401
|
Genome-Wide Identification of Putative MicroRNAs in Cassava ( Manihot esculenta Crantz) and Their Functional Landscape in Cellular Regulation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2019846. [PMID: 31321230 PMCID: PMC6607727 DOI: 10.1155/2019/2019846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022]
Abstract
MicroRNAs are small noncoding RNAs, involved in the regulation of many cellular processes in plants. Hundreds of miRNAs have been identified in cassava by various techniques, yet these identifications were constrained by a lack of miRNA templates and the narrow range of conditions in transcriptome study. In this research, we conducted genome-wide analysis identification, whereby miRNAs from cassava genome were thoroughly screened using bioinformatics approach independent of predefined templates and studied conditions. Our work provided a catalog of putative mature miRNAs and explored the landscape of miRNAome in cassava. These putative miRNAs were validated using statistical analysis as well as available cassava expression data. We showed that the crowded locations of cassava miRNAs are consistent with other plants and animals and hypothesized to have the same evolutionary origin. At least 10 conserved miRNAs were identified in cassava based on the comparative study of miRNA conservation. Finally, investigation of miRNAs and target gene relationships enabled us to envisage the complexities of cellular regulatory systems modulated at posttranscriptional level.
Collapse
|
402
|
Perspectives on microRNAs and Phased Small Interfering RNAs in Maize ( Zea mays L.): Functions and Big Impact on Agronomic Traits Enhancement. PLANTS 2019; 8:plants8060170. [PMID: 31212808 PMCID: PMC6630462 DOI: 10.3390/plants8060170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023]
Abstract
Small RNA (sRNA) population in plants comprises of primarily micro RNAs (miRNAs) and small interfering RNAs (siRNAs). MiRNAs play important roles in plant growth and development. The miRNA-derived secondary siRNAs are usually known as phased siRNAs, including phasiRNAs and tasiRNAs. The miRNA and phased siRNA biogenesis mechanisms are highly conserved in plants. However, their functional conservation and diversification may differ in maize. In the past two decades, lots of miRNAs and phased siRNAs have been functionally identified for curbing important maize agronomic traits, such as those related to developmental timing, plant architecture, sex determination, reproductive development, leaf morphogenesis, root development and nutrition, kernel development and tolerance to abiotic stresses. In contrast to Arabidopsis and rice, studies on maize miRNA and phased siRNA biogenesis and functions are limited, which restricts the small RNA-based fundamental and applied studies in maize. This review updates the current status of maize miRNA and phased siRNA mechanisms and provides a survey of our knowledge on miRNA and phased siRNA functions in controlling agronomic traits. Furthermore, improvement of those traits through manipulating the expression of sRNAs or their targets is discussed.
Collapse
|
403
|
Lu J, Xu M, Cai J, Yu D, Meng Y, Wang H. Transcriptome-wide identification of microRNAs and functional insights inferred from microRNA-target pairs in Physalis angulata L. PLANT SIGNALING & BEHAVIOR 2019; 14:1629267. [PMID: 31184247 PMCID: PMC6619950 DOI: 10.1080/15592324.2019.1629267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Physalis angulata L., a member of the family Solanaceae, is widely used as the folk medicine in various countries. Continuous research efforts are devoted to the discovery of the effective medicinal ingredients from Physalis angulata. However, due to the limited resources of genome and transcriptome sequencing data, only a few studies have been performed at the gene regulatory level. In this study, the transcriptomes of five organs (roots, stems, leaves, flowers and fruits) of Physalis angulata were reported. Based on the transcriptome assembly containing 196,117 unique transcripts, a total of 17,556 SSRs (simple sequence repeats) were identified, which could be useful RNA-based barcoding for discrimination of the plants closely relative to Physalis angulata. Additionally, 24 transcripts were discovered to be the potential microRNA (miRNA) precursors which encode a total of 31 distinct mature miRNAs. Some of these precursors showed organ-specific expression patterns. Target prediction revealed 116 miRNA-target pairs, involving 31 miRNAs and 83 target transcripts in Physalis angulata. Taken together, our results could serve as the data resource for in-depth studies on the molecular regulatory mechanisms related to the production of medicinal ingredients in Physalis angulata.
Collapse
Affiliation(s)
- Jiangjie Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Min Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Jiahui Cai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
404
|
Zhang S, Yan S, Zhao J, Xiong H, An P, Wang J, Zhang H, Zhang L. Identification of miRNAs and their target genes in Larix olgensis and verified of differential expression miRNAs. BMC PLANT BIOLOGY 2019; 19:247. [PMID: 31185902 PMCID: PMC6558743 DOI: 10.1186/s12870-019-1853-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND MiRNAs (microRNA) are 18-24 nt endogenous noncoding RNAs that regulate gene expression at the post-transcriptional level, including tissue-specific, developmental timing and evolutionary conservation gene expression. RESULTS This study used high-throughput sequencing technology for the first time in Larix olgensis, predicted 78 miRNAs, including 12,229,003 reads sRNA, screened differentially expressed miRNAs. Predicting target genes was helpful for understanding the miRNA regulation function and obtained 333 corresponding target genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation were analysed, mostly including nucleic acid binding, plant hormone signal transduction, pantothenate and CoA biosynthesis, and cellulose synthase. This study will lay the foundation for clarifying the complex miRNA-mediated regulatory network for growth and development. In view of this, spatio-temporal expression of miR396, miR950, miR164, miR166 and miR160 were analysed in Larix olgensis during the growth stages of not lignified, beginning of lignification, and completely lignified in different tissues (root, stem, and leaf) by quantitative real-time PCR (qRT-PCR). There were differences in the expression of miRNAs in roots, stems and leaves in the same growth period. At 60 days, miR160, miR166 and miR396-2 exhibited the highest expression in leaves. At 120 days, most miRNAs in roots and stems decreased significantly. At 180 days, miRNAs were abundantly expressed in roots and stems. Meanwhile, analysis of the expression of miRNAs in leaves revealed that miR396-2 was reduced as time went on, whereas other miRNAs increased initially and then decreased. On the other hand, in the stems, miR166-1 was increase, whereas other miRNAs, especially miR160, miR164, miR396 and miR950-1, first decreased and then increased. Similarly, in the roots, miR950-2 first decreased and then increased, whereas other miRNAs exhibited a trend of continuous increase. CONCLUSIONS The present investigation included rapid isolation and identification of miRNAs in Larix olgensis through construction of a sRNA library using Solexa and predicted 78 novel miRNAs, which showed differential expression levels in different tissues and stages. These results provided a theoretical basis for further revealing the genetic regulation mechanism of miRNA in the growth and development of conifers and the verification of function in target genes.
Collapse
Affiliation(s)
- Sufang Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Shanshan Yan
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Jiali Zhao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Huanhuan Xiong
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Peiqi An
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding (Chinese Academy Of Forestry), Beijing, 100081 China
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| |
Collapse
|
405
|
Transcriptome-wide identification and characterization of microRNAs responsive to phosphate starvation in Populus tomentosa. Funct Integr Genomics 2019; 19:953-972. [PMID: 31177404 DOI: 10.1007/s10142-019-00692-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 11/02/2018] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
miRNAs (microRNAs) are ~ 21-nt non-coding small RNAs (sRNAs) that play crucial regulatory roles in plant biotic and abiotic stress responses. Phosphorus (Pi) deficiency constrains plant growth and reduces yields worldwide. To identify tree miRNAs and evaluate their functions in the response to low Pi, we identified 261 known and 31 candidate novel miRNA families from three sRNA libraries constructed from Populus tomentosa subjected to sufficient or Pi deficiency condition or to restoration of a sufficient Pi level after Pi deficiency. Pi deficiency resulted in significant changes in the abundance of TPM (transcript per million) of 65 known and 3 novel miRNAs. Interestingly, four miRNAs responsive to low N-miR167, miR394, miR171, and miR857-were found to be involved in the response to low Pi. Thirty-five known and one novel miRNAs responded dynamically to Pi fluctuations, suggesting their involvement in the response to Pi deficiency. miRNA clusters comprising 36 miRNAs were identified in 10 chromosomes. Intriguingly, nine pairs of sense and antisense miRNAs transcribed from the same loci were detected in P. tomentosa, which is the first such report in woody plants. Moreover, target genes of the known miRNAs and novel miRNA candidates with significantly changed abundance were predicted, and their functions were annotated. Degradome sequencing supported the identified targets of miRNAs in P. tomentosa. These findings will enhance our understanding of universal and specific molecular regulatory mechanisms of trees under nutrition stress and may facilitate improvement of the Pi utilization efficiency of woody plants.
