401
|
Sharif NA. Glaucomatous optic neuropathy treatment options: the promise of novel therapeutics, techniques and tools to help preserve vision. Neural Regen Res 2018; 13:1145-1150. [PMID: 30028313 PMCID: PMC6065230 DOI: 10.4103/1673-5374.235017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Peripheral vision loss followed by “tunnel vision” and eventual irreversible blindness is the fate of patients afflicted by various forms of glaucoma including primary open-angle glaucoma (POAG) and normotensive glaucoma (NTG). These complex and heterogeneous diseases are characterized by extensive death of retinal ganglion cells (RGCs) accompanied by retraction and severance of their axonal connections to the brain and thus damage to and thinning of the optic nerve. Since patients suffering from this glaucomatous optic neuropathy (GON) first notice visual impairment when they have lost > 40% of their RGCs, early diagnosis is the key to retard the progression of glaucoma. Elevated intraocular pressure (IOP), low cerebrospinal and/or low intracranial fluid pressure, advancing age, and ethnicity are major risk factors associated with POAG. However, retinal vascular abnormalities and a high sensitivity of RGCs and optic nerve head components to neurotoxic, inflammatory, oxidative and mechanical insults also contribute to vision loss in POAG/GON. Current treatment modalities for POAG and NTG involve lowering IOP using topical ocular drugs, combination drug products, and surgical interventions. Two recently approved multi-pharmacophoric drugs (e.g., rho kinase inhibitor, Netarsudil; a drug conjugate, Latanoprostene Bunod) and novel aqueous humor drainage devices (iStent and CyPass) are also gaining acceptance for treating POAG/ NTG. Neuroprotective and regenerative agents, coupled with electroceutical, mechanical support systems, stem cell transplantation and gene therapy are emerging therapeutics on the horizon to help combat GON. The latter techniques and approaches hope to rejuvenate RGCs and repair the optic nerve structures, thereby providing a gain of function of the visual system for the glaucoma patients.
Collapse
Affiliation(s)
- Najam A Sharif
- Department of Global Alliances & External Research, Global Ophthalmology Research & Development, Santen Incorporated, Emeryville, CA; Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX; Department of Pharmacy Sciences, Creighton University, Omaha, Nebraska USA; Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK
| |
Collapse
|
402
|
Pinazo-Durán MD, Shoaie-Nia K, Zanón-Moreno V, Sanz-González SM, Benítez del Castillo J, García-Medina JJ. Strategies to Reduce Oxidative Stress in Glaucoma Patients. Curr Neuropharmacol 2018; 16:903-918. [PMID: 28677495 PMCID: PMC6120109 DOI: 10.2174/1570159x15666170705101910] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/17/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Primary open-angle glaucoma (POAG) is a multifactorial pathology involving a variety of pathogenic mechanisms, including oxidative/nitrosative stress. This latter is the consequence of the imbalance between excessive formation and insufficient protection against reactive oxygen/nitrogen species. OBJECTIVE Our main goal is to gather molecular information to better managing pathologic variants that may determine the individual susceptibility to oxidative/nitrosative stress (OS/NS) and POAG. METHOD An extensive search of the scientific literature was conducted using PUBMED, the Web of Science, the Cochrane Library, and other references on the topic of POAG and OS/NS from human and animal model studies published between 2010 and 2017. Finally, 152 works containing relevant information that may help understanding the role of antioxidants, essential fatty acids, natural compounds and other similar strategies for counteracting OS/NS in POAG were considered. RESULTS A wide variety of studies have proven that antioxidants, among them vitamins B3, C and E, Coenzyme Q10 or melatonin, ω-3/ω-6 fatty acids and other natural compounds (such as coffee, green tea, bear bile, gingko biloba, coleus, tropical fruits, etc.,) may help regulating the intraocular pressure as well as protecting the retinal neurons against OS/NS in POAG. CONCLUSION Based on the impact of antioxidants and ω-3/ω-6 fatty acids at the molecular level in the glaucomatous anterior and posterior eye segments, further studies are needed by integrating all issues involved in glaucoma pathogenesis, endogenous and exogenous risk factors and their interactions that will allow us to reach newer effective biotherapies for preventing glaucomatous irreversible blindness.
