401
|
Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018; 222. [PMID: 28231640 DOI: 10.1111/apha.12860] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The endothelial barrier consists of intercellular contacts localized in the cleft between endothelial cells, which is covered by the glycocalyx in a sievelike manner. Both types of barrier-forming junctions, i.e. the adherens junction (AJ) serving mechanical anchorage and mechanotransduction and the tight junction (TJ) sealing the intercellular space to limit paracellular permeability, are tethered to the actin cytoskeleton. Under resting conditions, the endothelium thereby builds a selective layer controlling the exchange of fluid and solutes with the surrounding tissue. However, in the situation of an inflammatory response such as in anaphylaxis or sepsis intercellular contacts disintegrate in post-capillary venules leading to intercellular gap formation. The resulting oedema can cause shock and multi-organ failure. Therefore, maintenance as well as coordinated opening and closure of interendothelial junctions is tightly regulated. The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins. In the resting state, junctional Rac1 and RhoA activity is enhanced by junctional components, actin-binding proteins, cAMP signalling and extracellular cues such as sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang-1). In addition, phosphorylation of AJ components is prevented by junction-associated phosphatases including vascular endothelial protein tyrosine phosphatase (VE-PTP). In contrast, inflammatory mediators inhibiting cAMP/Rac1 signalling cause strong activation of RhoA and induce AJ phosphorylation finally leading to endocytosis and cleavage of VE-cadherin. This results in dissolution of TJs the outcome of which is endothelial barrier breakdown.
Collapse
Affiliation(s)
- M. Y. Radeva
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| | - J. Waschke
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| |
Collapse
|
402
|
Dewitte A, Lepreux S, Villeneuve J, Rigothier C, Combe C, Ouattara A, Ripoche J. Blood platelets and sepsis pathophysiology: A new therapeutic prospect in critically [corrected] ill patients? Ann Intensive Care 2017; 7:115. [PMID: 29192366 PMCID: PMC5709271 DOI: 10.1186/s13613-017-0337-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/12/2017] [Indexed: 02/06/2023] Open
Abstract
Beyond haemostasis, platelets have emerged as versatile effectors of the immune response. The contribution of platelets in inflammation, tissue integrity and defence against infections has considerably widened the spectrum of their role in health and disease. Here, we propose a narrative review that first describes these new platelet attributes. We then examine their relevance to microcirculatory alterations in multi-organ dysfunction, a major sepsis complication. Rapid progresses that are made on the knowledge of novel platelet functions should improve the understanding of thrombocytopenia, a common condition and a predictor of adverse outcome in sepsis, and may provide potential avenues for management and therapy.
Collapse
Affiliation(s)
- Antoine Dewitte
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France. .,Department of Anaesthesia and Critical Care II, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France.
| | - Sébastien Lepreux
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France.,Department of Pathology, CHU Bordeaux, 33000, Bordeaux, France
| | - Julien Villeneuve
- Cell and Developmental Biology Department, Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003, Barcelona, Spain
| | - Claire Rigothier
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France.,Department of Nephrology, Transplantation and Haemodialysis, CHU Bordeaux, 33000, Bordeaux, France
| | - Christian Combe
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France.,Department of Nephrology, Transplantation and Haemodialysis, CHU Bordeaux, 33000, Bordeaux, France
| | - Alexandre Ouattara
- Department of Anaesthesia and Critical Care II, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France.,INSERM U1034, Biology of Cardiovascular Diseases, Univ. Bordeaux, 33600, Pessac, France
| | - Jean Ripoche
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
403
|
Tomescu DR. Let's Talk about Sepsis. ACTA ACUST UNITED AC 2017; 3:139-140. [PMID: 29967886 PMCID: PMC5769910 DOI: 10.1515/jccm-2017-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dana R Tomescu
- Department of Anaesthesiology and Critical Care III, Fundeni Clinical Institute, Bucharest, Romania.,University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| |
Collapse
|
404
|
Kasuda S, Kudo R, Yuui K, Sakurai Y, Hatake K. Acute ethanol intoxication suppresses pentraxin 3 expression in a mouse sepsis model involving cecal ligation and puncture. Alcohol 2017; 64:1-9. [PMID: 28965650 DOI: 10.1016/j.alcohol.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/24/2017] [Accepted: 04/30/2017] [Indexed: 12/26/2022]
Abstract
Acute ethanol intoxication impairs immunological reactions and increases the risk of sepsis; however, the underlying mechanism remains unclear. Pentraxin (PTX) 3 is a humoral pattern recognition receptor whose levels rapidly increase in response to inflammation. PTX3 production is triggered by tumor necrosis factor (TNF)-α and is mediated by c-Jun N-terminal kinase (JNK). As PTX3 exerts protective effects against sepsis as well as acute lung injury, we investigated whether acute ethanol exposure exacerbates sepsis by altering PTX3 expression. Sepsis was induced in C57/BL6 mice by cecal ligation and puncture (CLP) after ethanol/saline administration. Survival rates were significantly lower in ethanol-treated than in saline-treated mice. Increased vascular permeability and attenuation of PTX3 expression were observed in the lungs of ethanol-treated mice 4 h after CLP. Concomitant with a delayed increase of plasma TNF-α in ethanol-treated mice, plasma PTX3 was also suppressed in the early phase of sepsis. Although TNF-α level in ethanol-treated mice exceeded that in saline-treated mice 16 h after CLP, PTX3 levels were still suppressed in the former group. JNK phosphorylation in lung tissue was suppressed in both groups 4 and 16 h after CLP. Furthermore, JNK phosphorylation in ethanol-treated human umbilical vein endothelial cells was suppressed even in the presence of exogenous TNF-α, resulting in inhibition of PTX3 mRNA and protein expression. Our results suggest that ethanol suppresses de novo PTX3 synthesis via two mechanisms - i.e., suppression of TNF-α production and inhibition of JNK phosphorylation. PTX3 suppression may therefore contribute to exacerbation of sepsis in acute ethanol intoxication.