Collapse
|
406
|
Zhou B, Kang Y, Leng J, Xu Q. Genome-Wide Analysis of the miRNA-mRNAs Network Involved in Cold Tolerance in Populus simonii × P. nigra. Genes (Basel) 2019; 10:genes10060430. [PMID: 31195761 PMCID: PMC6627750 DOI: 10.3390/genes10060430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 12/02/2022] Open
Abstract
Background: Cold tolerance is important for plants’ geographical distribution and survival in extreme seasonal variations of climate. However, Populus simonii × P. nigra shows wide adaptability and strong cold resistance. Transcriptional and post-transcriptional regulation of cold-responsive genes is crucial for cold tolerance in plants. To understand the roles of regulatory RNAs under cold induction in Populus simonii × P. nigra, we constructed cDNA and small RNA libraries from leaf buds treated or not with −4 °C for 8 h for analysis. Results: Through high-throughput sequencing and differential expression analysis, 61 miRNAs and 1229 DEGs were identified under cold induction condition in Populus simonii × P. nigra. The result showed that miR167a, miR1450, miR319a, miR395b, miR393a-5p, miR408-5p, and miR168a-5p were downregulated, whereas transcription level of miR172a increased under the cold treatment. Thirty-one phased-siRNA were also obtained (reads ≥ 4) and some of them proceeded from TAS3 loci. Analysis of the differentially expressed genes (DEGs) showed that transcription factor genes such as Cluster-15451.2 (putative MYB), Cluster-16493.29872 (putative bZIP), Cluster-16493.29175 (putative SBP), and Cluster-1378.1 (putative ARF) were differentially expressed in cold treated and untreated plantlets of Populus simonii × P. nigra. Integrated analysis of miRNAs and transcriptome showed miR319, miR159, miR167, miR395, miR390, and miR172 and their target genes, including MYB, SBP, bZIP, ARF, LHW, and ATL, were predicted to be involved in ARF pathway, SPL pathway, DnaJ related photosystem II, and LRR receptor kinase, and many of them are known to resist chilling injury. Particularly, a sophisticated regulatory model including miRNAs, phasiRNAs, and targets of them was set up. Conclusions: Integrated analysis of miRNAs and transcriptome uncovered the complicated regulation of the tolerance of cold in Populus simonii × P. nigra. MiRNAs, phasiRNAs, and gene-encoded transcription factors were characterized at a whole genome level and their expression patterns were proved to be complementary. This work lays a foundation for further research of the pathway of sRNAs and regulatory factors involved in cold tolerance.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Yutong Kang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Jingtong Leng
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Qijiang Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
407
|
Li X, Pan X, Fu X, Yang Y, Chen J, Lin W. MicroRNA-26a: An Emerging Regulator of Renal Biology and Disease. Kidney Blood Press Res 2019; 44:287-297. [PMID: 31163420 DOI: 10.1159/000499646] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that modulate many key biological processes by simultaneously suppressing multiple target genes. Among them, miR-26a, a conserved miRNA among vertebrates, is highly expressed in various tissues. Accumulating evidence demonstrates that miR-26a plays pivotal roles in cellular differentiation, cell growth, apoptosis, and metastasis, thereby participating in the initiation and development of various human diseases, such as metabolic disease and cancer. More recently, miR-26a was found as a versatile regulator of renal biology and disease. miR-26a is intensively involved in the maintenance of podocyte homeostasis and the actin cytoskeleton. It is also able to modulate the homeostasis and function of mesangial cells. In addition, miR-26a affects the expansion of regulatory T cells in the context of ischemia-reperfusion injury and autoimmune diabetes and thus protects the renal system from immune attack. These available data strongly suggest that renal miR-26a possesses critical pathological functions and represents a potential target for renal disease therapies. This review summarizes current knowledge of miR-26a in renal biology and disease, laying the foundation for exploring its previously unknown functions and mechanisms in the renal system.
Collapse
Affiliation(s)
- Xiaoyan Li
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Pan
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yang
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China,
| |
Collapse
|
408
|
He M, Yao Y, Li Y, Yang M, Li Y, Wu B, Yu D. Comprehensive transcriptome analysis reveals genes potentially involved in isoflavone biosynthesis in Pueraria thomsonii Benth. PLoS One 2019; 14:e0217593. [PMID: 31163077 PMCID: PMC6548387 DOI: 10.1371/journal.pone.0217593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/14/2019] [Indexed: 01/11/2023] Open
Abstract
Pueraria thomsonii Benth is an important medicinal plant. Transcriptome sequencing, unigene assembly, the annotation of transcripts and the study of gene expression profiles play vital roles in gene function research. However, the full-length transcriptome of P. thomsonii remains unknown. Here, we obtained 44,339 nonredundant transcripts of P. thomsonii by using the PacBio RS II Isoform and Illumina sequencing platforms, of which 43,195 were annotated genes. Compared with the expression levels in the plant roots, those of transcripts with a |fold change| ≥ 4 and FDR < 0.01 in the leaves or stems were assigned as differentially expressed transcripts (DETs). In total, we found 9,225 DETs, 32 of which came from structural genes that were potentially involved in isoflavone biosynthesis. The expression profiles of 8 structural genes from the RNA-Seq data were validated by qRT-PCR. We identified 437 transcription factors (TFs) that were positively or negatively correlated with at least 1 of the structural genes involved in isoflavone biosynthesis using Pearson correlation coefficients (r) (r > 0.8 or r < -0.8). We also identified a total of 32 microRNAs (miRNAs), which targeted 805 transcripts. These miRNAs caused enriched function in ‘ATP binding’, ‘defense response’, ‘ADP binding’, and ‘signal transduction’. Interestingly, MIR156a potentially promoted isoflavone biosynthesis by repressing SBP, and MIR319 promoted isoflavone biosynthesis by repressing TCP and HB-HD-ZIP. Finally, we identified 2,690 alternative splicing events, including that of the structural genes of trans-cinnamate 4-monooxygenase and pullulanase, which are potentially involved in the biosynthesis of isoflavone and starch, respectively, and of three TFs potentially involved in isoflavone biosynthesis. Together, these results provide us with comprehensive insight into the gene expression and regulation of P. thomsonii.
