401
|
Almo SC, Love JD. Better and faster: improvements and optimization for mammalian recombinant protein production. Curr Opin Struct Biol 2014; 26:39-43. [PMID: 24721463 DOI: 10.1016/j.sbi.2014.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 11/18/2022]
Abstract
Thanks to numerous technological advances, the production of recombinant proteins in mammalian cell lines has become an increasingly routine task that is no longer viewed as a heroic enterprise. While production in prokaryotic or lower eukaryotic systems may be more rapid and economical, the advantages of producing large amounts of protein that closely resembles the native form is often advantageous and may be essential for the realization of functionally active material for biological studies or biopharmaceuticals. The correct folding, processing and post-translational modifications conferred by expression in a mammalian cell is relevant to all classes of proteins, including cytoplasmic, secreted or integral membrane proteins. Therefore considerable efforts have focused on the development of growth media, cell lines, transformation methods and selection techniques that enable the production of grams of functional protein in weeks, rather than months. This review will focus on a plethora of methods that are broadly applicable to the high yield production of any class of protein (cytoplasmic, secreted or integral membrane) from mammalian cells.
Collapse
Affiliation(s)
- Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - James D Love
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| |
Collapse
|
402
|
Abstract
Although the mapping of codon to amino acid is conserved across nearly all species, the frequency at which synonymous codons are used varies both between organisms and between genes from the same organism. This variation affects diverse cellular processes including protein expression, regulation, and folding. Here, we mathematically model an additional layer of complexity and show that individual codon usage biases follow a position-dependent exponential decay model with unique parameter fits for each codon. We use this methodology to perform an in-depth analysis on codon usage bias in the model organism Escherichia coli. Our methodology shows that lowly and highly expressed genes are more similar in their codon usage patterns in the 5′-gene regions, but that these preferences diverge at distal sites resulting in greater positional dependency (pD, which we mathematically define later) for highly expressed genes. We show that position-dependent codon usage bias is partially explained by the structural requirements of mRNAs that results in increased usage of A/T rich codons shortly after the gene start. However, we also show that the pD of 4- and 6-fold degenerate codons is partially related to the gene copy number of cognate-tRNAs supporting existing hypotheses that posit benefits to a region of slow translation in the beginning of coding sequences. Lastly, we demonstrate that viewing codon usage bias through a position-dependent framework has practical utility by improving accuracy of gene expression prediction when incorporating positional dependencies into the Codon Adaptation Index model.
Collapse
Affiliation(s)
- Adam J Hockenberry
- Department of Chemical and Biological Engineering, Northwestern UniversityInterdepartmental Program in Biological Sciences, Northwestern University
| | - M Irmak Sirer
- Department of Chemical and Biological Engineering, Northwestern University
| | - Luís A Nunes Amaral
- Department of Chemical and Biological Engineering, Northwestern UniversityNorthwestern Institute on Complex Systems, Northwestern UniversityHoward Hughes Medical Institute, Northwestern University
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern UniversityInterdepartmental Program in Biological Sciences, Northwestern UniversityNorthwestern Institute on Complex Systems, Northwestern UniversityChemistry of Life Processes Institute, Northwestern UniversityInstitute for BioNanotechnology and Medicine, Northwestern University
| |
Collapse
|
403
|
Rima BK, Gatherer D, Young DF, Norsted H, Randall RE, Davison AJ. Stability of the parainfluenza virus 5 genome revealed by deep sequencing of strains isolated from different hosts and following passage in cell culture. J Virol 2014; 88:3826-36. [PMID: 24453358 PMCID: PMC3993540 DOI: 10.1128/jvi.03351-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/11/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The strain diversity of a rubulavirus, parainfluenza virus 5 (PIV5), was investigated by comparing 11 newly determined and 6 previously published genome sequences. These sequences represent 15 PIV5 strains, of which 6 were isolated from humans, 1 was from monkeys, 2 were from pigs, and 6 were from dogs. Strain diversity is remarkably low, regardless of host, year of isolation, or geographical origin; a total of 7.8% of nucleotides are variable, and the average pairwise difference between strains is 2.1%. Variation is distributed unevenly across the PIV5 genome, but no convincing evidence of selection for antibody-mediated evasion in hemagglutinin-neuraminidase was found. The finding that some canine and porcine, but not primate, strains are mutated in the SH gene, and do not produce SH, raised the possibility that dogs (or pigs) may not be the natural host