Collapse
Affiliation(s)
- Maria D. Pinazo-Durán
- Address correspondence to this author at the Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, University Hospital Dr. Peset. Ave/ Gaspar Aguilar 90; 46017, Valencia, Spain; Tel: + 34 961622497;, Fax: + 34 961622748; E-mail:
| | | | | | | | | | | |
Collapse
|
403
|
Aman Y, Qiu Y, Tao J, Fang EF. Therapeutic potential of boosting NAD+ in aging and age-related diseases. TRANSLATIONAL MEDICINE OF AGING 2018. [DOI: 10.1016/j.tma.2018.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
404
|
|
405
|
Nakamura T, Lipton SA. 'SNO'-Storms Compromise Protein Activity and Mitochondrial Metabolism in Neurodegenerative Disorders. Trends Endocrinol Metab 2017; 28:879-892. [PMID: 29097102 PMCID: PMC5701818 DOI: 10.1016/j.tem.2017.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/07/2023]
Abstract
The prevalence of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), is currently a major public health concern due to the lack of efficient disease-modifying therapeutic options. Recent evidence suggests that mitochondrial dysfunction and nitrosative/oxidative stress are key common mediators of pathogenesis. In this review, we highlight molecular mechanisms linking NO-dependent post-translational modifications, such as cysteine S-nitrosylation and tyrosine nitration, to abnormal mitochondrial metabolism. We further discuss the hypothesis that pathological levels of NO compromise brain energy metabolism via aberrant S-nitrosylation of key enzymes in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, contributing to neurodegenerative conditions. A better understanding of these pathophysiological events may provide a potential pathway for designing novel therapeutics to ameliorate neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA.
| | - Stuart A Lipton
- Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
406
|
Williams PA, Harder JM, John SWM. Glaucoma as a Metabolic Optic Neuropathy: Making the Case for Nicotinamide Treatment in Glaucoma. J Glaucoma 2017; 26:1161-1168. [PMID: 28858158 PMCID: PMC5854489 DOI: 10.1097/ijg.0000000000000767] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction may be an important, if not essential, component of human glaucoma. Using transcriptomics followed by molecular and neurobiological techniques, we have recently demonstrated that mitochondrial dysfunction within retinal ganglion cells is an early feature in the DBA/2J mouse model of inherited glaucoma. Guided by these findings, we discovered that the retinal level of nicotinamide adenine dinucleotide (NAD, a key molecule for mitochondrial health) declines in an age-dependent manner. We hypothesized that this decline in NAD renders retinal ganglion cells susceptible to damage during periods of elevated intraocular pressure. To replete NAD levels in this glaucoma, we administered nicotinamide (the amide of vitamin B3). At the lowest dose tested, nicotinamide robustly protected from glaucoma (~70% of eyes had no detectable glaucomatous neurodegeneration). At this dose, nicotinamide had no influence on intraocular pressure and so its effect was neuroprotective. At the highest dose tested, 93% of eyes had no detectable glaucoma. This represents a ~10-fold decrease in the risk of developing glaucoma. At this dose, intraocular pressure still became elevated but there was a reduction in the degree of elevation showing an additional benefit. Thus, nicotinamide is unexpectedly potent at preventing this glaucoma and is an attractive option for glaucoma therapeutics. Our findings demonstrate the promise for both preventing and treating glaucoma by interventions that bolster metabolism during increasing age and during periods of elevated intraocular pressure. Nicotinamide prevents age-related declines in NAD (a decline that occurs in different genetic contexts and species). NAD precursors are reported to protect from a variety of neurodegenerative conditions. Thus, nicotinamide may provide a much needed neuroprotective treatment against human glaucoma. This manuscript summarizes human data implicating mitochondria in glaucoma, and argues for studies to further assess the safety and efficacy of nicotinamide in human glaucoma care.
