electron microscopy structure of the RAD2 capsule depolymerase at 2.7-Å resolution. A putative active site for the enzyme was identified, comprising clustered negatively charged residues that could facilitate the hydrolysis of target polysaccharides. Enzymatic assays coupled with mass spectrometric analyses of digested oligosaccharide products provided further mechanistic insight into the hydrolase activity of the enzyme, which, when incubated with K. pneumoniae, removes the capsule and sensitizes the cells to serum-induced killing. Overall, these findings expand our understanding of how phages target the Klebsiella capsule for infection, providing a framework for the use of depolymerases as antivirulence agents against this medically important pathogen. IMPORTANCE Klebsiella pneumoniae is a medically important pathogen that produces a thick protective capsule that is essential for pathogenicity. Phages are natural predators of bacteria, and many encode diverse "capsule depolymerases" which specifically degrade the capsule of their hosts, an exploitable trait for potential therapies. We have determined the first structure of a depolymerase that targets the clinically relevant K2 capsule and have identified its putative active site, providing hints to its mechanism of action. We also show that Klebsiella cells treated with a recombinant form of the depolymerase are stripped of capsule, inhibiting their ability to grow in the presence of serum, demonstrating the anti-infective potential of these robust and readily producible enzymes against encapsulated bacterial pathogens such as K. pneumoniae.
Collapse
Affiliation(s)
- Rhys A. Dunstan
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Rebecca S. Bamert
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Matthew J. Belousoff
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Francesca L. Short
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christopher K. Barlow
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Derek J. Pickard
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan J. Wilksch
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Australia
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| |
Collapse
|
425
|
Di Lallo G, Falconi M, Iacovelli F, Frezza D, D'Addabbo P. Analysis of Four New Enterococcus faecalis Phages and Modeling of a Hyaluronidase Catalytic Domain from Saphexavirus. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:131-141. [PMID: 36161247 PMCID: PMC9041502 DOI: 10.1089/phage.2021.0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Background: Phage therapy (PT), as a method to treat bacterial infections, needs identification of bacteriophages targeting specific pathogenic host. Enterococcus faecalis, a Gram-positive coccus resident in the human gastrointestinal tract, may become pathogenic in hospitalized patients showing acquired resistance to vancomycin and thus representing a possible target for PT. Materials and Methods: We isolated four phages that infect E. faecalis and characterized them by host range screening, transmission electron microscopy, and genome sequencing. We also identified and three-dimensional modeled a new hyaluronidase enzyme. Results: The four phages belong to Siphoviridae family: three Efquatrovirus (namely vB_EfaS_TV51, vB_EfaS_TV54, and vB_EfaS_TV217) and one Saphexavirus (vB_EfaS_TV16). All of them are compatible with lytic cycle. vB_EfaS_TV16 moreover presents a gene encoding for a hyaluronidase enzyme. Conclusions: The identified phages show features suggesting their useful application in PT, particularly the Saphexavirus that may be of enhanced relevance in PT because of its potential biofilm-digestion capability.
Collapse
Affiliation(s)
- Gustavo Di Lallo
- Laboratory of Microbiology, Department of Biology, University of Roma Tor Vergata, Roma, Italy
| | - Mattia Falconi
- Structural Bioinformatics Group, Department of Biology, University of Roma Tor Vergata, Roma, Italy
| | - Federico Iacovelli
- Structural Bioinformatics Group, Department of Biology, University of Roma Tor Vergata, Roma, Italy
| | - Domenico Frezza
- Laboratory of Microbiology, Department of Biology, University of Roma Tor Vergata, Roma, Italy
| | - Pietro D'Addabbo
- Computational Biology Unit, Department of Biology, University of Bari, Bari, Italy
- Address correspondence to: Pietro D'Addabbo, PhD, Computational Biology Unit, Department of Biology, University of Bari, Via E. Orabona 4, Bari 70125, Italy
| |
Collapse
|
426
|
Genome Sequences of Bacteriophages cd2, cd3, and cd4, which Specifically Target Carnobacterium divergens. Microbiol Resour Announc 2021; 10:e0063621. [PMID: 34435863 PMCID: PMC8388549 DOI: 10.1128/mra.00636-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carnobacteria have been implicated in food spoilage, but also in protection against pathogenic bacteria. We report the isolation and complete genome sequences of three bacteriophages (phages cd2, cd3, and cd4) that specifically target Carnobacterium divergens. The genome sizes are approximately 57 kbp and have limited homology to known enterococcal and streptococcal phages.