Collapse
Affiliation(s)
- Shogo Kasuda
- Department of Legal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Risa Kudo
- Department of Legal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Katsuya Yuui
- Department of Legal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Yoshihiko Sakurai
- Department of Pediatrics, Matsubara Tokushukai Hospital, 7-13-26 Amamihigashi, Matsubara, Osaka 580-0032, Japan.
| | - Katsuhiko Hatake
- Department of Legal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
405
|
Perezpeña-Diazconti M, Moreno Espinosa S, Romero Baizabal BL, Guerrero Reséndiz DA. [Community-acquired pneumonia with infrequent presentation]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2017; 74:434-441. [PMID: 29382528 DOI: 10.1016/j.bmhimx.2017.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023] Open
Affiliation(s)
- Mario Perezpeña-Diazconti
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, México.
| | - Sarbelio Moreno Espinosa
- Departamento de Infectología, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | | | | |
Collapse
|
406
|
Frydrych LM, Fattahi F, He K, Ward PA, Delano MJ. Diabetes and Sepsis: Risk, Recurrence, and Ruination. Front Endocrinol (Lausanne) 2017; 8:271. [PMID: 29163354 PMCID: PMC5670360 DOI: 10.3389/fendo.2017.00271] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022] Open
Abstract
Sepsis develops when an infection surpasses local tissue containment. A series of dysregulated physiological responses are generated, leading to organ dysfunction and a 10% mortality risk. When patients with sepsis demonstrate elevated serum lactates and require vasopressor therapy to maintain adequate blood pressure in the absence of hypovolemia, they are in septic shock with an in-hospital mortality rate >40%. With improvements in intensive care treatment strategies, overall sepsis mortality has diminished to ~20% at 30 days; however, mortality continues to steadily climb after recovery from the acute event. Traditionally, it was thought that the complex interplay between inflammatory and anti-inflammatory responses led to sepsis-induced organ dysfunction and mortality. However, a closer examination of those who die long after sepsis subsides reveals that many initial survivors succumb to recurrent, nosocomial, and secondary infections. The comorbidly challenged, physiologically frail diabetic individuals suffer the highest infection rates. Recent reports suggest that even after clinical "recovery" from sepsis, persistent alterations in innate and adaptive immune responses exists resulting in chronic inflammation, immune suppression, and bacterial persistence. As sepsis-associated immune defects are associated with increased mortality long-term, a potential exists for immune modulatory therapy to improve patient outcomes. We propose that diabetes causes a functional immune deficiency that directly reduces immune cell function. As a result, patients display diminished bactericidal clearance, increased infectious complications, and protracted sepsis mortality. Considering the substantial expansion of the elderly and obese population, global adoption of a Western diet and lifestyle, and multidrug resistant bacterial emergence and persistence, diabetic mortality from sepsis is predicted to rise dramatically over the next two decades. A better understanding of the underlying diabetic-induced immune cell defects that persist following sepsis are crucial to identify potential therapeutic targets to bolster innate and adaptive immune function, prevent infectious complications, and provide more durable diabetic survival.