Collapse
Affiliation(s)
- Pete A Williams
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Jeffrey M Harder
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Simon W M John
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Ophthalmology, Tufts University of Medicine, Boston, MA, USA
| |
Collapse
|
407
|
Cheung LTY, Manthey AL, Lai JSM, Chiu K. Targeted Delivery of Mitochondrial Calcium Channel Regulators: The Future of Glaucoma Treatment? Front Neurosci 2017; 11:648. [PMID: 29213227 PMCID: PMC5702640 DOI: 10.3389/fnins.2017.00648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- Leanne T Y Cheung
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Abby L Manthey
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Jimmy S M Lai
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Kin Chiu
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
408
|
Affiliation(s)
- Jonathan Crowston
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Ian Trounce
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
409
|
Ito YA, Di Polo A. Mitochondrial dynamics, transport, and quality control: A bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion 2017; 36:186-192. [PMID: 28866056 DOI: 10.1016/j.mito.2017.08.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/11/2017] [Accepted: 08/29/2017] [Indexed: 01/03/2023]
Abstract
Retinal ganglion cells, the neurons that selectively die in glaucoma and other optic neuropathies, are endowed with an exceedingly active metabolism and display a particular vulnerability to mitochondrial dysfunction. Mitochondria are exquisitely dynamic organelles that are continually responding to endogenous and environmental cues to readily meet the energy demand of neuronal networks. The highly orchestrated regulation of mitochondrial biogenesis, fusion, fission, transport and degradation is paramount for the maintenance of energy-expensive synapses at RGC dendrites and axon terminals geared for optimal neurotransmission. The present review focuses on the progress made to date on understanding the biology of mitochondrial dynamics and quality control and how dysregulation of these processes can profoundly affect retinal ganglion cell viability and function in optic nerve diseases.
Collapse
Affiliation(s)
- Yoko A Ito
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Montreal, Quebec H2X 1R9, Canada
| | - Adriana Di Polo
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Montreal, Quebec H2X 1R9, Canada.
| |
Collapse
|
410
|
Abstract
PURPOSE OF REVIEW Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial DNA (mtDNA) genetic disorder in the population. We address the clinical evolution of the disease, the secondary etiological factors that could contribute to visual loss, and the challenging task of developing effective treatments. RECENT FINDINGS LHON is characterized by a preclinical phase that reflects retinal ganglion cell (RGC) dysfunction before rapid visual deterioration ensues. Children can present atypically with slowly progressive visual loss or an insidious/subclinical onset that frequently results in considerable diagnostic delays. The LHON mtDNA mutation is not sufficient on its own to precipitate RGC loss and the current body of evidence supports a role for smoking and estrogen levels influencing disease conversion. Clinical trials are currently investigating the efficacy of adeno-associated viral vectors-based gene therapy approaches for patients carrying the m.11778G>A mutation. Mitochondrial replacement therapy is being developed as a reproductive option to prevent the maternal transmission of pathogenic mtDNA mutations. SUMMARY LHON is phenotypically more heterogeneous than previously considered and a complex interplay of genetic, environmental and hormonal factors modulates the risk of a LHON carrier losing vision. Advances in disease modelling, drug screening and genetic engineering offer promising avenues for therapeutic breakthroughs in LHON.
Collapse
|
411
|
He S, Stankowska DL, Ellis DZ, Krishnamoorthy RR, Yorio T. Targets of Neuroprotection in Glaucoma. J Ocul Pharmacol Ther 2017; 34:85-106. [PMID: 28820649 PMCID: PMC5963639 DOI: 10.1089/jop.2017.0041] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022] Open
Abstract
Progressive neurodegeneration of the optic nerve and the loss of retinal ganglion cells is a hallmark of glaucoma, the leading cause of irreversible blindness worldwide, with primary open-angle glaucoma (POAG) being the most frequent form of glaucoma in the Western world. While some genetic mutations have been identified for some glaucomas, those associated with POAG are limited and for most POAG patients, the etiology is still unclear. Unfortunately, treatment of this neurodegenerative disease and other retinal degenerative diseases is lacking. For POAG, most of the treatments focus on reducing aqueous humor formation, enhancing uveoscleral or conventional outflow, or lowering intraocular pressure through surgical means. These efforts, in some cases, do not always lead to a prevention of vision loss and therefore other strategies are needed to reduce or reverse the progressive neurodegeneration. In this review, we will highlight some of the ocular pharmacological approaches that are being tested to reduce neurodegeneration and provide some form of neuroprotection.
Collapse
Affiliation(s)
- Shaoqing He
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorota L Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorette Z Ellis
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Thomas Yorio
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
412
|
Katsyuba E, Auwerx J. Modulating NAD + metabolism, from bench to bedside. EMBO J 2017; 36:2670-2683. [PMID: 28784597 DOI: 10.15252/embj.201797135] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Discovered in the beginning of the 20th century, nicotinamide adenine dinucleotide (NAD+) has evolved from a simple oxidoreductase cofactor to being an essential cosubstrate for a wide range of regulatory proteins that include the sirtuin family of NAD+-dependent protein deacylases, widely recognized regulators of metabolic function and longevity. Altered NAD+ metabolism is associated with aging and many pathological conditions, such as metabolic diseases and disorders of the muscular and neuronal systems. Conversely, increased NAD+ levels have shown to be beneficial in a broad spectrum of diseases. Here, we review the fundamental aspects of NAD+ biochemistry and metabolism and discuss how boosting NAD+ content can help ameliorate mitochondrial homeostasis and as such improve healthspan and lifespan.