Collapse
|
427
|
Morphological and Taxonomic Properties of the Newly Isolated Cotonvirus japonicus, a New Lineage of the Subfamily Megavirinae. J Virol 2021; 95:e0091921. [PMID: 34191583 PMCID: PMC8387033 DOI: 10.1128/jvi.00919-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since 2003, various viruses from the subfamily Megavirinae in the family Mimiviridae have been isolated worldwide, including icosahedral mimiviruses and tailed tupanviruses. To date, the evolutionary relationship between tailed and nontailed mimiviruses has not been elucidated. Here, we present the genomic and morphological features of a newly isolated giant virus, Cotonvirus japonicus (cotonvirus), belonging to the family Mimiviridae. It contains a linear double-stranded DNA molecule of 1.47 Mb, the largest among the reported viruses in the subfamily Megavirinae, excluding tupanviruses. Among its 1,306 predicted open reading frames, 1,149 (88.0%) were homologous to those of the family Mimiviridae. Several nucleocytoplasmic large DNA virus (NCLDV) core genes, aminoacyl-tRNA synthetase genes, and the host specificity of cotonvirus were highly similar to those of Mimiviridae lineages A, B, and C; however, lineage A was slightly closer to cotonvirus than the others were. Moreover, based on its genome size, the presence of two copies of 18S rRNA-like sequences, and the period of its infection cycle, cotonvirus is the most similar to the tupanviruses among the icosahedral mimiviruses. Interestingly, the cotonvirus utilizes Golgi apparatus-like vesicles for virion factory (VF) formation. Overall, we showed that cotonvirus is a novel lineage of the subfamily Megavirinae. Our findings support the diversity of icosahedral mimiviruses and provide mechanistic insights into the replication, VF formation, and evolution of the subfamily Megavirinae. IMPORTANCE We have isolated a new virus of an independent lineage belonging to the family Mimiviridae, subfamily Megavirinae, from the fresh water of a canal in Japan, named Cotonvirus. In a proteomic tree, this new nucleocytoplasmic large DNA virus (NCLDV) is phylogenetically placed at the root of three lineages of the subfamily Megavirinae—lineages A (mimivirus), B (moumouvirus), and C (megavirus). Multiple genomic and phenotypic features of cotonvirus are more similar to those of tupanviruses than to those of the A, B, or C lineages, and other genomic features, while the host specificity of cotonvirus is more similar to those of the latter than of the former. These results suggest that cotonvirus is a unique virus that has chimeric features of existing viruses of Megavirinae and uses Golgi apparatus-like vesicles of the host cells for virion factory (VF) formation. Thus, cotonvirus can provide novel insights into the evolution of mimiviruses and the underlying mechanisms of VF formation.
Collapse
|
428
|
Haverkamp THA, Lossouarn J, Zhaxybayeva O, Lyu J, Bienvenu N, Geslin C, Nesbø CL. Newly identified proviruses in Thermotogota suggest that viruses are the vehicles on the highways of interphylum gene sharing. Environ Microbiol 2021; 23:7105-7120. [PMID: 34398506 DOI: 10.1111/1462-2920.15723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/24/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
Phylogenomic analyses of bacteria from the phylum Thermotogota have shown extensive lateral gene transfer with distantly related organisms, particularly with Firmicutes. One likely mechanism of such DNA transfer is viruses. However, to date, only three temperate viruses have been characterized in this phylum, all infecting bacteria from the Marinitoga genus. Here we report 17 proviruses integrated into genomes of bacteria belonging to eight Thermotogota genera and induce viral particle production from one of the proviruses. All except an incomplete provirus from Mesotoga fall into two groups based on sequence similarity, gene synteny and taxonomic classification. Proviruses of Group 1 are found in the genera Geotoga, Kosmotoga, Marinitoga, Thermosipho and Mesoaciditoga and are similar to the previously characterized Marinitoga viruses, while proviruses from Group 2 are distantly related to the Group 1 proviruses, have different genome organization and are found in Petrotoga and Defluviitoga. Genes carried by both groups are closely related to Firmicutes and Firmicutes (pro)viruses in phylogenetic analyses. Moreover, one of the groups show evidence of recent gene exchange and may be capable of infecting cells from both phyla. We hypothesize that viruses are responsible for a large portion of the observed gene flow between Firmicutes and Thermotogota.
Collapse
Affiliation(s)
- Thomas H A Haverkamp
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, 78350, France
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Jie Lyu
- Université Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, F-29280, France
| | - Nadège Bienvenu
- Université Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, F-29280, France
| | - Claire Geslin
- Université Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, F-29280, France
| | - Camilla L Nesbø
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
429
|
Ngiam L, Schembri MA, Weynberg K, Guo J. Bacteriophage isolated from non-target bacteria demonstrates broad host range infectivity against multidrug-resistant bacteria. Environ Microbiol 2021; 23:5569-5586. [PMID: 34390602 DOI: 10.1111/1462-2920.15714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Antibiotic resistance represents a global health challenge. The emergence of multidrug-resistant (MDR) bacteria such as uropathogenic Escherichia coli (UPEC) has attracted significant attention due to increased MDR properties, even against the last line of antibiotics. Bacteriophage, or simply phage, represents an alternative treatment to antibiotics. However, phage applications still face some challenges, such as host range specificity and development of phage resistant mutants. In this study, using both UPEC and non-UPEC hosts, five different phages were isolated from wastewater. We found that the inclusion of commensal Escherichia coli as target hosts during screening improved the capacity to select phage with desirable characteristics for phage therapy. Whole-genome sequencing revealed that four out of five phages adopt strictly lytic lifestyles and are taxonomically related to different phage families belonging to the Myoviridae and Podoviridae. In comparison to single phage treatment, the application of phage cocktails targeting different cell surface receptors significantly enhanced the suppression of UPEC hosts. The emergence of phage-resistant mutants after single phage treatment was attributed to mutational changes in outer membrane protein components, suggesting the potential receptors recognized by these phages. The findings highlight the use of commensal E. coli as target hosts to isolate broad host range phage with infectivity against MDR bacteria.
Collapse
Affiliation(s)
- Lyman Ngiam
- Advanced Water Management Centre, University of Queensland, Brisbane, Qld, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld, Australia
| | - Karen Weynberg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
430
|
Boyd CM, Angermeyer A, Hays SG, Barth ZK, Patel KM, Seed KD. Bacteriophage ICP1: A Persistent Predator of Vibrio cholerae. Annu Rev Virol 2021; 8:285-304. [PMID: 34314595 PMCID: PMC9040626 DOI: 10.1146/annurev-virology-091919-072020] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriophages or phages—viruses of bacteria—are abundant and considered to be highly diverse. Interestingly, a particular group of lytic Vibrio cholerae–specific phages (vibriophages) of the International Centre for Diarrheal Disease Research, Bangladesh cholera phage 1 (ICP1) lineage show high levels of genome conservation over large spans of time and geography, despite a constant coevolutionary arms race with their host. From a collection of 67 sequenced ICP1 isolates, mostly from clinical samples, we find these phages have mosaic genomes consisting of large, conserved modules disrupted by variable sequences that likely evolve mostly through mobile endonuclease-mediated recombination during coinfection. Several variable regions have been associated with adaptations against antiphage elements in V. cholerae; notably, this includes ICP1’s CRISPR-Cas system. The ongoing association of ICP1 and V. cholerae in cholera-endemic regions makes this system a rich source for discovery of novel defense and counterdefense strategies in bacteria-phage conflicts in nature.