Collapse
Affiliation(s)
- Lynn M. Frydrych
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Fatemeh Fattahi
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Katherine He
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Peter A. Ward
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Matthew J. Delano
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
407
|
Greco E, Lupia E, Bosco O, Vizio B, Montrucchio G. Platelets and Multi-Organ Failure in Sepsis. Int J Mol Sci 2017; 18:ijms18102200. [PMID: 29053592 PMCID: PMC5666881 DOI: 10.3390/ijms18102200] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022] Open
Abstract
Platelets have received increasing attention for their role in the pathophysiology of infectious disease, inflammation, and immunity. In sepsis, a low platelet count is a well-known biomarker for disease severity and more recently authors have focused their attention on the active role of platelets in the pathogenesis of multi-organ failure. Septic shock is characterised by a dysregulated inflammatory response, which can impair the microcirculation and lead to organ injury. Being at the crossroads between the immune system, clotting cascade, and endothelial cells, platelets seem to be an appealing central mediator and possible therapeutic target in sepsis. This review focuses on the pathogenic role of platelets in septic organ dysfunction in humans and animal models.
Collapse
Affiliation(s)
- Elisabetta Greco
- Department of Medical Science, University of Turin, 10126 Turin, Italy.
| | - Enrico Lupia
- Department of Medical Science, University of Turin, 10126 Turin, Italy.
| | - Ornella Bosco
- Department of Medical Science, University of Turin, 10126 Turin, Italy.
| | - Barbara Vizio
- Department of Medical Science, University of Turin, 10126 Turin, Italy.
| | | |
Collapse
|
408
|
Abstract
Sepsis-associated organ dysfunction involves multiple responses to inflammation, including endothelial and microvascular dysfunction, immune and autonomic dysregulation, and cellular metabolic reprogramming. The effect of targeting these mechanistic pathways on short- and long-term outcomes depends highly on the timing of therapeutic intervention. Furthermore, there is a need to understand the adaptive or maladaptive character of these mechanisms, to discover phase-specific biomarkers to guide therapy, and to conceptualize these mechanisms in terms of resistance and tolerance.
Collapse
Affiliation(s)
- Rachel Pool
- Department of Anesthesiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Hernando Gomez
- Center for Critical Care Nephrology, The CRISMA (Clinical Research, Investigation, and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh, 3347 Forbes Avenue, Suite 220, Pittsburgh, PA 15213, USA.
| | - John A Kellum
- Center for Critical Care Nephrology, The CRISMA (Clinical Research, Investigation, and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh, 3347 Forbes Avenue, Suite 220, Pittsburgh, PA 15213, USA
| |
Collapse
|
409
|
Lautenschläger I, Wong YL, Sarau J, Goldmann T, Zitta K, Albrecht M, Frerichs I, Weiler N, Uhlig S. Signalling mechanisms in PAF-induced intestinal failure. Sci Rep 2017; 7:13382. [PMID: 29042668 PMCID: PMC5645457 DOI: 10.1038/s41598-017-13850-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Capillary leakage syndrome, vasomotor disturbances and gut atony are common clinical problems in intensive care medicine. Various inflammatory mediators and signalling pathways are involved in these pathophysiological alterations among them platelet-activating factor (PAF). The related signalling mechanisms of the PAF-induced dysfunctions are only poorly understood. Here we used the model of the isolated perfused rat small intestine to analyse the role of calcium (using calcium deprivation, IP-receptor blockade (2-APB)), cAMP (PDE-inhibition plus AC activator), myosin light chain kinase (inhibitor ML-7) and Rho-kinase (inhibitor Y27632) in the following PAF-induced malfunctions: vasoconstriction, capillary and mucosal leakage, oedema formation, malabsorption and atony. Among these, the PAF-induced vasoconstriction and hyperpermeability appear to be governed by similar mechanisms that involve IP3 receptors, extracellular calcium and the Rho-kinase. Our findings further suggest that cAMP-elevating treatments - while effective against hypertension and oedema - bear the risk of dysmotility and reduced nutrient uptake. Agents such as 2-APB or Y27632, on the other hand, showed no negative side effects and improved most of the PAF-induced malfunctions suggesting that their therapeutic usefulness should be explored.