Collapse
Affiliation(s)
- Meijun He
- College of Life Science, Wuhan University, Wuhan, China
- Institute of Chinese Medicinal Materials, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Yiwei Yao
- Center of Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Li
- Center of Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Yang
- Center of Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Li
- Institute of Chinese Medicinal Materials, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Bin Wu
- Center of Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (DY)
| | - Dazhao Yu
- College of Life Science, Wuhan University, Wuhan, China
- * E-mail: (BW); (DY)
| |
Collapse
|
409
|
He L, Tang R, Shi X, Wang W, Cao Q, Liu X, Wang T, Sun Y, Zhang H, Li R, Jia X. Uncovering anthocyanin biosynthesis related microRNAs and their target genes by small RNA and degradome sequencing in tuberous roots of sweetpotato. BMC PLANT BIOLOGY 2019; 19:232. [PMID: 31159725 PMCID: PMC6547535 DOI: 10.1186/s12870-019-1790-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/18/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Compared with white-fleshed sweetpotato (WFSP), purple-fleshed sweetpotato (PFSP) is a desirable resource for functional food development because of the abundant anthocyanin accumulation in its tuberous roots. Some studies have shown that the expression regulation mediated by miRNA plays an important role in anthocyanin biosynthesis in plants. However, few miRNAs and their corresponding functions related to anthocyanin biosynthesis in tuberous roots of sweetpotato have been known. RESULTS In this study, small RNA (sRNA) and degradome libraries from the tuberous roots of WFSP (Xushu-18) and PFSP (Xuzishu-3) were constructed, respectively. Totally, 191 known and 33 novel miRNAs were identified by sRNA sequencing, and 180 target genes cleaved by 115 known ib-miRNAs and 5 novel ib-miRNAs were identified by degradome sequencing. Of these, 121 miRNAs were differently expressed between Xushu-18 and Xuzishu-3. Integrated analysis of sRNA, degradome sequencing, GO, KEGG and qRT-PCR revealed that 26 differentially expressed miRNAs and 36 corresponding targets were potentially involved in the anthocyanin biosynthesis. Of which, an inverse correlation between the expression of ib-miR156 and its target ibSPL in WFSP and PFSP was revealed by both qRT-PCR and sRNA sequencing. Subsequently, ib-miR156 was over-expressed in Arabidopsis. Interestingly, the ib-miR156 over-expressing plants showed suppressed abundance of SPL and a purplish phenotype. Concomitantly, upregulated expression of four anthocyanin pathway genes was detected in transgenic Arabidopsis plants. Finally, a putative ib-miRNA-target model involved in anthocyanin biosynthesis in sweetpotato was proposed. CONCLUSIONS The results represented a comprehensive expression profiling of miRNAs related to anthocyanin accumulation in sweetpotato and provided important clues for understanding the regulatory network of anthocyanin biosynthesis mediated by miRNA in tuberous crops.
Collapse
Affiliation(s)
- Liheng He
- Shanxi Agriculture University, Taigu, 030801, Shanxi, China
| | - Ruimin Tang
- Shanxi Agriculture University, Taigu, 030801, Shanxi, China
| | - Xiaowen Shi
- Shanxi Agriculture University, Taigu, 030801, Shanxi, China
| | - Wenbing Wang
- Shanxi Agriculture University, Taigu, 030801, Shanxi, China
| | - Qinghe Cao
- Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, Jiangsu, China
| | - Xiayu Liu
- Shanxi Agriculture University, Taigu, 030801, Shanxi, China
| | - Ting Wang
- Shanxi Agriculture University, Taigu, 030801, Shanxi, China
| | - Yan Sun
- Shanxi Agriculture University, Taigu, 030801, Shanxi, China
| | - Hongmei Zhang
- Maize Research Institute, Shanxi Academy of Agricultural Sciences, Xinzhou, China
| | - Runzhi Li
- Shanxi Agriculture University, Taigu, 030801, Shanxi, China.
| | - Xiaoyun Jia
- Shanxi Agriculture University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
410
|
Wang Y, Li W, Chang H, Zhou J, Luo Y, Zhang K, Wang B. Sweet cherry fruit miRNAs and effect of high CO 2 on the profile associated with ripening. PLANTA 2019; 249:1799-1810. [PMID: 30840178 DOI: 10.1007/s00425-019-03110-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/12/2019] [Indexed: 05/11/2023]
Abstract
157 known and 55 novel miRNAs were found in sweet cherry fruit. MiRNA target genes involved in fruit ripening and the differentially expressed miRNAs under CO2 treatment were identified. MicroRNAs (miRNAs) are short non-coding RNAs and play important functions in many biological processes, including fruit ripening and senescence. In the current study, the high-throughput sequencing and bioinformatics methods were implemented to decipher the miRNAs landscape in sweet cherry fruit. A total of 157 known miRNAs belonging to 50 families and 55 putative novel miRNAs were found. Target genes of the miRNAs were predicted and genes involved in fruit ripening were found, including F-box proteins and TFs such as SPL, TCP, NAC, MYB, ARF and AP2/ERF. And these target genes were further confirmed by degradome sequencing. A regulatory network model was constructed to uncover the miRNAs and their targets involved in fruit ripening and senescence. Importantly, elevated carbon dioxide can significantly postpone the ripening and senescence of sweet cherry fruit and the differentially expressed miRNAs exposed to CO2 were identified. These miRNAs included miR482j, miR6275, miR164, miR166, miR171, miR393, miR858, miR3627a, miR6284, miR6289 and miR7122b, and some of their functions were linked to fruit ripening. This study was the first report to profile miRNAs in sweet cherry fruit and it would provide more information for further study of miRNA roles in the ripening processes and their regulation mechanism underlying the effects of high carbon dioxide treatment on fruit ripening.
Collapse
Affiliation(s)
- Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- National R&D Center For Fruit Processing, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China
| | - Wensheng Li
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- National R&D Center For Fruit Processing, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China
| | - Hong Chang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- National R&D Center For Fruit Processing, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China
| | - Jiahua Zhou
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- National R&D Center For Fruit Processing, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kaichun Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
- National R&D Center For Fruit Processing, Beijing, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China.
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China.
| | - Baogang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
- National R&D Center For Fruit Processing, Beijing, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China.
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China.
| |
Collapse
|
411
|
Shahbaz M, Pilon M. Conserved Cu-MicroRNAs in Arabidopsis thaliana Function in Copper Economy under Deficiency. PLANTS 2019; 8:plants8060141. [PMID: 31146453 PMCID: PMC6631055 DOI: 10.3390/plants8060141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
Copper (Cu) is a micronutrient for plants. Three small RNAs, which are up-regulated by Cu deficiency and target transcripts for Cu proteins, are among the most conserved microRNAs in plants. It was hypothesized that these Cu-microRNAs help save Cu for the most essential Cu-proteins under deficiency. Testing this hypothesis has been a challenge due to the redundancy of the Cu microRNAs and the properties of the regulatory circuits that control Cu homeostasis. In order to investigate the role of Cu-microRNAs in Cu homeostasis during vegetative growth, we used a tandem target mimicry strategy to simultaneously inhibit the function of three conserved Cu-microRNAs in Arabidopsis thaliana. When compared to wild-type, transgenic lines that express the tandem target mimicry construct showed reduced Cu-microRNA accumulation and increased accumulation of transcripts that encode Cu proteins. As a result, these mimicry lines showed impaired photosynthesis and growth compared to wild type on low Cu, which could be ascribed to a defect in accumulation of plastocyanin, a Cu-containing photosynthetic electron carrier, which is itself not a Cu-microRNA target. These data provide experimental support for a Cu economy model where the Cu-microRNAs together function to allow maturation of essential Cu proteins under impending deficiency.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Biology Department, Colorado State University, Fort Collins, CO 80523-1878, USA.
| | - Marinus Pilon
- Biology Department, Colorado State University, Fort Collins, CO 80523-1878, USA.