Collapse
Affiliation(s)
- Caroline M Boyd
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Angus Angermeyer
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Stephanie G Hays
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Kishen M Patel
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
431
|
Skurnik M, Jaakkola S, Mattinen L, von Ossowski L, Nawaz A, Pajunen MI, Happonen LJ. Bacteriophages fEV-1 and fD1 Infect Yersinia pestis. Viruses 2021; 13:1384. [PMID: 34372590 PMCID: PMC8309999 DOI: 10.3390/v13071384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteriophages vB_YpeM_fEV-1 (fEV-1) and vB_YpeM_fD1 (fD1) were isolated from incoming sewage water samples in Turku, Finland, using Yersinia pestis strains EV76 and KIM D27 as enrichment hosts, respectively. Genomic analysis and transmission electron microscopy established that fEV-1 is a novel type of dwarf myovirus, while fD1 is a T4-like myovirus. The genome sizes are 38 and 167 kb, respectively. To date, the morphology and genome sequences of some dwarf myoviruses have been described; however, a proteome characterization such as the one presented here, has currently been lacking for this group of viruses. Notably, fEV-1 is the first dwarf myovirus described for Y. pestis. The host range of fEV-1 was restricted strictly to Y. pestis strains, while that of fD1 also included other members of Enterobacterales such as Escherichia coli and Yersinia pseudotuberculosis. In this study, we present the life cycles, genomes, and proteomes of two Yersinia myoviruses, fEV-1 and fD1.
Collapse
Affiliation(s)
- Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Salla Jaakkola
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
| | - Laura Mattinen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
| | - Lotta von Ossowski
- Department of Medical Biochemistry, University of Turku, 20520 Turku, Finland;
| | - Ayesha Nawaz
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
| | - Lotta J. Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, 22184 Lund, Sweden;
| |
Collapse
|
432
|
A New Enterobacter cloacae Bacteriophage EC151 Encodes the Deazaguanine DNA Modification Pathway and Represents a New Genus within the Siphoviridae Family. Viruses 2021; 13:v13071372. [PMID: 34372577 PMCID: PMC8310023 DOI: 10.3390/v13071372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
A novel Enterobacter cloacae phage, EC151, was isolated and characterized. Electron microscopy revealed that EC151 has a siphovirus-like virion morphology. The EC151 nucleotide sequence shows limited similarity to other phage genomes deposited in the NCBI GenBank database. The size of the EC151 genome is 60,753 bp and contains 58 putative genes. Thirty-nine of them encode proteins of predicted function, 18 are defined as hypothetical proteins, and one ORF identifies as the tRNA-Ser-GCT-encoding gene. Six ORFs were predicted to be members of the deazaguanine DNA modification pathway, including the preQ0 transporter. Comparative proteomic phylogenetic analysis revealed that phage EC151 represents a distinct branch within a group of sequences containing clades formed by members of the Seuratvirus, Nonagvirus, and Vidquintavirus genera. In addition, the EC151 genome showed gene synteny typical of the Seuratvirus, Nonagvirus, and Nipunavirus phages. The average genetic distances of EC151/Seuratvirus, EC151/Nonagvirus, and EC151/Vidquintavirus are approximately equal to those between the Seuratvirus, Nonagvirus, and Vidquintavirus genera (~0.7 substitutions per site). Therefore, EC151 may represent a novel genus within the Siphoviridae family. The origin of the deazaguanine DNA modification pathway in the EC151 genome can be traced to Escherichia phages from the Seuratvirus genus.
Collapse
|
433
|
Šimoliūnienė M, Žukauskienė E, Truncaitė L, Cui L, Hutinet G, Kazlauskas D, Kaupinis A, Skapas M, de Crécy-Lagard V, Dedon PC, Valius M, Meškys R, Šimoliūnas E. Pantoea Bacteriophage vB_PagS_MED16-A Siphovirus Containing a 2'-Deoxy-7-amido-7-deazaguanosine-Modified DNA. Int J Mol Sci 2021; 22:7333. [PMID: 34298953 PMCID: PMC8306585 DOI: 10.3390/ijms22147333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
A novel siphovirus, vB_PagS_MED16 (MED16) was isolated in Lithuania using Pantoea agglomerans strain BSL for the phage propagation. The double-stranded DNA genome of MED16 (46,103 bp) contains 73 predicted open reading frames (ORFs) encoding proteins, but no tRNA. Our comparative sequence analysis revealed that 26 of these ORFs code for unique proteins that have no reliable identity when compared to database entries. Based on phylogenetic analysis, MED16 represents a new genus with siphovirus morphology. In total, 35 MED16 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a gene encoding a preQ0 DNA deoxyribosyltransferase (DpdA) is present in the genome of MED16 and the LC-MS/MS analysis indicates 2'-deoxy-7-amido-7-deazaguanosine (dADG)-modified phage DNA, which, to our knowledge, has never been experimentally validated in genomes of Pantoea phages. Thus, the data presented in this study provide new information on Pantoea-infecting viruses and offer novel insights into the diversity of DNA modifications in bacteriophages.