of PIV5. The genetic stability of PIV5 was also demonstrated during serial passage of one strain (W3) in Vero cells at a high multiplicity of infection, under conditions of competition with large proportions of defective interfering genomes. A similar observation was made for a strain W3 mutant (PIV5VΔC) lacking V gene function, in which the dominant changes were related to pseudoreversion in this gene. The mutations detected in PIV5VΔC during pseudoreversion, and also those characterizing the SH gene in canine and porcine strains, predominantly involved U-to-C transitions. This suggests an important role for biased hypermutation via an adenosine deaminase, RNA-specific (ADAR)-like activity. IMPORTANCE Here we report the sequence variation of 16 different isolates of parainfluenza virus 5 (PIV5) that were isolated from a number of species, including humans, monkeys, dogs, and pigs, over 4 decades. Surprisingly, strain diversity was remarkably low, regardless of host, year of isolation, or geographical origin. Variation was distributed unevenly across the PIV5 genome, but no convincing evidence of immune or host selection was found. This overall genome stability of PIV5 was also observed when the virus was grown in the laboratory, and the genome stayed remarkably constant even during the selection of virus mutants. Some of the canine isolates had lost their ability to encode one of the viral proteins, termed SH, suggesting that although PIV5 commonly infects dogs, dogs may not be the natural host for PIV5.
Collapse
Affiliation(s)
- Bert K. Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, United Kingdom
| | - Derek Gatherer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Daniel F. Young
- Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Hanna Norsted
- Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Richard E. Randall
- Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
404
|
Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B. Synonymous Mutations Frequently Act as Driver Mutations in Human Cancers. Cell 2014; 156:1324-1335. [DOI: 10.1016/j.cell.2014.01.051] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 11/20/2013] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
|
405
|
Firnberg E, Labonte JW, Gray JJ, Ostermeier M. A comprehensive, high-resolution map of a gene's fitness landscape. Mol Biol Evol 2014; 31:1581-92. [PMID: 24567513 PMCID: PMC4032126 DOI: 10.1093/molbev/msu081] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mutations are central to evolution, providing the genetic variation upon which selection acts. A mutation’s effect on the suitability of a gene to perform a particular function (gene fitness) can be positive, negative, or neutral. Knowledge of the distribution of fitness effects (DFE) of mutations is fundamental for understanding evolutionary dynamics, molecular-level genetic variation, complex genetic disease, the accumulation of deleterious mutations, and the molecular clock. We present comprehensive DFEs for point and codon mutants of the Escherichia coli TEM-1 β-lactamase gene and missense mutations in the TEM-1 protein. These DFEs provide insight into the inherent benefits of the genetic code’s architecture, support for the hypothesis that mRNA stability dictates codon usage at the beginning of genes, an extensive framework for understanding protein mutational tolerance, and evidence that mutational effects on protein thermodynamic stability shape the DFE. Contrary to prevailing expectations, we find that deleterious effects of mutation primarily arise from a decrease in specific protein activity and not cellular protein levels.
Collapse
Affiliation(s)
- Elad Firnberg
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Jason W Labonte
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| |
Collapse
|
406
|
Cuozzo JW, Soutter HH. Overview of Recent Progress in Protein-Expression Technologies for Small-Molecule Screening. ACTA ACUST UNITED AC 2014; 19:1000-13. [PMID: 24525871 DOI: 10.1177/1087057114520975] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/02/2014] [Indexed: 01/09/2023]
Abstract
Production of novel soluble and membrane-localized protein targets for functional and affinity-based screening has often been limited by the inability of traditional protein-expression systems to generate recombinant proteins that have properties similar to those of their endogenous counterparts. Such targets have often been labeled as challenging. Although biological validation of these challenging targets for specific disease areas may be strong, discovery of small-molecule modulators can be greatly delayed or completely halted due to target-expression issues. In this article, the limitations of traditional protein-expression systems will be discussed along with new systems designed to overcome these challenges. Recent work in this field has focused on two major areas for both soluble and membrane targets: construct-design strategies to improve expression levels and new hosts that can carry out the posttranslational modifications necessary for proper target folding and function. Another area of active research has been on the reconstitution of solubilized membrane targets for both structural analysis and screening. Finally, the potential impact of these new systems on the output of small-molecule screening campaigns will be discussed.