| |
Collapse
|
412
|
Li Y, Cui W, Wang R, Lin M, Zhong Y, Sun L, Qi X, Fang J. MicroRNA858-mediated regulation of anthocyanin biosynthesis in kiwifruit (Actinidia arguta) based on small RNA sequencing. PLoS One 2019; 14:e0217480. [PMID: 31120996 PMCID: PMC6532936 DOI: 10.1371/journal.pone.0217480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/13/2019] [Indexed: 11/19/2022] Open
Abstract
As important regulators, miRNAs could play pivotal roles in regulation of fruit coloring. Actinidia arguta is a newly emerged fruit tree with extensively application prospects. However, miRNAs involved in A. arguta fruit coloring are unknown. In this study, A. arguta fruit were investigated at three developmental stages by small RNAs high-throughput sequencing. A total of 482 conserved miRNAs corresponding to 526 pre-miRNAs and 581 novel miRNAs corresponding to 619 pre-miRNAs were grouped into 46 miRNA families. Target gene prediction and analysis revealed that miR858, a strongly candidate miRNA, was involved in anthocyanin biosynthesis in which contributes to fruit coloring. The anthocyanin level was determined in three A. arguta cultivars by UPLC-MS/MS (ultra-performance liquid chromatography coupled with tandem mass spectrometry). In addition, qPCR (quantitative real-time PCR), cluster analysis were conducted as well as correlation analysis. All results were combined to propose a model in which describes an association of miRNA and anthocyanin biosynthesis in A. arguta. The data presented herein is the first report on miRNA profile analysis in A. arguta, which can provide valuable information for further research into the regulation of the miRNAs in anthocyanin biosynthesis and fruit coloring.
Collapse
Affiliation(s)
- Yukuo Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, P.R. China
| | - Wen Cui
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, P.R. China
| | - Ran Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, P.R. China
| | - Miaomiao Lin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, P.R. China
| | - Yunpeng Zhong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, P.R. China
| | - Leiming Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, P.R. China
| | - Xiujuan Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, P.R. China
- * E-mail: (JF); (XQ)
| | - Jinbao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, P.R. China
- * E-mail: (JF); (XQ)
| |
Collapse
|
413
|
Farhat S, Jain N, Singh N, Sreevathsa R, Dash PK, Rai R, Yadav S, Kumar P, Sarkar AK, Jain A, Singh NK, Rai V. CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Semin Cell Dev Biol 2019; 96:91-99. [PMID: 31075379 DOI: 10.1016/j.semcdb.2019.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Crop productivity in rice is harshly limited due to high concentration of salt in the soil. To understand the intricacies of the mechanism it is important to unravel the key pathways operating inside the plant cell. Emerging state-of-the art technologies have provided the tools to discover the key components inside the plant cell for salt tolerance. Among the molecular entities, transcription factors and/or other important components of sensing and signaling cascades have been the attractive targets and the role of NHX and SOS1 transporters amply described. Not only marker assisted programs but also transgenic approaches by using reverse genetic strategies (knockout or knockdown) or overexpression have been extensively used to engineer rice crop. CRISPR/Cas is an attractive paradigm and provides the feasibility for manipulating several genes simultaneously. Here, in this review we highlight some of the molecular entities that could be potentially targeted for generating rice amenable to sustain growth under high salinity conditions by employing CRISPR/Cas. We also try to address key questions for rice salt stress tolerance other than what is already known.
Collapse
Affiliation(s)
- Sufia Farhat
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Neha Jain
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Nisha Singh
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Rohini Sreevathsa
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Prasanta K Dash
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Rhitu Rai
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Pramod Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Ajay Jain
- Department of Biotechnology, Amity University, Jaipur, India.
| | - Nagendra K Singh
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Vandna Rai
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| |
Collapse
|
414
|
Conserved miR396b-GRF Regulation Is Involved in Abiotic Stress Responses in Pitaya ( Hylocereus polyrhizus). Int J Mol Sci 2019; 20:ijms20102501. [PMID: 31117184 PMCID: PMC6566180 DOI: 10.3390/ijms20102501] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/05/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNA396 (miR396) is a conserved microRNA family that targets growth-regulating factors (GRFs), which play significant roles in plant growth and stress responses. Available evidence justifies the idea that miR396-targeted GRFs have important functions in many plant species; however, no genome-wide analysis of the pitaya (Hylocereus polyrhizus) miR396 gene has yet been reported. Further, its biological functions remain elusive. To uncover the regulatory roles of miR396 and its targets, the hairpin sequence of pitaya miR396b and the open reading frame (ORF) of its target, HpGRF6, were isolated from pitaya. Phylogenetic analysis showed that the precursor miR396b (MIR396b) gene of plants might be clustered into three major groups, and, generally, a more recent evolutionary relationship in the intra-family has been demonstrated. The sequence analysis indicated that the binding site of hpo-miR396b in HpGRF6 is located at the conserved motif which codes the conserved "RSRKPVE" amino acid in the Trp-Arg-Cys (WRC) region. In addition, degradome sequencing analysis confirmed that four GRFs (GRF1, c56908.graph_c0; GRF4, c52862.graph_c0; GRF6, c39378.graph_c0 and GRF9, c54658.graph_c0) are hpo-miR396b targets that are regulated by specific cleavage at the binding site between the 10th and 11th nucleotides from the 5' terminus of hpo-miR396b. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that hpo-miR396b is down-regulated when confronted with drought stress (15% polyethylene glycol, PEG), and its expression fluctuates under other abiotic stresses, i.e., low temperature (4 ± 1 °C), high temperature (42 ± 1 °C), NaCl (100 mM), and abscisic acid (ABA; 0.38 mM). Conversely, the expression of HpGRF6 showed the opposite trend to exposure to these abiotic stresses. Taken together, hpo-miR396b plays a regulatory role in the control of HpGRF6, which might influence the abiotic stress response of pitaya. This is the first documentation of this role in pitaya and improves the understanding of the molecular mechanisms underlying the tolerance to drought stress in this fruit.
Collapse
|
415
|
Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses 2019; 11:v11050448. [PMID: 31100912 PMCID: PMC6563508 DOI: 10.3390/v11050448] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022] Open
Abstract
The RNA interference (RNAi) pathway is a potent antiviral defense mechanism in plants and invertebrates, in response to which viruses evolved suppressors of RNAi. In mammals, the first line of defense is mediated by the type I interferon system (IFN); however, the degree to which RNAi contributes to antiviral defense is still not completely understood. Recent work suggests that antiviral RNAi is active in undifferentiated stem cells and that antiviral RNAi can be uncovered in differentiated cells in which the IFN system is inactive or in infections with viruses lacking putative viral suppressors of RNAi. In this review, we describe the mechanism of RNAi and its antiviral functions in insects and mammals. We draw parallels and highlight differences between (antiviral) RNAi in these classes of animals and discuss open questions for future research.
Collapse
|
416
|
Ramesh SV, Govindasamy V, Rajesh MK, Sabana AA, Praveen S. Stress-responsive miRNAome of Glycine max (L.) Merrill: molecular insights and way forward. PLANTA 2019; 249:1267-1284. [PMID: 30798358 DOI: 10.1007/s00425-019-03114-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Analysis of stress-associated miRNAs of Glycine max (L.) Merrill reveals wider ramifications of small RNA-mediated (conserved and legume-specific miRNAs) gene regulatory foot prints in molecular adaptive responses. MicroRNAs (miRNAs) are indispensable components of gene regulatory mechanism of plants. Soybean is a crop of immense commercial potential grown worldwide for its edible oil and soy meal. Intensive research efforts, using the next generation sequencing and bioinformatics techniques, have led to the identification and characterization of numerous small RNAs, especially microRNAs (miRNAs), in soybean. Furthermore, studies have unequivocally demonstrated the significance of miRNAs during the developmental processes and various stresses in soybean. In this review, we summarize the current state of understanding of miRNA-based abiotic and biotic stress responses in soybean. In addition, the molecular insights gained from the stress-related soybean miRNAs have been compared to the miRNAs of other crops, especially legumes, and the core commonalities have been highlighted, though differences among them were not ignored. Nature of response of soybean-derived conserved miRNAs during various stresses was also analyzed to gain deeper insights regarding sRNAome-based defense responses. This review further provides way forward in legume small RNA transcriptomics based on the adaptive responses of soybean and other legume-derived miRNAs.