Collapse
Affiliation(s)
- Monika Šimoliūnienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| | - Emilija Žukauskienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| | - Lidija Truncaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| | - Liang Cui
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore; (L.C.); (P.C.D.)
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (G.H.); (V.d.C.-L.)
| | - Darius Kazlauskas
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Martynas Skapas
- Department of Characterisation of Materials Structure, Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania;
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (G.H.); (V.d.C.-L.)
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Peter C. Dedon
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore; (L.C.); (P.C.D.)
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| | - Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| |
Collapse
|
434
|
Martínez-Ruiz EB, Cooper M, Barrero-Canosa J, Haryono MAS, Bessarab I, Williams RBH, Szewzyk U. Genome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformation. BMC Genomics 2021; 22:464. [PMID: 34157973 PMCID: PMC8218464 DOI: 10.1186/s12864-021-07766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. RESULTS Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. CONCLUSIONS The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Myriel Cooper
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Jimena Barrero-Canosa
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Ulrich Szewzyk
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
435
|
Pratama AA, Bolduc B, Zayed AA, Zhong ZP, Guo J, Vik DR, Gazitúa MC, Wainaina JM, Roux S, Sullivan MB. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ 2021; 9:e11447. [PMID: 34178438 PMCID: PMC8210812 DOI: 10.7717/peerj.11447] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Viruses influence global patterns of microbial diversity and nutrient cycles. Though viral metagenomics (viromics), specifically targeting dsDNA viruses, has been critical for revealing viral roles across diverse ecosystems, its analyses differ in many ways from those used for microbes. To date, viromics benchmarking has covered read pre-processing, assembly, relative abundance, read mapping thresholds and diversity estimation, but other steps would benefit from benchmarking and standardization. Here we use in silico-generated datasets and an extensive literature survey to evaluate and highlight how dataset composition (i.e., viromes vs bulk metagenomes) and assembly fragmentation impact (i) viral contig identification tool, (ii) virus taxonomic classification, and (iii) identification and curation of auxiliary metabolic genes (AMGs). RESULTS The in silico benchmarking of five commonly used virus identification tools show that gene-content-based tools consistently performed well for long (≥3 kbp) contigs, while k-mer- and blast-based tools were uniquely able to detect viruses from short (≤3 kbp) contigs. Notably, however, the performance increase of k-mer- and blast-based tools for short contigs was obtained at the cost of increased false positives (sometimes up to ∼5% for virome and ∼75% bulk samples), particularly when eukaryotic or mobile genetic element sequences were included in the test datasets. For viral classification, variously sized genome fragments were assessed using gene-sharing network analytics to quantify drop-offs in taxonomic assignments, which revealed correct assignations ranging from ∼95% (whole genomes) down to ∼80% (3 kbp sized genome fragments). A similar trend was also observed for other viral classification tools such as VPF-class, ViPTree and VIRIDIC, suggesting that caution is warranted when classifying short genome fragments and not full genomes. Finally, we highlight how fragmented assemblies can lead to erroneous identification of AMGs and outline a best-practices workflow to curate candidate AMGs in viral genomes assembled from metagenomes. CONCLUSION Together, these benchmarking experiments and annotation guidelines should aid researchers seeking to best detect, classify, and characterize the myriad viruses 'hidden' in diverse sequence datasets.
Collapse
Affiliation(s)
- Akbar Adjie Pratama
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
| | - Ahmed A. Zayed
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
| | - Zhi-Ping Zhong
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States of America
| | - Jiarong Guo
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
| | - Dean R. Vik
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
| | | | - James M. Wainaina
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
- Infectious Diseases Institute at The Ohio State University, Ohio State University, Columbus, OH, United States of America
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States of America
- Environmental and Geodetic Engineering, Ohio State University, Department of Civil, Columbus, OH, United States of America
| |
Collapse
|
436
|
Kazantseva OA, Piligrimova EG, Shadrin AM. vB_BcM_Sam46 and vB_BcM_Sam112, members of a new bacteriophage genus with unusual small terminase structure. Sci Rep 2021; 11:12173. [PMID: 34108535 PMCID: PMC8190038 DOI: 10.1038/s41598-021-91289-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
One of the serious public health concerns is food contaminated with pathogens and their vital activity products such as toxins. Bacillus cereus group of bacteria includes well-known pathogenic species such as B. anthracis, B. cereus sensu stricto (ss), B. cytotoxicus and B. thuringiensis. In this report, we describe the Bacillus phages vB_BcM_Sam46 and vB_BcM_Sam112 infecting species of this group. Electron microscopic analyses indicated that phages Sam46 and Sam112 have the myovirus morphotype. The genomes of Sam46 and Sam112 comprise double-stranded DNA of 45,419 bp and 45,037 bp in length, respectively, and have the same GC-content. The genome identity of Sam46 and Sam112 is 96.0%, indicating that they belong to the same phage species. According to the phylogenetic analysis, these phages form a distinct clade and may be members of a new phage genus, for which we propose the name 'Samaravirus'. In addition, an interesting feature of the Sam46 and Sam112 phages is the unusual structure of their small terminase subunit containing N-terminal FtsK_gamma domain.