Collapse
|
407
|
Relative specificity: all substrates are not created equal. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:1-7. [PMID: 24491634 PMCID: PMC4411342 DOI: 10.1016/j.gpb.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/21/2013] [Accepted: 01/07/2014] [Indexed: 11/24/2022]
Abstract
A biological molecule, e.g., an enzyme, tends to interact with its many cognate substrates, targets, or partners differentially. Such a property is termed relative specificity and has been proposed to regulate important physiological functions, even though it has not been examined explicitly in most complex biochemical systems. This essay reviews several recent large-scale studies that investigate protein folding, signal transduction, RNA binding, translation and transcription in the context of relative specificity. These results and others support a pervasive role of relative specificity in diverse biological processes. It is becoming clear that relative specificity contributes fundamentally to the diversity and complexity of biological systems, which has significant implications in disease processes as well.
Collapse
|
408
|
Elena C, Ravasi P, Castelli ME, Peirú S, Menzella HG. Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Front Microbiol 2014; 5:21. [PMID: 24550894 PMCID: PMC3912506 DOI: 10.3389/fmicb.2014.00021] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/14/2014] [Indexed: 11/24/2022] Open
Abstract
The efficient production of functional proteins in heterologous hosts is one of the major bases of modern biotechnology. Unfortunately, many genes are difficult to express outside their original context. Due to their apparent “silent” nature, synonymous codon substitutions have long been thought to be trivial. In recent years, this dogma has been refuted by evidence that codon replacement can have a significant impact on gene expression levels and protein folding. In the past decade, considerable advances in the speed and cost of gene synthesis have facilitated the complete redesign of entire gene sequences, dramatically improving the likelihood of high protein expression. This technology significantly impacts the economic feasibility of microbial-based biotechnological processes by, for example, increasing the volumetric productivities of recombinant proteins or facilitating the redesign of novel biosynthetic routes for the production of metabolites. This review discusses the current applications of this technology, particularly those regarding the production of small molecules and industrially relevant recombinant enzymes. Suggestions for future research and potential uses are provided as well.
Collapse
Affiliation(s)
- Claudia Elena
- Genetic Engineering and Fermentation Technology, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Conicet Rosario, Argentina
| | - Pablo Ravasi
- Genetic Engineering and Fermentation Technology, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Conicet Rosario, Argentina
| | - María E Castelli
- Genetic Engineering and Fermentation Technology, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Conicet Rosario, Argentina
| | - Salvador Peirú
- Genetic Engineering and Fermentation Technology, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Conicet Rosario, Argentina
| | - Hugo G Menzella
- Genetic Engineering and Fermentation Technology, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Conicet Rosario, Argentina
| |
Collapse
|
409
|
Yona AH, Bloom-Ackermann Z, Frumkin I, Hanson-Smith V, Charpak-Amikam Y, Feng Q, Boeke JD, Dahan O, Pilpel Y. tRNA genes rapidly change in evolution to meet novel translational demands. eLife 2013; 2:e01339. [PMID: 24363105 PMCID: PMC3868979 DOI: 10.7554/elife.01339] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Changes in expression patterns may occur when organisms are presented with new environmental challenges, for example following migration or genetic changes. To elucidate the mechanisms by which the translational machinery adapts to such changes, we perturbed the tRNA pool of Saccharomyces cerevisiae by tRNA gene deletion. We then evolved the deletion strain and observed that the genetic adaptation was recurrently based on a strategic mutation that changed the anticodon of other tRNA genes to match that of the deleted one. Strikingly, a systematic search in hundreds of genomes revealed that anticodon mutations occur throughout the tree of life. We further show that the evolution of the tRNA pool also depends on the need to properly couple translation to protein folding. Together, our observations shed light on the evolution of the tRNA pool, demonstrating that mutation in the anticodons of tRNA genes is a common adaptive mechanism when meeting new translational demands. DOI:http://dx.doi.org/10.7554/eLife.01339.001 Genes contain the blueprints for the proteins that are essential for countless biological functions and processes, and the path that leads from a particular gene to the corresponding protein is long and complex. The genetic information stored in the DNA must first be transcribed to produce a messenger RNA molecule, which then has to be translated to produce a string of amino acids that fold to form a protein. The translation step is performed by a molecular machine called the