Collapse
Affiliation(s)
- S V Ramesh
- ICAR-Indian Institute of Soybean Research (ICAR-IISR), Indore, Madhya Pradesh, 452001, India.
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India.
| | - V Govindasamy
- ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India
| | - M K Rajesh
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India
| | - A A Sabana
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India
| | - Shelly Praveen
- ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India
| |
Collapse
|
417
|
Genome-wide identification and characterization of the metal tolerance protein (MTP) family in grape ( Vitis vinifera L.). 3 Biotech 2019; 9:199. [PMID: 31065499 DOI: 10.1007/s13205-019-1728-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Metal tolerance proteins (MTPs) play an important role in the transport of metals at the cellular, tissue and whole plant levels. In the present study, 11 MTP genes were identified and these clustered in three major sub-families Fe/Zn-MTP, Zn-MTP, and Mn-MTP, and seven groups, which are similar to the grouping of MTP genes in both Arabidopsis and rice. Vitis vinifera metal tolerance proteins (VvMTP) ranged from 366 to 1092 amino acids, were predicted to be located in the cell vacuole, and had four to six putative TMDs, except for VvtMTP12 and VvMTP1. The VvMTPs had putative cation diffusion facilitator (CDF) domains and the putative Mn-MTPs also had zinc transporter dimerization domains (ZD-domains). V. vinifera Mn-MTPs had gene structures and motif distributions similar to those of the Fe/Zn-MTP and Zn-MTP sub-families. The upstream regions of VvMTP genes had variable frequencies of cis-regulatory elements that could indicate regulation at different developmental stages and/or differential regulation in response to stress. Comparison of the VvMTP coding sequences with known miRNAs found in various plant species indicated the presence of 13 putative miRNAs, with 7 of these associated with VvMTPs. Temporal and spatial expression profiling indicates a potential role for VvMTP genes during growth and development in grape plants, as well as the involvement of these genes in plant responses to environmental stress, especially osmotic stress. The data generated from this study provides a basis for further investigation of the roles of MTP genes in grapes.
Collapse
|
418
|
Song X, Li Y, Cao X, Qi Y. MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:489-525. [PMID: 30848930 DOI: 10.1146/annurev-arplant-050718-100334] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
MicroRNAs (miRNAs) are 20-24 nucleotide noncoding RNAs abundant in plants and animals. The biogenesis of plant miRNAs involves transcription of miRNA genes, processing of primary miRNA transcripts by DICER-LIKE proteins into mature miRNAs, and loading of mature miRNAs into ARGONAUTE proteins to form miRNA-induced silencing complex (miRISC). By targeting complementary sequences, miRISC negatively regulates gene expression, thereby coordinating plant development and plant-environment interactions. In this review, we present and discuss recent updates on the mechanisms and regulation of miRNA biogenesis, miRISC assembly and actions as well as the regulatory roles of miRNAs in plant developmental plasticity, abiotic/biotic responses, and symbiotic/parasitic interactions. Finally, we suggest future directions for plant miRNA research.
Collapse
Affiliation(s)
- Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
419
|
Dudink E, Florijn B, Weijs B, Duijs J, Luermans J, Peeters F, Schurgers L, Wildberger J, Schotten U, Bijkerk R, Crijns HJ, van Zonneveld AJ. Vascular Calcification and not Arrhythmia in Idiopathic Atrial Fibrillation Associates with Sex Differences in Diabetic Microvascular Injury miRNA Profiles. Microrna 2019; 8:127-134. [PMID: 30465521 DOI: 10.2174/2211536608666181122125208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/17/2018] [Accepted: 11/16/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Atrial Fibrillation (AF) in patients without concomitant cardiovascular pathophysiological disease, is called idiopathic Atrial Fibrillation (iAF). Nonetheless, iAF patients have often times subclinical coronary (micro) vascular dysfunction and, particularly in women, a higher prevalence of subsequent cardiovascular comorbidities. Previously, we identified a plasma miRNA association with diabetes and microvascular injury in Diabetic Nephropathy (DN) patients. Therefore, in this study we assessed whether plasma levels of these diabetic, microvascular injury associated miRNAs reflect microvascular integrity in iAF patients, associated with the presence of paroxysmal arrhythmia or instead are determined by concealed coronary artery disease. METHODS Circulating levels of a pre-selected set of diabetic, (micro) vascular injury associated miRNAs, were measured in 59 iAF patients compared to 176 Sinus Rhythm (SR) controls. Furthermore, the presence of coronary artery and aortic calcification in each patient was assessed using Cardiac Computed Tomography Angiography (CCTA). RESULTS Paroxysmal arrhythmia in iAF patients did not result in significant miRNA expression profile differences in iAF patients compared to SR controls. Nonetheless, coronary artery calcification (CAC) was associated with higher levels of miRNAs-103, -125a-5p, -221 and -223 in men. In women, CAC was associated with higher plasma levels of miRNA-27a and miRNA-126 and correlated with Agatston scores. Within the total population, ascending Aortic Calcification (AsAC) patients displayed increased plasma levels of miRNA-221, while women, in particular, demonstrated a Descending Aorta Calcification (DAC) associated increase in miRNA-212 levels. CONCLUSIONS Diabetic microvascular injury associated miRNAs in iAF are associated with subclinical coronary artery disease in a sex-specific way and confirm the notion that biological sex identifies iAF subgroups that may require dedicated clinical care.
Collapse
Affiliation(s)
- Elton Dudink
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Barend Florijn
- Department of Internal Medicine (Nephrology), Leiden University Medical Center and Einthoven Laboratory for Vascular and Regenerative Medicine, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - Bob Weijs
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Jacques Duijs
- Department of Internal Medicine (Nephrology), Leiden University Medical Center and Einthoven Laboratory for Vascular and Regenerative Medicine, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - Justin Luermans
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Frederique Peeters
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Leon Schurgers
- Department of Biochemistry,Maastricht University and Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6229 ER, Maastricht, Netherlands
| | - Joachim Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Ulrich Schotten
- Department of Physiology, Maastricht University and Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6229 ER, Maastricht, Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center and Einthoven Laboratory for Vascular and Regenerative Medicine, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - Harry J Crijns
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center and Einthoven Laboratory for Vascular and Regenerative Medicine, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| |
Collapse
|
420
|
Guo J, Wang Q, Liu L, Ren S, Li S, Liao P, Zhao Z, Lu C, Jiang B, Sunkar R, Zheng Y. Analysis of microRNAs, phased small interfering RNAs and their potential targets in Rosarugosa Thunb. BMC Genomics 2019; 19:983. [PMID: 30999850 PMCID: PMC7394236 DOI: 10.1186/s12864-018-5325-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that play important roles by regulating other genes. Rosa rugosa Thunb. is an important ornamental and edible plant, yet there are only a few studies on the miRNAs and their functions in R. rugosa. RESULTS We sequenced 10 samll RNA profiles from the roots, petals, pollens, stamens, and leaves and 4 RNA-seq profiles in leaves and petals to analysis miRNA, phasiRNAs and mRNAs in R. rugosa. In addition, we acquired a degradome sequencing profile from leaf of R. rugosa to identify miRNA and phasiRNA targets using the SeqTar algorithm. We have identified 321 conserved miRNA homologs including primary transcripts for 25 conserved miRNAs, and 22 novel miRNAs. We identified 592 putative targets of the conserved miRNAs or tasiRNAs that showed significant accumulations of degradome reads. We found differential expression patterns of conserved miRNAs in five different tissues of R. rugosa. We identified three hundred and thirty nine 21 nucleotide (nt) PHAS loci, and forty nine 24 nt PHAS loci, respectively. Our results suggest that miR482 triggers generations of phasiRNAs by targeting nucleotide-binding, leucine-rich repeat (NB-LRR) disease resistance genes in R. rugosa. Our results also suggest that the deregulated genes in leaves and petals are significantly enriched in GO terms and KEGG pathways related to metabolic processes and photosynthesis. CONCLUSIONS These results significantly enhanced our knowledge of the miRNAs and phasiRNAs, as well as their potential functions, in R. rugosa.