Collapse
Affiliation(s)
- Olesya A Kazantseva
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia.
| | - Emma G Piligrimova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia
| | - Andrey M Shadrin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia.
| |
Collapse
|
437
|
Exploring Viral Diversity in a Gypsum Karst Lake Ecosystem Using Targeted Single-Cell Genomics. Genes (Basel) 2021; 12:genes12060886. [PMID: 34201311 PMCID: PMC8226683 DOI: 10.3390/genes12060886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Little is known about the diversity and distribution of viruses infecting green sulfur bacteria (GSB) thriving in euxinic (sulfuric and anoxic) habitats, including gypsum karst lake ecosystems. In this study, we used targeted cell sorting combined with single-cell sequencing to gain insights into the gene content and genomic potential of viruses infecting sulfur-oxidizing bacteria Chlorobium clathratiforme, obtained from water samples collected during summer stratification in gypsum karst Lake Kirkilai (Lithuania). In total, 82 viral contigs were bioinformatically identified in 62 single amplified genomes (SAGs) of C. clathratiforme. The majority of viral gene and protein sequences showed little to no similarity with phage sequences in public databases, uncovering the vast diversity of previously undescribed GSB viruses. We observed a high level of lysogenization in the C. clathratiforme population, as 87% SAGs contained intact prophages. Among the thirty identified auxiliary metabolic genes (AMGs), two, thiosulfate sulfurtransferase (TST) and thioredoxin-dependent phosphoadenosine phosphosulfate (PAPS) reductase (cysH), were found to be involved in the oxidation of inorganic sulfur compounds, suggesting that viruses can influence the metabolism and cycling of this essential element. Finally, the analysis of CRISPR spacers retrieved from the consensus C. clathratiforme genome imply persistent and active virus–host interactions for several putative phages prevalent among C. clathratiforme SAGs. Overall, this study provides a glimpse into the diversity of phages associated with naturally occurring and highly abundant sulfur-oxidizing bacteria.
Collapse
|
438
|
The Potential of Phage Therapy against the Emerging Opportunistic Pathogen Stenotrophomonas maltophilia. Viruses 2021; 13:v13061057. [PMID: 34204897 PMCID: PMC8228603 DOI: 10.3390/v13061057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
The isolation and characterization of bacteriophages for the treatment of infections caused by the multidrug resistant pathogen Stenotrophomonas maltophilia is imperative as nosocomial and community-acquired infections are rapidly increasing in prevalence. This increase is largely due to the numerous virulence factors and antimicrobial resistance genes encoded by this bacterium. Research on S. maltophilia phages to date has focused on the isolation and in vitro characterization of novel phages, often including genomic characterization, from the environment or by induction from bacterial strains. This review summarizes the clinical significance, virulence factors, and antimicrobial resistance mechanisms of S. maltophilia, as well as all phages isolated and characterized to date and strategies for their use. We further address the limited in vivo phage therapy studies conducted against this bacterium and discuss the future research needed to spearhead phages as an alternative treatment option against multidrug resistant S. maltophilia.
Collapse
|
439
|
Component Parts of Bacteriophage Virions Accurately Defined by a Machine-Learning Approach Built on Evolutionary Features. mSystems 2021; 6:e0024221. [PMID: 34042467 PMCID: PMC8269216 DOI: 10.1128/msystems.00242-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) continues to evolve as a major threat to human health, and new strategies are required for the treatment of AMR infections. Bacteriophages (phages) that kill bacterial pathogens are being identified for use in phage therapies, with the intention to apply these bactericidal viruses directly into the infection sites in bespoke phage cocktails. Despite the great unsampled phage diversity for this purpose, an issue hampering the roll out of phage therapy is the poor quality annotation of many of the phage genomes, particularly for those from infrequently sampled environmental sources. We developed a computational tool called STEP3 to use the “evolutionary features” that can be recognized in genome sequences of diverse phages. These features, when integrated into an ensemble framework, achieved a stable and robust prediction performance when benchmarked against other prediction tools using phages from diverse sources. Validation of the prediction accuracy of STEP3 was conducted with high-resolution mass spectrometry analysis of two novel phages, isolated from a watercourse in the Southern Hemisphere. STEP3 provides a robust computational approach to distinguish specific and universal features in phages to improve the quality of phage cocktails and is available for use at http://step3.erc.monash.edu/. IMPORTANCE In response to the global problem of antimicrobial resistance, there are moves to use bacteriophages (phages) as therapeutic agents. Selecting which phages will be effective therapeutics relies on interpreting features contributing to shelf-life and applicability to diagnosed infections. However, the protein components of the phage virions that dictate these properties vary so much in sequence that best estimates suggest failure to recognize up to 90% of them. We have utilized this diversity in evolutionary features as an advantage, to apply machine learning for prediction accuracy for diverse components in phage virions. We benchmark this new tool showing the accurate recognition and evaluation of phage component parts using genome sequence data of phages from undersampled environments, where the richest diversity of phage still lies.