Collapse
Affiliation(s)
- Elena Katsyuba
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
413
|
Li S, Li D, Shao M, Cao W, Sun X. Lack of Association between Serum Vitamin B₆, Vitamin B 12, and Vitamin D Levels with Different Types of Glaucoma: A Systematic Review and Meta-Analysis. Nutrients 2017. [PMID: 28635642 PMCID: PMC5490615 DOI: 10.3390/nu9060636] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although vitamins play a major role in health, and their deficiency may be linked to symptoms of optic-nerve dysfunction, the association between serum vitamin levels and glaucoma in humans remains controversial. In this study, articles in the PubMed, Web of Science, and EMBASE databases were searched up to 25March 2017. Nine studies on primary open-angle glaucoma (POAG), four studies on normal tension glaucoma (NTG), and six studies on exfoliative glaucoma (EXG) were retrieved. The combined results showed no differences in the levels of serum vitamin B6 between POAG (p = 0.406) and EXG (p = 0.139) patients and controls. The weighted mean differences (WMDs) with 95% confidence intervals (CIs) were 2.792 ng/mL (−3.793 to 9.377) and 1.342 ng/mL (−3.120 to 0.436), respectively. There was no difference between POAG (p = 0.952), NTG (p = 0.757), or EXG (p = 0.064) patients and controls in terms of serum vitamin B12. The WMDs with 95% CIs were 0.933 pg/mL (−31.116 to 29.249), 6.652 pg/mL (−35.473 to 48.777), and 49.946 pg/mL (−102.892 to 3.001), respectively. The serum vitamin D levels exhibited no differences (p = 0.064) between POAG patients and controls; the WMD with 95% CI was 2.488 ng/mL (−5.120 to 0.145). In conclusion, there was no association found between serum vitamin B6, vitamin B12, or vitamin D levels and the different types of glaucoma.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Danhui Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, China.
- Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai 200031, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| |
Collapse
|
414
|
Affiliation(s)
- Jeffrey M Liebmann
- From the Bernard and Shirlee Brown Glaucoma Research Laboratory, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York
| | - George A Cioffi
- From the Bernard and Shirlee Brown Glaucoma Research Laboratory, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York
| |
Collapse
|
415
|
Kamel K, Farrell M, O'Brien C. Mitochondrial dysfunction in ocular disease: Focus on glaucoma. Mitochondrion 2017; 35:44-53. [PMID: 28499981 DOI: 10.1016/j.mito.2017.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/08/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction commonly presents with ocular findings as a part of a systemic disorder. These ophthalmic manifestations can be the first sign of a mitochondrial abnormality, which highlights the key role of a comprehensive ophthalmic assessment. On the other hand, a number of visually disabling genetic and acquired eye diseases with no curative treatment show abnormal mitochondrial function. Recent advances in mitochondrial research have improved our understanding of previously unexplained ocular disorders utilising better diagnostic approaches. Further studies on mitochondrial dysfunction and novel modalities of treatment will help to improve outcomes of these conditions. In this review article we discuss the clinical picture of common mitochondrial-related eye diseases, diagnostic approaches and possible treatment options including a very recent interesting report about gene therapy, with a particular focus on glaucoma.
Collapse
Affiliation(s)
- Khalid Kamel
- Institute of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| | | | - Colm O'Brien
- Institute of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.
| |
Collapse
|
416
|
Abstract
Stem cell-based disease modeling is an emerging technology for the mechanistic study and therapeutic screening of complex ocular pathologies. In this issue of Cell Stem Cell, Saini et al. (2017) show that iPSC-derived RPE cells from age-related macular degeneration patients express increased levels of pro-inflammatory factors that can be normalized by the anti-aging drug nicotinamide.
Collapse
Affiliation(s)
- Magali Saint-Geniez
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA.
| | - Mariana Aparecida B Rosales
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
417
|
Hill LJ, Williams AC. Meat Intake and the Dose of Vitamin B 3 - Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures? Int J Tryptophan Res 2017; 10:1178646917704662. [PMID: 28579801 PMCID: PMC5419340 DOI: 10.1177/1178646917704662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/26/2022] Open
Abstract
Meat and vitamin B3 - nicotinamide - intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by 'welcoming' gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive 'meat transitions'. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic 'old friends' compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress.