Collapse
Affiliation(s)
- Junqiang Guo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qingyi Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shuchao Ren
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shipeng Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Peiran Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhigang Zhao
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chenyu Lu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bingbing Jiang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, 74078, Oklahoma, USA
| | - Yun Zheng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
421
|
Alzahrani SM, Alaraidh IA, Khan MA, Migdadi HM, Alghamdi SS, Alsahli AA. Identification and Characterization of Salt-Responsive MicroRNAs in Vicia faba by High-Throughput Sequencing. Genes (Basel) 2019; 10:E303. [PMID: 30999691 PMCID: PMC6523927 DOI: 10.3390/genes10040303] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Salt stress has detrimental effects on plant growth and development. MicroRNAs (miRNAs) are a class of noncoding RNAs that are involved in post-transcriptional gene expression regulation. In this study, small RNA sequencing was employed to identify the salt stress-responsive miRNAs of the salt-sensitive Hassawi-3 and the salt-tolerant ILB4347 genotypes of faba bean, growing under salt stress. A total of 527 miRNAs in Hassawi-3 plants, and 693 miRNAs in ILB4347 plants, were found to be differentially expressed. Additionally, 284 upregulated and 243 downregulated miRNAs in Hassawi-3, and 298 upregulated and 395 downregulated miRNAs in ILB4347 plants growing in control and stress conditions were recorded. Target prediction and annotation revealed that these miRNAs regulate specific salt-responsive genes, which primarily included genes encoding transcription factors and laccases, superoxide dismutase, plantacyanin, and F-box proteins. The salt-responsive miRNAs and their targets were functionally enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, which showed that the miRNAs were involved in salt stress-related biological pathways, including the ABC transporter pathway, MAPK signaling pathway, plant hormone signal transduction, and the phosphatidylinositol signaling system, among others, suggesting that the miRNAs play an important role in the salt stress tolerance of the ILB4347 genotype. These results offer a novel understanding of the regulatory role of miRNAs in the salt response of the salt-tolerant ILB4347 and the salt-sensitive Hassawi-3 faba bean genotypes.
Collapse
Affiliation(s)
- Saud M Alzahrani
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Muhammad A Khan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hussein M Migdadi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
- Plant Biotechnology Department, National Agricultural Research Center, Baq'a 19381, Jordan.
| | - Salem S Alghamdi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Abdluaziz A Alsahli
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
422
|
Zapalska-Sozoniuk M, Chrobak L, Kowalczyk K, Kankofer M. Is it useful to use several "omics" for obtaining valuable results? Mol Biol Rep 2019; 46:3597-3606. [PMID: 30989558 DOI: 10.1007/s11033-019-04793-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/02/2019] [Indexed: 01/23/2023]
Abstract
The integration of cell communication and the transfer of signals from stimuli via transcription to translation and further to activation of new protein is crucial for appropriate metabolism and function of living organisms. The overall elucidation and the examination of these complex processes require multistep laboratory approaches in order to obtain results which will not only detect particular stage but also indicate the mechanisms lying upon this process. Such results will be reliable because they will cover multidirectional methods and approaches. The analysis of currently available results already provided with the conclusion that often single omics approach does not correspond with other expected information and may bring misinterpretations. That is why the integration of several "omics" is useful for searching entire explanations and answers as well as appropriate interpretation of obtained complex results. The hypothesis was stated that "from transcriptomics can not be concluded to proteomics". This review focuses on the reasons for the integration of transcriptomic, proteomic and other-omics analysis. Moreover it also describes the examples of clinical meanings and mentions some methods used in these approaches.
Collapse
Affiliation(s)
- Magdalena Zapalska-Sozoniuk
- Departament of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka Street 12, 20-033, Lublin, Poland
| | - Lukasz Chrobak
- Departament of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka Street 12, 20-033, Lublin, Poland
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| | - Marta Kankofer
- Departament of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka Street 12, 20-033, Lublin, Poland.
| |
Collapse
|
423
|
Tang F, Chu L, Shu W, He X, Wang L, Lu M. Selection and validation of reference genes for quantitative expression analysis of miRNAs and mRNAs in Poplar. PLANT METHODS 2019; 15:35. [PMID: 30996729 PMCID: PMC6451301 DOI: 10.1186/s13007-019-0420-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) is a rapid and sensitive approach to identify miRNA and protein-coding gene expression in plants. However, because of the specially designated reverse transcription and shorter PCR products, very few reference genes have been identified for the quantitative analysis of miRNA expression in plants, and different internal reference genes are needed to normalize the expression of miRNAs and mRNA genes respectively. Therefore, it is particularly important to select the suitable common reference genes for normalization of quantitative PCR of miRNA and mRNA. RESULTS In this study, a modified reverse transcription PCR protocol was adopted for selecting and validating universal internal reference genes of mRNAs and miRNAs. Eight commonly used reference genes, four stably expressed novel genes in Populus tremula, three small noncoding RNAs and three conserved miRNAs were selected as candidate genes, and the stability of their expression was examined across a set of 38 tissue samples from four developmental stages of poplar clone 84K (Populus alba × Populus glandulosa). The expression stability of these candidate genes was evaluated systematically by four algorithms: geNorm, NormFinder, Bestkeeper and DeltaCt. The results showed that Eukaryotic initiation factor 4A III (EIF4A) and U6-2 were suitable for samples of the callus stage; U6-1 and U6-2 were best for the seedling stage; Protein phosphatase 2A-2 (PP2A-2) and U6-1 were best for the plant stage; and Protein phosphatase 2A-2 (PP2A-2) and Oligouridylate binding protein 1B (UBP) were the best reference genes in the adventitious root (AR) regeneration stage. CONCLUSIONS The purpose of this study was to identify the most appropriate reference genes for qRT-PCR of miRNAs and mRNAs in different tissues at several developmental stages in poplar. U6-1, EIF4A and PP2A-2 were the three most appropriate reference genes for qRT-PCR normalization of miRNAs and mRNAs during the plant regeneration process, and PP2A-2 and UBP represent the best reference genes in the AR regeneration stage of poplar. This work will benefit future studies of expression and function analysis of miRNAs and their target genes in poplar.