Collapse
|
440
|
Rihtman B, Puxty RJ, Hapeshi A, Lee YJ, Zhan Y, Michniewski S, Waterfield NR, Chen F, Weigele P, Millard AD, Scanlan DJ, Chen Y. A new family of globally distributed lytic roseophages with unusual deoxythymidine to deoxyuridine substitution. Curr Biol 2021; 31:3199-3206.e4. [PMID: 34033748 PMCID: PMC8323127 DOI: 10.1016/j.cub.2021.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 01/27/2023]
Abstract
Marine bacterial viruses (bacteriophages) are abundant biological entities that are vital for shaping microbial diversity, impacting marine ecosystem function, and driving host evolution.1, 2, 3 The marine roseobacter clade (MRC) is a ubiquitous group of heterotrophic bacteria4,5 that are important in the elemental cycling of various nitrogen, sulfur, carbon, and phosphorus compounds.6, 7, 8, 9, 10 Bacteriophages infecting MRC (roseophages) have thus attracted much attention and more than 30 roseophages have been isolated,11, 12, 13 the majority of which belong to the N4-like group (Podoviridae family) or the Chi-like group (Siphoviridae family), although ssDNA-containing roseophages are also known.14 In our attempts to isolate lytic roseophages, we obtained two new phages (DSS3_VP1 and DSS3_PM1) infecting the model MRC strain Ruegeria pomeroyi DSS-3. Here, we show that not only do these phages have unusual substitution of deoxythymidine with deoxyuridine (dU) in their DNA, but they are also phylogenetically distinct from any currently known double-stranded DNA bacteriophages, supporting the establishment of a novel family (“Naomiviridae”). These dU-containing phages possess DNA that is resistant to the commonly used library preparation method for metagenome sequencing, which may have caused significant underestimation of their presence in the environment. Nevertheless, our analysis of Tara Ocean metagenome datasets suggests that these unusual bacteriophages are of global importance and more diverse than other well-known bacteriophages, e.g., the Podoviridae in the oceans, pointing to an overlooked role for these novel phages in the environment. Two new roseophages isolated from the marine environment They have an unusual deoxythymidine to deoxyuridine substitution in their genomes These dU genomes are resistant to a common method of metagenome library preparation These phages represent a new family and are globally distributed in the oceans
Collapse
Affiliation(s)
- Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Richard J Puxty
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Alexia Hapeshi
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Yan-Jiun Lee
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Yuanchao Zhan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Slawomir Michniewski
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Nicholas R Waterfield
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Peter Weigele
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Andrew D Millard
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
441
|
Vallino M, Rossi M, Ottati S, Martino G, Galetto L, Marzachì C, Abbà S. Bacteriophage-Host Association in the Phytoplasma Insect Vector Euscelidius variegatus. Pathogens 2021; 10:pathogens10050612. [PMID: 34067814 PMCID: PMC8156552 DOI: 10.3390/pathogens10050612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022] Open
Abstract
Insect vectors transmit viruses and bacteria that can cause severe diseases in plants and economic losses due to a decrease in crop production. Insect vectors, like all other organisms, are colonized by a community of various microorganisms, which can influence their physiology, ecology, evolution, and also their competence as vectors. The important ecological meaning of bacteriophages in various ecosystems and their role in microbial communities has emerged in the past decade. However, only a few phages have been described so far in insect microbiomes. The leafhopper Euscelidius variegatus is a laboratory vector of the phytoplasma causing Flavescence dorée, a severe grapevine disease that threatens viticulture in Europe. Here, the presence of a temperate bacteriophage in E. variegatus (named Euscelidius variegatus phage 1, EVP-1) was revealed through both insect transcriptome analyses and electron microscopic observations. The bacterial host was isolated in axenic culture and identified as the bacterial endosymbiont of E. variegatus (BEV), recently assigned to the genus Candidatus Symbiopectobacterium. BEV harbors multiple prophages that become active in culture, suggesting that different environments can trigger different mechanisms, finely regulating the interactions among phages. Understanding the complex relationships within insect vector microbiomes may help in revealing possible microbe influences on pathogen transmission, and it is a crucial step toward innovative sustainable strategies for disease management in agriculture.
Collapse
Affiliation(s)
- Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
- Correspondence:
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
| | - Sara Ottati
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Gabriele Martino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Luciana Galetto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
| |
Collapse
|
442
|
Screening of Bacteriophage Encoded Toxic Proteins with a Next Generation Sequencing-Based Assay. Viruses 2021; 13:v13050750. [PMID: 33923360 PMCID: PMC8145870 DOI: 10.3390/v13050750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteriophage vB_EcoM_fHy-Eco03 (fHy-Eco03 for short) was isolated from a sewage sample based on its ability to infect an Escherichia coli clinical blood culture isolate. Altogether, 32 genes encoding hypothetical proteins of unknown function (HPUFs) were identified from the genomic sequence of fHy-Eco03. The HPUFs were screened for toxic properties (toxHPUFs) with a novel, Next Generation Sequencing (NGS)-based approach. This approach identifies toxHPUF-encoding genes through comparison of gene-specific read coverages in DNA from pooled ligation mixtures before electroporation and pooled transformants after electroporation. The performance and reliability of the NGS screening assay was compared with a plating efficiency-based method, and both methods identified the fHy-Eco03 gene g05 product as toxic. While the outcomes of the two screenings were highly similar, the NGS screening assay outperformed the plating efficiency assay in both reliability and efficiency. The NGS screening assay can be used as a high throughput method in the search for new phage-inspired antimicrobial molecules.
Collapse
|
443
|
Lytic bacteriophages facilitate antibiotic sensitization of Enterococcus faecium. Antimicrob Agents Chemother 2021; 65:AAC.00143-21. [PMID: 33649110 PMCID: PMC8092871 DOI: 10.1128/aac.00143-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecium, a commensal of the human intestine, has emerged as a hospital-adapted, multi-drug resistant (MDR) pathogen. Bacteriophages (phages), natural predators of bacteria, have regained attention as therapeutics to stem the rise of MDR bacteria. Despite their potential to curtail MDR E. faecium infections, the molecular events governing E. faecium-phage interactions remain largely unknown. Such interactions are important to delineate because phage selective pressure imposed on E. faecium will undoubtedly result in phage resistance phenotypes that could threaten the efficacy of phage therapy. In an effort to understand the emergence of phage resistance in E. faecium, three newly isolated lytic phages were used to demonstrate that E. faecium phage resistance is conferred through an array of cell wall-associated molecules, including secreted antigen A (SagA), enterococcal polysaccharide antigen (Epa), wall teichoic acids, capsule, and an arginine-aspartate-aspartate (RDD) protein of unknown function. We find that capsule and Epa are important for robust phage adsorption and that phage resistance mutations in sagA, epaR, and epaX enhance E. faecium susceptibility to ceftriaxone, an antibiotic normally ineffective due to its low affinity for enterococcal penicillin binding proteins. Consistent with these findings, we provide evidence that phages potently synergize with cell wall (ceftriaxone and ampicillin) and membrane-acting (daptomycin) antimicrobials to slow or completely inhibit the growth of E. faecium Our work demonstrates that the evolution of phage resistance comes with fitness defects resulting in drug sensitization and that lytic phages could serve as effective antimicrobials for the treatment of E. faecium infections.