Collapse
Affiliation(s)
- Ingmar Lautenschläger
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Yuk Lung Wong
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jürgen Sarau
- Division of Mucosal Immunology and Diagnostic, Research Centre Borstel, Leibniz-Centre for Medicine and Biosciences, Borstel, Germany
| | - Torsten Goldmann
- Division of Clinical and Experimental Pathology, Research Centre Borstel, Leibniz-Centre for Medicine and Biosciences, Borstel, Germany
| | - Karina Zitta
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inéz Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
410
|
Boerma E, Singer M. Beta-blockers in sepsis: time to reconsider current constraints? Br J Anaesth 2017; 119:560-561. [DOI: 10.1093/bja/aex266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
411
|
Sergi C, Shen F, Lim DW, Liu W, Zhang M, Chiu B, Anand V, Sun Z. Cardiovascular dysfunction in sepsis at the dawn of emerging mediators. Biomed Pharmacother 2017; 95:153-160. [PMID: 28841455 DOI: 10.1016/j.biopha.2017.08.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/03/2017] [Accepted: 08/13/2017] [Indexed: 12/14/2022] Open
Abstract
Subcellular dysfunction and impaired metabolism derived from the complex interaction of cytokines and mediators with cellular involvement are on the basis of the cardiovascular response to sepsis. The lethal consequences of an infection are intimately related to its ability to spread to other organ sites and the immune system of the host. About one century ago, William Osler (1849-1919), a Canadian physician, remarkably defined the sequelae of the host response in sepsis: "except on few occasions, the patient appears to die from the body's response to infection rather than from it." Cardiac dysfunction has received considerable attention to explain the heart failure in patients progressing from infection to sepsis, but our understanding of the processes remains limited. In fact, most concepts are linked to a mechanical concept of the sarcomeric structure, and physiological data seems to be often disconnected. Cytokines, prostanoids, and nitric oxide release are high direct impact factors, but coronary circulation and cardiomyocyte physiology also play a prominent role in modulating the effects of monocyte adhesion and infiltration. Damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) are involved in the host response. The identification of microRNAs, as well as the cyclic activation of the inflammatory cascade, has further added complexity to the scene. In this review, we delineate the current concepts of cellular dysfunction of the cardiomyocyte in the setting of sepsis and consider potential therapeutic strategies.
Collapse
Affiliation(s)
- Consolato Sergi
- Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, PR China; Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, PR China; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Stollery Children's Hospital, University Alberta Hospital, Edmonton, AB, Canada.
| | - Fan Shen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - David W Lim
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Weiyong Liu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mingyong Zhang
- Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, PR China
| | - Brian Chiu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Vijay Anand
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
412
|
Delano MJ, Ward PA. The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol Rev 2017; 274:330-353. [PMID: 27782333 DOI: 10.1111/imr.12499] [Citation(s) in RCA: 515] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis occurs when an infection exceeds local tissue containment and induces a series of dysregulated physiologic responses that result in organ dysfunction. A subset of patients with sepsis progress to septic shock, defined by profound circulatory, cellular, and metabolic abnormalities, and associated with a greater mortality. Historically, sepsis-induced organ dysfunction and lethality were attributed to the complex interplay between the initial inflammatory and later anti-inflammatory responses. With advances in intensive care medicine and goal-directed interventions, early 30-day sepsis mortality has diminished, only to steadily escalate long after "recovery" from acute events. As so many sepsis survivors succumb later to persistent, recurrent, nosocomial, and secondary infections, many investigators have turned their attention to the long-term sepsis-induced alterations in cellular immune function. Sepsis clearly alters the innate and adaptive immune responses for sustained periods of time after clinical recovery, with immune suppression, chronic inflammation, and persistence of bacterial representing such alterations. Understanding that sepsis-associated immune cell defects correlate with long-term mortality, more investigations have centered on the potential for immune modulatory therapy to improve long-term patient outcomes. These efforts are focused on more clearly defining and effectively reversing the persistent immune cell dysfunction associated with long-term sepsis mortality.
Collapse
Affiliation(s)
- Matthew J Delano
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
413
|
Barcelos A, Lamas C, Tibiriça E. Evaluation of microvascular endothelial function in patients with infective endocarditis using laser speckle contrast imaging and skin video-capillaroscopy: research proposal of a case control prospective study. BMC Res Notes 2017; 10:342. [PMID: 28754178 PMCID: PMC5534027 DOI: 10.1186/s13104-017-2660-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Infective endocarditis is a severe condition with high in-hospital and 5-year mortality. There is increasing incidence of infective endocarditis, which may be related to healthcare and changes in prophylaxis recommendations regarding oral procedures. Few studies have evaluated the microcirculation in patients with infective endocarditis, and so far, none have utilized laser-based technology or evaluated functional capillary density. The aim of the study is to evaluate the changes in the systemic microvascular bed of patients with both acute and subacute endocarditis. This is a cohort study that will include adult patients with confirmed active infective endocarditis according to the modified Duke criteria who were admitted to our center for treatment. A control group of sex- and age-matched healthy volunteers will be included. Functional capillary density, which is defined as the number of spontaneously perfused capillaries per square millimeter of skin, will be assessed by video-microscopy with an epi-illuminated fiber optic microscope. Capillary recruitment will be evaluated using post-occlusive reactive hyperemia. Microvascular flow will be evaluated in the forearm using a laser speckle contrast imaging system for the noninvasive and continuous measurement of cutaneous microvascular perfusion changes. Laser speckle contrast imaging will be used in combination with skin iontophoresis of acetylcholine, an endothelium-dependent vasodilator, or sodium nitroprusside (endothelium independent) to test microvascular reactivity. RESULTS The present study will contribute to the investigation of microcirculatory changes in infective endocarditis and possibly lead to an earlier diagnosis of the condition and/or determination of its severity and complications. Trial registration ClinicalTrials.gov ID: NCT02940340.