Collapse
Affiliation(s)
- Fang Tang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Liwei Chu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Wenbo Shu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuejiao He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
424
|
Zhang Y, Zeng Z, Chen C, Li C, Xia R, Li J. Genome-wide characterization of the auxin response factor (ARF) gene family of litchi ( Litchi chinensis Sonn.): phylogenetic analysis, miRNA regulation and expression changes during fruit abscission. PeerJ 2019; 7:e6677. [PMID: 30976465 PMCID: PMC6451834 DOI: 10.7717/peerj.6677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 11/27/2022] Open
Abstract
Auxin response factors (ARFs) play fundamental roles in modulating various biological processes including fruit development and abscission via regulating the expression of auxin response genes. Currently, little is known about roles of ARFs in litchi (Litchi chinensis Sonn.), an economically important subtropical fruit tree whose production is suffering from fruit abscission. In this study, a genome-wide analysis of ARFs was conducted for litchi, 39 ARF genes (LcARFs) were identified. Conserved domain analysis showed that all the LcARFs identified have the signature B3 DNA-binding (B3) and ARF (Aux_rep) domains, with only 23 members having the dimerization domain (Aux_IAA). The number of exons in LcARF genes ranges from 2 to 16, suggesting a large variation for the gene structure of LcARFs. Phylogenetic analysis showed that the 39 LcARFs could be divided into three main groups: class I, II, and III. In total, 23 LcARFs were found to be potential targets of small RNAs, with three conserved and one novel miRNA-ARF (miRN43-ARF9) regulatory pathways discovered in litchi. Expression patterns were used to evaluate candidate LcARFs involved in various developmental processes, especially in flower formation and organ abscission. The results revealed that most ARF genes likely acted as repressors in litchi fruit abscission, that is, ARF2D/2E, 7A/7B, 9A/9B, 16A/16B, while a few LcARFs, such as LcARF5A/B, might be positively involved in this process. These findings provide useful information and resources for further studies on the roles of ARF genes in litchi growth and development, especially in the process of fruit abscission.
Collapse
Affiliation(s)
- Yanqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Litchi Engineering Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Litchi Engineering Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Litchi Engineering Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Litchi Engineering Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Litchi Engineering Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Litchi Engineering Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
425
|
Cerruti E, Comino C, Acquadro A, Marconi G, Repetto AM, Pisanu AB, Pilia R, Albertini E, Portis E. Analysis of DNA Methylation Patterns Associated with In Vitro Propagated Globe Artichoke Plants Using an EpiRADseq-Based Approach. Genes (Basel) 2019; 10:E263. [PMID: 30939865 PMCID: PMC6523903 DOI: 10.3390/genes10040263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/16/2023] Open
Abstract
Globe artichoke represents one of the main horticultural species of the Mediterranean basin, and 'Spinoso sardo' is the most widespread and economically relevant varietal type in Sardinia, Italy. In the last decades, in vitro culture of meristematic apices has increased the frequency of aberrant plants in open-field production. These off-type phenotypes showed highly pinnate-parted leaves and late inflorescence budding, and emerged from some branches of the true-to-type 'Spinoso sardo' plants. This phenomenon cannot be foreseen and is reversible through generations, suggesting the occurrence of epigenetic alterations. Here, we report an exploratory study on DNA methylation patterns in off-type/true-to-type globe artichoke plants, using a modified EpiRADseq technology, which allowed the identification of 2,897 differentially methylated loci (DML): 1,998 in CG, 458 in CHH, and 441 in CHG methylation contexts of which 720, 88, and 152, respectively, were in coding regions. Most of them appeared involved in primary metabolic processes, mostly linked to photosynthesis, regulation of flower development, and regulation of reproductive processes, coherently with the observed phenotype. Differences in the methylation status of some candidate genes were integrated with transcriptional analysis to test whether these two regulation levels might interplay in the emergence and spread of the 'Spinoso sardo' non-conventional phenotype.
Collapse
Affiliation(s)
- Elisa Cerruti
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| | - Cinzia Comino
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| | - Gianpiero Marconi
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, 06121 Perugia, Italy.
| | - Anna Maria Repetto
- Agris Sardegna-Agenzia Regionale per la Ricerca in Agricoltura-Servizio Ricerca sui Sistemi Colturali Erbacei, 09123 Cagliari, Italy.
| | - Anna Barbara Pisanu
- Agris Sardegna-Agenzia Regionale per la Ricerca in Agricoltura-Servizio Ricerca sui Sistemi Colturali Erbacei, 09123 Cagliari, Italy.
| | - Roberto Pilia
- Agris Sardegna-Agenzia Regionale per la Ricerca in Agricoltura-Servizio Ricerca sui Sistemi Colturali Erbacei, 09123 Cagliari, Italy.
| | - Emidio Albertini
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, 06121 Perugia, Italy.
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| |
Collapse
|
426
|
Awasthi JP, Chandra T, Mishra S, Parmar S, Shaw BP, Nilawe PD, Chauhan NK, Sahoo S, Panda SK. Identification and characterization of drought responsive miRNAs in a drought tolerant upland rice cultivar KMJ 1-12-3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:62-74. [PMID: 30738218 DOI: 10.1016/j.plaphy.2019.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Shortfall of rain that creates drought like situation in non-irrigated agriculture system often limits rice production, necessitating introduction of drought tolerance trait into the cultivar of interest. The mechanism governing drought tolerance is, however, largely unknown, particularly the involvement of miRNAs, the master regulators of biochemical events. In this regard, response study on a drought tolerant rice variety KMJ 1-12-3 to 20% PEG (osmolality- 315 mOsm/kg) as drought stress revealed significant changes in abundance of several conserved miRNAs targeting transcription factors like homeodomain-leucine zipper, MADS box family protein, C2H2 zinc finger protein and Myb, well known for their importance in drought tolerance in plants. The response study also revealed significant PEG-induced decrease in abundance of the miRNAs targeting cyclin A, cyclin-dependent kinase, guanine nucleotide exchange factor, GTPase-activating protein, 1-aminocyclopropane-1-carboxylic acid oxidase and indole-3-acetic beta-glucosyl transferase indicating miRNA-regulated role of the cell cycle regulators, G-protein signalling and the plant hormones ethylene and IAA in drought tolerance in plants. The study confirmed the existence of four novel miRNAs, including osa-miR12470, osa-miR12471, osa-miR12472 and osa-miR12473, and the targets of three of them could be successfully validated. The PEG-induced decrease in abundance of the novel miRNAs osa-miR12470 and osa-miR12473 targeting RNA dependent RNA polymerase and equilibrative nucleoside transporter, respectively suggested an overall increase in both degradation and synthesis of nucleic acids in plants challenged with drought stress. The drought-responsive miRNAs identified in the study may be proved useful in introducing the trait in the rice cultivars of choice by manipulation of their cellular abundance.
Collapse
Affiliation(s)
- Jay Prakash Awasthi
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| | - Tilak Chandra
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Sagarika Mishra
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Shaifaly Parmar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Birendra Prasad Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Pravin Daulat Nilawe
- Thermo Fisher Scientific India Pvt. Ltd, 403/404 B-Wing, Delphi, Hiranandani Business Park, Powai, Mumbai, 400076, India.
| | - Neeraj Kumar Chauhan
- Thermo Fisher Scientific India Pvt. Ltd, 403/404 B-Wing, Delphi, Hiranandani Business Park, Powai, Mumbai, 400076, India.
| | - Smita Sahoo
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| | - Sanjib Kumar Panda
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
427
|
Yan L, Fan G, Li X. Genome-wide analysis of three histone marks and gene expression in Paulownia fortunei with phytoplasma infection. BMC Genomics 2019; 20:234. [PMID: 30898112 PMCID: PMC6429711 DOI: 10.1186/s12864-019-5609-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Paulownia withes'-broom (PaWB) disease caused by phytoplasma is a serious infectious disease for Paulownia. However, the underlying molecular pathogenesis is not fully understood. Recent studies have demonstrated that histone modifications could play a role in plant defense responses to pathogens. But there is still no available genome-wide histone modification data in non-model ligneous species infected with phytoplasma. RESULTS Here, we provided the first genome-wide profiles of three histone marks (H3K4me3, H3K36me3 and H3K9ac) in Paulownia fortunei under phytoplasma stress by using chromatin immunoprecipitation sequencing (ChIP-Seq). We found that H3K4me3, H3K36me3 and H3K9ac were mainly enriched in the genic regions in P. fortunei with (PFI) and without (PF) phytoplasma infection. ChIP-Seq analysis revealed 1738, 986, and 2577 genes were differentially modified by H3K4me3, H3K36me3 and H3K9ac marks in PFI under phytoplasma infection, respectively. The functional analysis of these genes suggested that most of them were mainly involved in metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, plant-pathogen interaction and plant hormone signal transduction. In addition, the combinational analysis of ChIP-Seq and RNA-Seq showed that differential histone methylation and acetylation only affected a small subset of phytoplasma-responsive genes. CONCLUSIONS Taken together, this is the first report of integrated analysis of histone modifications and gene expression involved in Paulownia-phytoplasma interaction. Our results will provide the valuable resources for the mechanism studies of gene regulation in non-model plants upon pathogens attack.