Collapse
|
444
|
Sasaki R, Miyashita S, Ando S, Ito K, Fukuhara T, Takahashi H. Isolation and Characterization of a Novel Jumbo Phage from Leaf Litter Compost and Its Suppressive Effect on Rice Seedling Rot Diseases. Viruses 2021; 13:v13040591. [PMID: 33807245 PMCID: PMC8066314 DOI: 10.3390/v13040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
Jumbo phages have DNA genomes larger than 200 kbp in large virions composed of an icosahedral head, tail, and other adsorption structures, and they are known to be abundant biological substances in nature. In this study, phages in leaf litter compost were screened for their potential to suppress rice seedling rot disease caused by the bacterium Burkholderia glumae, and a novel phage was identified in a filtrate-enriched suspension of leaf litter compost. The phage particles consisted of a rigid tailed icosahedral head and contained a DNA genome of 227,105 bp. The phage could lyse five strains of B. glumae and six strains of Burkholderia plantarii. The phage was named jumbo Burkholderia phage FLC6. Proteomic tree analysis revealed that phage FLC6 belongs to the same clade as two jumbo Ralstonia phages, namely RSF1 and RSL2, which are members of the genus Chiangmaivirus (family: Myoviridae; order: Caudovirales). Interestingly, FLC6 could also lyse two strains of Ralstonia pseudosolanacearum, the causal agent of bacterial wilt, suggesting that FLC6 has a broad host range that may make it especially advantageous as a bio-control agent for several bacterial diseases in economically important crops. The novel jumbo phage FLC6 may enable leaf litter compost to suppress several bacterial diseases and may itself be useful for controlling plant diseases in crop cultivation.
Collapse
Affiliation(s)
- Ryota Sasaki
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
| | - Sugihiro Ando
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
| | - Kumiko Ito
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences and Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan;
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
- Correspondence: ; Tel.: +81-812-2757-4300
| |
Collapse
|
445
|
Kabwe M, Meehan-Andrews T, Ku H, Petrovski S, Batinovic S, Chan HT, Tucci J. Lytic Bacteriophage EFA1 Modulates HCT116 Colon Cancer Cell Growth and Upregulates ROS Production in an Enterococcus faecalis Co-culture System. Front Microbiol 2021; 12:650849. [PMID: 33868210 PMCID: PMC8044584 DOI: 10.3389/fmicb.2021.650849] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen in the gut microbiota that’s associated with a range of difficult to treat nosocomial infections. It is also known to be associated with some colorectal cancers. Its resistance to a range of antibiotics and capacity to form biofilms increase its virulence. Unlike antibiotics, bacteriophages are capable of disrupting biofilms which are key in the pathogenesis of diseases such as UTIs and some cancers. In this study, bacteriophage EFA1, lytic against E. faecalis, was isolated and its genome fully sequenced and analyzed in silico. Electron microscopy images revealed EFA1 to be a Siphovirus. The bacteriophage was functionally assessed and shown to disrupt E. faecalis biofilms as well as modulate the growth stimulatory effects of E. faecalis in a HCT116 colon cancer cell co-culture system, possibly via the effects of ROS. The potential exists for further testing of bacteriophage EFA1 in these systems as well as in vivo models.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Heng Ku
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Hiu Tat Chan
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia.,Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
446
|
Žukauskienė E, Šimoliūnienė M, Truncaitė L, Skapas M, Kaupinis A, Valius M, Meškys R, Šimoliūnas E. Pantoea Bacteriophage vB_PagS_AAS23: A Singleton of the Genus Sauletekiovirus. Microorganisms 2021; 9:668. [PMID: 33807116 PMCID: PMC8004638 DOI: 10.3390/microorganisms9030668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
A cold-adapted siphovirus, vB_PagS_AAS23 (AAS23) was isolated in Lithuania using the Pantoea agglomerans strain AUR for the phage propagation. The double-stranded DNA genome of AAS23 (51,170 bp) contains 92 probable protein encoding genes, and no genes for tRNA. A comparative sequence analysis revealed that 25 of all AAS23 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. Based on the phylogenetic analysis, AAS23 has no close relationship to other viruses publicly available to date and represents a single species of the genus Sauletekiovirus within the family Drexlerviridae. The phage is able to form plaques in bacterial lawns even at 4 °C and demonstrates a depolymerase activity. Thus, the data presented in this study not only provides the information on Pantoea-infecting bacteriophages, but also offers novel insights into the diversity of cold-adapted viruses and their potential to be used as biocontrol agents.
Collapse
Affiliation(s)
- Emilija Žukauskienė
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| | - Monika Šimoliūnienė
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| | - Lidija Truncaitė
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| | - Martynas Skapas
- Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania;
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Rolandas Meškys
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| | - Eugenijus Šimoliūnas
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| |
Collapse
|
447
|
Turner D, Kropinski AM, Adriaenssens EM. A Roadmap for Genome-Based Phage Taxonomy. Viruses 2021; 13:v13030506. [PMID: 33803862 PMCID: PMC8003253 DOI: 10.3390/v13030506] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteriophage (phage) taxonomy has been in flux since its inception over four decades ago. Genome sequencing has put pressure on the classification system and recent years have seen significant changes to phage taxonomy. Here, we reflect on the state of phage taxonomy and provide a roadmap for the future, including the abolition of the order Caudovirales and the families Myoviridae, Podoviridae, and Siphoviridae. Furthermore, we specify guidelines for the demarcation of species, genus, subfamily and family-level ranks of tailed phage taxonomy.