Collapse
Affiliation(s)
- Amanda Barcelos
- National Institute of Cardiology, Ministry of Health, Rio de Janeiro, Brazil
| | - Cristiane Lamas
- National Institute of Cardiology, Ministry of Health, Rio de Janeiro, Brazil.,National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Institute, Rio de Janeiro, Brazil.,Unigranrio University, Rio de Janeiro, Brazil
| | - Eduardo Tibiriça
- National Institute of Cardiology, Ministry of Health, Rio de Janeiro, Brazil. .,Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Av. Brasil 4365, Rio de Janeiro, 21045-900, Brazil.
| |
Collapse
|
414
|
Pierce RW, Giuliano JS, Pober JS. Endothelial Cell Function and Dysfunction in Critically Ill Children. Pediatrics 2017; 140:peds.2017-0355. [PMID: 28759412 PMCID: PMC9923607 DOI: 10.1542/peds.2017-0355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 11/24/2022] Open
Abstract
Endothelial cells (ECs) line the lumen of the entire vascular system and actively regulate blood flow; maintain blood fluidity; control water, solute, and macromolecular transfer between blood and tissue; and modulate circulating immune cell recruitment and activation. These vital functions, combined with the broad anatomic distribution of ECs, implicate them in all forms of critical illness. The present article discusses how ECs adapt and break down during the course of critical illness. We first review the biology of ECs, highlighting the vascular segmental differences and their specific roles in the maintenance of homeostasis. We then discuss how ECs acquire new functions to restore local and systemic homeostasis (activation) as well as how breakdowns in EC functions (dysfunction) contribute to local and systemic pathologic responses, with clinical correlations. Lastly, how these processes have been studied in critically ill children is discussed.
Collapse
Affiliation(s)
- Richard W. Pierce
- Departments of Pediatrics and,Address correspondence to Richard W. Pierce, MD, MS, Department of Pediatrics, Section of Critical Care Medicine, Yale University, 333 Cedar St, PO Box 208064, New Haven, CT 06520. E-mail:
| | | | | |
Collapse
|
415
|
Role of Vascular Endothelial Cells in Disseminated Intravascular Coagulation Induced by Seawater Immersion in a Rat Trauma Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5147532. [PMID: 28744465 PMCID: PMC5506481 DOI: 10.1155/2017/5147532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/27/2022]
Abstract
Trauma complicated by seawater immersion is a complex pathophysiological process with higher mortality than trauma occurring on land. This study investigated the role of vascular endothelial cells (VECs) in trauma development in a seawater environment. An open abdominal injury rat model was used. The rat core temperatures in the seawater (SW, 22°C) group and normal sodium (NS, 22°C) group declined equivalently. No rats died within 12 hours in the control and NS groups. However, the median lethal time of the rats in the SW group was only 260 minutes. Among the 84 genes involved in rat VEC biology, the genes exhibiting the high expression changes (84.62%, 11/13) on a qPCR array were associated with thrombin activity. The plasma activated partial thromboplastin time and fibrinogen and vWF levels decreased, whereas the prothrombin time and TFPI levels increased, indicating intrinsic and extrinsic coagulation pathway activation and inhibition, respectively. The plasma plasminogen, FDP, and D-dimer levels were elevated after 2 hours, and those of uPA, tPA, and PAI-1 exhibited marked changes, indicating disseminated intravascular coagulation (DIC). Additionally, multiorgan haemorrhagia was observed. It indicated that seawater immersion during trauma may increase DIC, elevating mortality. VECs injury might play an essential role in this process.