Collapse
Affiliation(s)
- Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
418
|
Williams PA, Harder JM, Foxworth NE, Cardozo BH, Cochran KE, John SWM. Nicotinamide and WLD S Act Together to Prevent Neurodegeneration in Glaucoma. Front Neurosci 2017; 11:232. [PMID: 28487632 PMCID: PMC5403885 DOI: 10.3389/fnins.2017.00232] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/07/2017] [Indexed: 01/09/2023] Open
Abstract
Glaucoma is a complex neurodegenerative disease characterized by progressive visual dysfunction leading to vision loss. Retinal ganglion cells are the primary affected neuronal population, with a critical insult damaging their axons in the optic nerve head. This insult is typically secondary to harmfully high levels of intraocular pressure (IOP). We have previously determined that early mitochondrial abnormalities within retinal ganglion cells lead to neuronal dysfunction, with age-related declines in NAD (NAD+ and NADH) rendering retinal ganglion cell mitochondria vulnerable to IOP-dependent stresses. The Wallerian degeneration slow allele, WldS, decreases the vulnerability of retinal ganglion cells in eyes with elevated IOP, but the exact mechanism(s) of protection from glaucoma are not determined. Here, we demonstrate that WldS increases retinal NAD levels. Coupled with nicotinamide administration (an NAD precursor), it robustly protects from glaucomatous neurodegeneration in a mouse model of glaucoma (94% of eyes having no glaucoma, more than WldS or nicotinamide alone). Importantly, nicotinamide and WldS protect somal, synaptic, and axonal compartments, prevent loss of anterograde axoplasmic transport, and protect from visual dysfunction as assessed by pattern electroretinogram. Boosting NAD production generally benefits major compartments of retinal ganglion cells, and may be of value in other complex, age-related, axonopathies where multiple neuronal compartments are ultimately affected.
Collapse
Affiliation(s)
- Pete A Williams
- The Jackson Laboratory, Howard Hughes Medical InstituteBar Harbor, ME, USA
| | - Jeffrey M Harder
- The Jackson Laboratory, Howard Hughes Medical InstituteBar Harbor, ME, USA
| | - Nicole E Foxworth
- The Jackson Laboratory, Howard Hughes Medical InstituteBar Harbor, ME, USA
| | - Brynn H Cardozo
- The Jackson Laboratory, Howard Hughes Medical InstituteBar Harbor, ME, USA
| | - Kelly E Cochran
- The Jackson Laboratory, Howard Hughes Medical InstituteBar Harbor, ME, USA
| | - Simon W M John
- The Jackson Laboratory, Howard Hughes Medical InstituteBar Harbor, ME, USA.,Department of Ophthalmology, Tufts University of MedicineBoston, MA, USA
| |
Collapse
|
419
|
Crunkhorn S. Ocular disorders: Vitamin B 3 blocks glaucoma. Nat Rev Drug Discov 2017; 16:240. [PMID: 28356594 DOI: 10.1038/nrd.2017.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
420
|
Inman DM, Harun-Or-Rashid M. Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma. Front Neurosci 2017; 11:146. [PMID: 28424571 PMCID: PMC5371671 DOI: 10.3389/fnins.2017.00146] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Axons can be several orders of magnitude longer than neural somas, presenting logistical difficulties in cargo trafficking and structural maintenance. Keeping the axon compartment well supplied with energy also presents a considerable challenge; even seemingly subtle modifications of metabolism can result in functional deficits and degeneration. Axons require a great deal of energy, up to 70% of all energy used by a neuron, just to maintain the resting membrane potential. Axonal energy, in the form of ATP, is generated primarily through oxidative phosphorylation in the mitochondria. In addition, glial cells contribute metabolic intermediates to axons at moments of high activity or according to need. Recent evidence suggests energy disruption is an early contributor to pathology in a wide variety of neurodegenerative disorders characterized by axonopathy. However, the degree to which the energy disruption is intrinsic to the axon vs. associated glia is not clear. This paper will review the role of energy availability and utilization in axon degeneration in glaucoma, a chronic axonopathy of the retinal projection.
Collapse
Affiliation(s)
- Denise M Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical UniversityRootstown, OH, USA
| | | |
Collapse
|