Collapse
Affiliation(s)
- Dann Turner
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | - Andrew M. Kropinski
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
448
|
Trotereau A, Boyer C, Bornard I, Pécheur MJB, Schouler C, Torres-Barceló C. High genomic diversity of novel phages infecting the plant pathogen Ralstonia solanacearum, isolated in Mauritius and Reunion islands. Sci Rep 2021; 11:5382. [PMID: 33686106 PMCID: PMC7940629 DOI: 10.1038/s41598-021-84305-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/11/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is among the most important plant diseases worldwide, severely affecting a high number of crops and ornamental plants in tropical regions. Only a limited number of phages infecting R. solanacearum have been isolated over the years, despite the importance of this bacterium and the associated plant disease. The antibacterial effect or morphological traits of these R. solanacearum viruses have been well studied, but not their genomic features, which need deeper consideration. This study reports the full genome of 23 new phages infecting RSSC isolated from agricultural samples collected in Mauritius and Reunion islands, particularly affected by this plant bacterial pathogen and considered biodiversity hotspots in the Southwest Indian Ocean. The complete genomic information and phylogenetic classification is provided, revealing high genetic diversity between them and weak similarities with previous related phages. The results support our proposal of 13 new species and seven new genera of R. solanacearum phages. Our findings highlight the wide prevalence of phages of RSSC in infected agricultural settings and the underlying genetic diversity. Discoveries of this kind lead more insight into the diversity of phages in general and to optimizing their use as biocontrol agents of bacterial diseases of plants in agriculture.
Collapse
Affiliation(s)
| | - Claudine Boyer
- Plant Populations and Bio-aggressors in Tropical Ecosystems, Saint Pierre, Reunion, France
| | | | | | | | - Clara Torres-Barceló
- Plant Populations and Bio-aggressors in Tropical Ecosystems, Saint Pierre, Reunion, France. .,Plant Pathology, INRAE, 84140, Montfavet, France.
| |
Collapse
|
449
|
Analysis of a Novel Bacteriophage vB_AchrS_AchV4 Highlights the Diversity of Achromobacter Viruses. Viruses 2021; 13:v13030374. [PMID: 33673419 PMCID: PMC7996906 DOI: 10.3390/v13030374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Achromobacter spp. are ubiquitous in nature and are increasingly being recognized as emerging nosocomial pathogens. Nevertheless, to date, only 30 complete genome sequences of Achromobacter phages are available in GenBank, and nearly all of those phages were isolated on Achromobacter xylosoxidans. Here, we report the isolation and characterization of bacteriophage vB_AchrS_AchV4. To the best of our knowledge, vB_AchrS_AchV4 is the first virus isolated from Achromobacter spanius. Both vB_AchrS_AchV4 and its host, Achromobacter spanius RL_4, were isolated in Lithuania. VB_AchrS_AchV4 is a siphovirus, since it has an isometric head (64 ± 3.2 nm in diameter) and a non-contractile flexible tail (232 ± 5.4). The genome of vB_AchrS_AchV4 is a linear dsDNA molecule of 59,489 bp with a G+C content of 62.8%. It contains no tRNA genes, yet it includes 82 protein-coding genes, of which 27 have no homologues in phages. Using bioinformatics approaches, 36 vB_AchrS_AchV4 genes were given a putative function. A further four were annotated based on the results of LC-MS/MS. Comparative analyses revealed that vB_AchrS_AchV4 is a singleton siphovirus with no close relatives among known tailed phages. In summary, this work not only describes a novel and unique phage, but also advances our knowledge of genetic diversity and evolution of Achromobacter bacteriophages.
Collapse
|
450
|
Moon K, Cho JC. Metaviromics coupled with phage-host identification to open the viral 'black box'. J Microbiol 2021; 59:311-323. [PMID: 33624268 DOI: 10.1007/s12275-021-1016-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
Viruses are found in almost all biomes on Earth, with bacteriophages (phages) accounting for the majority of viral particles in most ecosystems. Phages have been isolated from natural environments using the plaque assay and liquid medium-based dilution culturing. However, phage cultivation is restricted by the current limitations in the number of culturable bacterial strains. Unlike prokaryotes, which possess universally conserved 16S rRNA genes, phages lack universal marker genes for viral taxonomy, thus restricting cultureindependent analyses of viral diversity. To circumvent these limitations, shotgun viral metagenome sequencing (i.e., metaviromics) has been developed to enable the extensive sequencing of a variety of viral particles present in the environment and is now widely used. Using metaviromics, numerous studies on viral communities have been conducted in oceans, lakes, rivers, and soils, resulting in many novel phage sequences. Furthermore, auxiliary metabolic genes such as ammonic monooxygenase C and β-lactamase have been discovered in viral contigs assembled from viral metagenomes. Current attempts to identify putative bacterial hosts of viral metagenome sequences based on sequence homology have been limited due to viral sequence variations. Therefore, culture-independent approaches have been developed to predict bacterial hosts using single-cell genomics and fluorescentlabeling. This review focuses on recent viral metagenome studies conducted in natural environments, especially in aquatic ecosystems, and their contributions to phage ecology. Here, we concluded that although metaviromics is a key tool for the study of viral ecology, this approach must be supplemented with phage-host identification, which in turn requires the cultivation of phage-bacteria systems.
Collapse
Affiliation(s)
- Kira Moon
- Biological Resources Utilization Division, Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|