Collapse
|
416
|
Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 2017; 39:517-528. [PMID: 28555385 DOI: 10.1007/s00281-017-0639-8] [Citation(s) in RCA: 831] [Impact Index Per Article: 103.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
Infectious diseases are a leading cause of death worldwide. Sepsis is a severe clinical syndrome related to the host response to infection. The severity of infections is due to an activation cascade that will lead to an autoamplifying cytokine production: the cytokine storm. Cytokines are a broad category of relatively small proteins (<40 kDa) that are produced and released with the aim of cell signaling. Our understanding of the processes that trigger this tremendous amount of cytokine production has made dramatic progress over the last decades, but unfortunately, these findings could not translate yet into effective treatments; so far, all clinical trials targeting cytokine production or effects failed. This review aims to summarize the pathophysiology of the cytokine storm; to describe the type, effects, and kinetics of cytokine production; and to discuss the therapeutic challenges of targeting cytokines. New promising therapeutic strategies focusing on the endothelium, as a source and a target of cytokines, are described.
Collapse
Affiliation(s)
- Benjamin G Chousterman
- Département d'Anesthésie-Réanimation, Hôpitaux Universitaires Lariboisière-Saint-Louis, AP-HP, Paris, France. .,Inserm U1160, Hôpital Saint-Louis, Paris, France.
| | - Filip K Swirski
- Center for Systems Biology, Department of Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Georg F Weber
- Department of Surgery, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
417
|
Schmoch T, Uhle F, Siegler BH, Fleming T, Morgenstern J, Nawroth PP, Weigand MA, Brenner T. The Glyoxalase System and Methylglyoxal-Derived Carbonyl Stress in Sepsis: Glycotoxic Aspects of Sepsis Pathophysiology. Int J Mol Sci 2017; 18:E657. [PMID: 28304355 PMCID: PMC5372669 DOI: 10.3390/ijms18030657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 01/08/2023] Open
Abstract
Sepsis remains one of the leading causes of death in intensive care units. Although sepsis is caused by a viral, fungal or bacterial infection, it is the dysregulated generalized host response that ultimately leads to severe dysfunction of multiple organs and death. The concomitant profound metabolic changes are characterized by hyperglycemia, insulin resistance, and profound transformations of the intracellular energy supply in both peripheral and immune cells. A further hallmark of the early phases of sepsis is a massive formation of reactive oxygen (ROS; e.g., superoxide) as well as nitrogen (RNS; e.g., nitric oxide) species. Reactive carbonyl species (RCS) form a third crucial group of highly reactive metabolites, which until today have been not the focus of interest in sepsis. However, we previously showed in a prospective observational clinical trial that patients suffering from septic shock are characterized by significant methylglyoxal (MG)-derived carbonyl stress, with the glyoxalase system being downregulated in peripheral blood mononuclear cells. In this review, we give a detailed insight into the current state of research regarding the metabolic changes that entail an increased MG-production in septicemia. Thus, we point out the special role of the glyoxalase system in the context of sepsis.
Collapse
Affiliation(s)
- Thomas Schmoch
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| | - Benedikt H Siegler
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| | - Jakob Morgenstern
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| | - Thorsten Brenner
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
418
|
Mechanisms of endothelial activation in sepsis and cell culture models to study the heterogeneous host response. Int J Artif Organs 2017; 40:9-14. [PMID: 28218355 DOI: 10.5301/ijao.5000560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2017] [Indexed: 01/26/2023]
Abstract
Sepsis is currently viewed as a fundamental disintegration of control functions from intracellular signalling to immunoregulatory and neuroendocrine mechanisms. The immediate threat in sepsis is invasive infection, and the need to activate immune defense mechanisms to clear the pathogen before irreparable damage occurs. In the process of pathogen elimination, however, the systemic host response to infection may cause collateral damage to the endothelium and may lead to the destruction of host tissues.A number of experimental models have been developed to monitor endothelial activation and to study endothelial dysfunction under septic conditions. Here, we review the application of these models to assess the highly variable host response in sepsis and to investigate the efficacy of adsorbent-based extracorporeal therapies. We also highlight the need for efficient diagnostic tools, which are indispensable to select patients who are likely to benefit from distinct adjunctive therapies.
Collapse
|
419
|
Khan MM, Yang WL, Brenner M, Bolognese AC, Wang P. Cold-inducible RNA-binding protein (CIRP) causes sepsis-associated acute lung injury via induction of endoplasmic reticulum stress. Sci Rep 2017; 7:41363. [PMID: 28128330 PMCID: PMC5269663 DOI: 10.1038/srep41363] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP), released into the circulation during sepsis, causes lung injury via an as yet unknown mechanism. Since endoplasmic reticulum (ER) stress is associated with acute lung injury (ALI), we hypothesized that CIRP causes ALI via induction of ER stress. To test this hypothesis, we studied the lungs of wild-type (WT) and CIRP knockout (KO) mice at 20 h after induction of sepsis by cecal ligation and puncture (CLP). WT mice had significantly more severe ALI than CIRP KO mice. Lung ER stress markers (BiP, pIRE1α, sXBP1, CHOP, cleaved caspase-12) were increased in septic WT mice, but not in septic CIRP KO mice. Effector pathways downstream from ER stress – apoptosis, NF-κB (p65), proinflammatory cytokines (IL-6, IL-1β), neutrophil chemoattractants (MIP-2, KC), neutrophil infiltration (MPO activity), lipid peroxidation (4-HNE), and nitric oxide (iNOS) – were significantly increased in WT mice, but only mildly elevated in CIRP KO mice. ER stress markers were increased in the lungs of healthy WT mice treated with recombinant murine CIRP, but not in the lungs of TLR4 KO mice. This suggests CIRP directly induces ER stress via TLR4 activation. In summary, CIRP induces lung ER stress and downstream responses to cause sepsis-associated ALI.