ribosome, with transfer RNA molecules bringing the amino acids that are needed to make the protein. The information in messenger RNA is stored as a series of letters, with groups of three letters called codons representing the different amino acids. Since there are four letters—A, C, G and U—it is possible to form 64 different codons. And since there are only 20 amino acids, two or more different codons can specify the same amino acid (for example, AGU and AGC both specify serine), and two or more different transfer RNA molecules can take this amino acid to the ribosome. Moreover, some codons are found more often than others in the messenger RNA molecules, so the genes that encode the related transfer RNA molecules are more common than the genes for other transfer RNA molecules. Environmental pressures mean that organisms must adapt to survive, with some genes and proteins increasing in importance, and others becoming less important. Clearly the relative numbers of the different transfer RNA molecules will also need to change to reflect these evolutionary changes, but the details of how this happens were not understood. Now Yona et al. have explored this issue by studying yeast cells that lack a gene for one of the less common transfer RNA molecules (corresponding to the codon AGG, which specifies the amino acid arginine). At first this mutation resulted in slower growth of the yeast cells, but after being allowed to evolve over 200 generations, the rate of growth matched that of a normal strain with all transfer RNA genes. Yona et al. found that the gene for a more common transfer RNA molecule, corresponding to the codon AGA, which also specifies arginine, had mutated to AGG. As a result, the mutated yeast was eventually able to produce proteins as quickly as wild type yeast. Moreover, further experiments showed that the levels of some transfer RNAs are kept deliberately low in order to slow down the production of proteins so as to ensure that the proteins assume their correct structure. But does the way these cells evolved in the lab resemble what happened in nature? To address this question Yona et al. examined a database of transfer RNA sequences from more than 500 species, and found evidence for the same codon-based switching mechanism in many species across the tree of life. DOI:http://dx.doi.org/10.7554/eLife.01339.002
Collapse
Affiliation(s)
- Avihu H Yona
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Krishnakumar R, Ling J. Experimental challenges of sense codon reassignment: an innovative approach to genetic code expansion. FEBS Lett 2013; 588:383-8. [PMID: 24333334 DOI: 10.1016/j.febslet.2013.11.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
The addition of new and versatile chemical and biological properties to proteins pursued through incorporation of non-canonical amino acids is at present primarily achieved by stop codon suppression. However, it is critical to find new "blank" codons to increase the variety and efficiency of such insertions, thereby taking 'sense codon recoding' to center stage in the field of genetic code expansion. Current thought optimistically suggests the use of the pyrrolysine system coupled with re-synthesis of genomic information towards achieving sense codon reassignment. Upon review of the serious experimental challenges reported in recent studies, we propose that success in this area will depend on the re-synthesis of genomes, but also on 'rewiring' the mechanism of protein synthesis and of its quality control.
Collapse
Affiliation(s)
- Radha Krishnakumar
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850, USA.
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
411
|
Abstract
Despite the greater functional importance of protein levels, our knowledge of gene expression evolution is based almost entirely on studies of mRNA levels. In contrast, our understanding of how translational regulation evolves has lagged far behind. Here we have applied ribosome profiling—which measures both global mRNA levels and their translation rates—to two species of Saccharomyces yeast and their interspecific hybrid in order to assess the relative contributions of changes in mRNA abundance and translation to regulatory evolution. We report that both cis- and trans-acting regulatory divergence in translation are abundant, affecting at least 35% of genes. The majority of translational divergence acts to buffer changes in mRNA abundance, suggesting a widespread role for stabilizing selection acting across regulatory levels. Nevertheless, we observe evidence of lineage-specific selection acting on several yeast functional modules, including instances of reinforcing selection acting at both levels of regulation. Finally, we also uncover multiple instances of stop-codon readthrough that are conserved between species. Our analysis reveals the underappreciated complexity of post-transcriptional regulatory divergence and indicates that partitioning the search for the locus of selection into the binary categories of “coding” versus “regulatory” may overlook a significant source of selection, acting at multiple regulatory levels along the path from genotype to phenotype.
Collapse
Affiliation(s)
- Carlo G Artieri
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|