Collapse
Affiliation(s)
- Mohammad Moshahid Khan
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Weng-Lang Yang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.,Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Alexandra Cerutti Bolognese
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.,Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| |
Collapse
|
420
|
Wojtala M, Pirola L, Balcerczyk A. Modulation of the vascular endothelium functioning by dietary components, the role of epigenetics. Biofactors 2017; 43:5-16. [PMID: 27355807 DOI: 10.1002/biof.1306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
Abstract
Rather than being a passive barrier between circulating blood and smooth muscle cells and the underlying tissues, the endothelium is a fundamental functional component of the vasculature, and could be viewed as the largest human endocrine gland/organ, secreting multiple pro-/antiangiogenic factors, cytokines and low-molecular-weight mediators controlling the vascular tone. The location of endothelium, at the interface between the circulation and the tissues, makes this epithelial layer particularly exposed to physical and chemical cues coming from the bloodstream. In response to such stimuli, the endothelium modulates its morphology and functions to maintain vascular homeostasis. Dietary components significantly affect the proper functioning of the endothelium. High-calories and high-fat western diets, in the long term, cause endothelial dysfunction, which is a major contributor to the development of the metabolic syndrome and its pathological consequences, including atherosclerosis, diabetes, and hypertension. On the contrary, plant-derived antioxidant molecules and polyphenols have been shown to exert beneficial effects on endothelial function. Extensive research in the last decade has clearly shown the close relationship between food intake, dietary habits, and gene expression, which is driven by the action of macro- and micronutrients on chromatin regulation. Nutrient-induced chromatin epigenetic modifications via DNA methylation and histone post-translational modifications, especially in the context of the western diet, significantly contribute to the dysregulation of endothelial functioning. Here, we review the current understanding on how dietary components (macronutrients, antioxidants), acting on epigenetic mechanisms, regulate endothelial physiology, and physiopathology. © 2016 BioFactors, 43(1):5-16, 2017.
Collapse
Affiliation(s)
- Martyna Wojtala
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| | - Luciano Pirola
- Faculty of Medicine Lyon SUD, Carmen Institute, INSERM U1060, Oullins, Cedex, France
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| |
Collapse
|
421
|
Kuiper JW, Tibboel D, Ince C. The vulnerable microcirculation in the critically ill pediatric patient. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:352. [PMID: 27794361 PMCID: PMC5086412 DOI: 10.1186/s13054-016-1496-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In neonates, cardiovascular system development does not stop after the transition from intra-uterine to extra-uterine life and is not limited to the macrocirculation. The microcirculation (MC), which is essential for oxygen, nutrient, and drug delivery to tissues and cells, also develops. Developmental changes in the microcirculatory structure continue to occur during the initial weeks of life in healthy neonates. The physiologic hallmarks of neonates and developing children make them particularly vulnerable during critical illness; however, the cardiovascular monitoring possibilities are limited compared with critically ill adult patients. Therefore, the development of non-invasive methods for monitoring the MC is necessary in pediatric critical care for early identification of impending deterioration and to enable the initiation and titration of therapy to ensure cell survival. To date, the MC may be non-invasively monitored at the bedside using hand-held videomicroscopy, which provides useful information regarding the microcirculation. There is an increasing number of studies on the MC in neonates and pediatric patients; however, additional steps are necessary to transition MC monitoring from bench to bedside. The recently introduced concept of hemodynamic coherence describes the relationship between changes in the MC and macrocirculation. The loss of hemodynamic coherence may result in a depressed MC despite an improvement in the macrocirculation, which represents a condition associated with adverse outcomes. In the pediatric intensive care unit, the concept of hemodynamic coherence may function as a framework to develop microcirculatory measurements towards implementation in daily clinical practice.
Collapse
Affiliation(s)
- J W Kuiper
- Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Postbox 2040, 3000 CA, Rotterdam, The Netherlands.
| | - D Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Postbox 2040, 3000 CA, Rotterdam, The Netherlands
| | - C Ince
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
422
|
Effects of N-acetylcysteine (NAC) supplementation in resuscitation fluids on renal microcirculatory oxygenation, inflammation, and function in a rat model of endotoxemia. Intensive Care Med Exp 2016; 4:29. [PMID: 27671340 PMCID: PMC5037099 DOI: 10.1186/s40635-016-0106-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
Background Modulation of inflammation and oxidative stress appears to limit sepsis-induced damage in experimental models. The kidney is one of the most sensitive organs to injury during septic shock. In this study, we evaluated the effect of N-acetylcysteine (NAC) administration in conjunction with fluid resuscitation on renal oxygenation and function. We hypothesized that reducing inflammation would improve the microcirculatory oxygenation in the kidney and limit the onset of acute kidney injury (AKI). Methods Rats were randomized into five groups (n = 8 per group): (1) control group, (2) control + NAC, (3) endotoxemic shock with lipopolysaccharide (LPS) without fluids, (4) LPS + fluid resuscitation, and (5) LPS + fluid resuscitation + NAC (150 mg/kg/h). Fluid resuscitation was initiated at 120 min and maintained at fixed volume for 2 h with hydroxyethyl starch (HES 130/0.4) dissolved in acetate-balanced Ringer’s solution (Volulyte) with or without supplementation with NAC (150 mg/kg/h). Oxygen tension in the renal cortex (CμPO2), outer medulla (MμPO2), and renal vein was measured using phosphorimetry. Biomarkers of renal injury, inflammation, and oxidative stress were assessed in kidney tissues. Results Fluid resuscitation significantly improved the systemic and renal macrohemodynamic parameters after LPS. However, the addition of NAC further improved cortical renal oxygenation, oxygen delivery, and oxygen consumption (p < 0.05). NAC supplementation dampened the accumulation of NGAL or L-FABP, hyaluronic acid, and nitric oxide in kidney tissue (p < 0.01). Conclusion The addition of NAC to fluid resuscitation may improve renal oxygenation and attenuate microvascular dysfunction and AKI. Decreases in renal NO and hyaluronic acid levels may be involved in this beneficial effect. A therapeutic strategy combining initial fluid resuscitation with antioxidant therapies may prevent sepsis-induced AKI.
Collapse
|
423
|
Alvarez S, Vico T, Vanasco V. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: Interrelated aspects in endotoxemia and sepsis. Int J Biochem Cell Biol 2016; 81:307-314. [PMID: 27477311 DOI: 10.1016/j.biocel.2016.07.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Septic patients with myocardial dysfunction have a 3-fold increase in mortality compared with patients without cardiovascular impairment, and usually show myocarditis, disruption of the contractile apparatus, increased amounts of interstitial collagen, and damaged mitochondria. The presence of nitric oxide and cytokines in cardiac tissue constitute the molecular markers and the intracellular messengers of inflammatory conditions in the heart due to the onset of sepsis and endotoxemia, derived from the nuclear factor-κB pathway activation and proinflammatory gene transcription. Sepsis occurs with an exacerbated inflammatory response that damages tissue mitochondria and impaired bioenergetic processes. The heart consumes 20-30 times its own weight in adenosine triphosphate every day, and 90% of this molecule is derived from mitochondrial oxidative phosphorylation. Cardiac energy management is comprised in sepsis and endotoxemia; both a deficit in energy production and alterations in the source of energy substrates are believed to be involved in impaired cardiac function. Although several hypotheses try to explain the molecular mechanisms underlying the complex condition of sepsis and endotoxemia, the current view is that these syndromes are the result of an intricate balance between prevailing levels of mitochondrial stress, biogenesis/autophagy signaling and mitochondria quality control processes, rather on a single factor. The aim of this review is to discuss current hypothesis of cardiac dysfunction related to energy metabolism and mitochondrial function in experimental models of sepsis and endotoxemia, and to introduce the importance of lipids (mainly cardiolipin) in the mechanism of cardiac energy mismanagement in these inflammatory conditions.
Collapse
Affiliation(s)
- Silvia Alvarez
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| | - Tamara Vico
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Virginia Vanasco
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| |
Collapse
|
424
|
Fully Balanced Fluids do not Improve Microvascular Oxygenation, Acidosis and Renal Function in a Rat Model of Endotoxemia. Shock 2016; 46:83-91. [DOI: 10.1097/shk.0000000000000573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
425
|
WHAT'S NEW IN SHOCK? MARCH 2016. Shock 2016; 45:239-40. [PMID: 26871661 DOI: 10.1097/shk.0000000000000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|