Collapse
Affiliation(s)
- Lijun Yan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002 People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002 People’s Republic of China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002 People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002 People’s Republic of China
| | - Xiaoyu Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002 People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002 People’s Republic of China
| |
Collapse
|
428
|
Hong WJ, Kim YJ, Chandran AKN, Jung KH. Infrastructures of systems biology that facilitate functional genomic study in rice. RICE (NEW YORK, N.Y.) 2019; 12:15. [PMID: 30874968 PMCID: PMC6419666 DOI: 10.1186/s12284-019-0276-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/06/2019] [Indexed: 05/08/2023]
Abstract
Rice (Oryza sativa L.) is both a major staple food for the worldwide population and a model crop plant for studying the mode of action of agronomically valuable traits, providing information that can be applied to other crop plants. Due to the development of high-throughput technologies such as next generation sequencing and mass spectrometry, a huge mass of multi-omics data in rice has been accumulated. Through the integration of those data, systems biology in rice is becoming more advanced.To facilitate such systemic approaches, we have summarized current resources, such as databases and tools, for systems biology in rice. In this review, we categorize the resources using six omics levels: genomics, transcriptomics, proteomics, metabolomics, integrated omics, and functional genomics. We provide the names, websites, references, working states, and number of citations for each individual database or tool and discuss future prospects for the integrated understanding of rice gene functions.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | | | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
429
|
Identification and expression profiling of miRNAs in two color variants of carrot (Daucus carota L.) using deep sequencing. PLoS One 2019; 14:e0212746. [PMID: 30845212 PMCID: PMC6405255 DOI: 10.1371/journal.pone.0212746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
microRNAs represent small endogenous RNAs which are known to play a crucial role in various plant metabolic processes. Carrot being an important vegetable crop, represents one of the richest sources of carotenoids and anthocyanins. Most of the studies on microRNAs have been conducted in the aerial parts of the plants. However, carrot has the rare distinction of storing these compounds in roots. Therefore, carrot represents a good model system to unveil the regulatory roles of miRNAs in the underground edible part of the plant. For the first time, we report the genome wide identification and expression profiling of miRNAs in two contrasting color variants of carrot namely Orange Red and Purple Black using RNA-seq. Illumina sequencing resulted in the generation of 25.5M and 18.9M reads in Orange Red and Purple Black libraries, respectively. In total, 144 and 98 (read count >10), conserved microRNAs and 36 and 66 novel microRNAs were identified in Orange Red and Purple Black, respectively. Functional categorization and differential gene expression revealed the presence of several miRNA genes targeting various secondary metabolic pathways including carotenoid and anthocyanin biosynthetic pathways in the two libraries. 11 known and 2 novel microRNAs were further validated using Stem-Loop PCR and qRT-PCR. Also, target validation was performed for selected miRNA genes using RLM-RACE approach. The present work has laid a foundation towards understanding of various metabolic processes, particularly the color development in carrot. This information can be further employed in targeted gene expression for increasing the carotenoid and anthocyanin content in crop plants.
Collapse
|
430
|
Seo E, Kim T, Park JH, Yeom SI, Kim S, Seo MK, Shin C, Choi D. Genome-wide comparative analysis in Solanaceous species reveals evolution of microRNAs targeting defense genes in Capsicum spp. DNA Res 2019; 25:561-575. [PMID: 30060137 PMCID: PMC6289781 DOI: 10.1093/dnares/dsy025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/12/2018] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) play roles in various biological processes in plants including growth, development, and disease resistance. Previous studies revealed that some plant miRNAs produce secondary small interfering RNAs (siRNAs) such as phased, secondary siRNAs (phasiRNAs), and they regulate a cascade of gene expression. We performed a genome-wide comparative analysis of miRNAs in Solanaceous species (pepper, tomato, and potato), from an evolutionary perspective. Microsynteny of miRNAs was analysed based on the genomic loci and their flanking genes and most of the well-conserved miRNA genes maintained microsynteny in Solanaceae. We identified target genes of the miRNAs via degradome analysis and found that several miRNAs target many genes encoding nucleotide-binding leucine-rich repeat (NLR) or receptor-like proteins (RLPs), which are known to be major players in defense responses. In addition, disease-resistance-associated miRNAs trigger phasiRNA production in pepper, indicating amplification of the regulation of disease-resistance gene families. Among these, miR-n033a-3p, whose target NLRs have been duplicated in pepper, targets more NLRs belonging to specific subgroup in pepper than those in potato. miRNAs targeting resistance genes might have evolved to regulate numerous targets in Solanaceae, following expansion of target resistance genes. This study provides an insight into evolutionary relationship between miRNAs and their target defense genes in plants.
Collapse
Affiliation(s)
- Eunyoung Seo
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Taewook Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Seon-In Yeom
- Division of Applied Life Science (BK21 Plus Program), Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seungill Kim
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Min-Ki Seo
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Chanseok Shin
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
431
|
Comparative genomics reveals origin of MIR159A–MIR159B paralogy, and complexities of PTGS interaction between miR159 and target GA-MYBs in Brassicaceae. Mol Genet Genomics 2019; 294:693-714. [DOI: 10.1007/s00438-019-01540-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
|
432
|
Chen ICK, Satinsky BM, Velicer GJ, Yu YTN. sRNA-pathway genes regulating myxobacterial development exhibit clade-specific evolution. Evol Dev 2019; 21:82-95. [PMID: 30762281 DOI: 10.1111/ede.12281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small non-coding RNAs (sRNAs) control bacterial gene expression involved in a wide range of important cellular processes. In the highly social bacterium Myxococcus xanthus, the sRNA Pxr prevents multicellular fruiting-body development when nutrients are abundant. Pxr was discovered from the evolution of a developmentally defective strain (OC) into a developmentally proficient strain (PX). In OC, Pxr is constitutively expressed and blocks development even during starvation. In PX, one mutation deactivates Pxr allowing development to proceed. We screened for transposon mutants that suppress the OC defect and thus potentially reveal new Pxr-pathway components. Insertions significantly restoring development were found in four genes-rnd, rnhA, stkA and Mxan_5793-not previously associated with an sRNA activity. Phylogenetic analysis suggests that the Pxr pathway was constructed within the Cystobacterineae suborder both by co-option of genes predating the Myxococcales order and incorporation of a novel gene (Mxan_5793). Further, the sequence similarity of rnd, rnhA and stkA homologs relative to M. xanthus alleles was found to decrease greatly among species beyond the Cystobacterineae suborder compared to the housekeeping genes examined. Finally, ecological context differentially affected the developmental phenotypes of distinct mutants, with implications for the evolution of development in variable environments.
Collapse
Affiliation(s)
- I-Chen Kimberly Chen
- Department of Biology, Indiana University, Bloomington, Indiana.,Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland
| | | | - Gregory J Velicer
- Department of Biology, Indiana University, Bloomington, Indiana.,Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Yuen-Tsu Nicco Yu
- Department of Biology, Indiana University, Bloomington, Indiana.,Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland
| |
Collapse
|
433
|
Kumar A, Gautam V, Kumar P, Mukherjee S, Verma S, Sarkar AK. Identification and co-evolution pattern of stem cell regulator miR394s and their targets among diverse plant species. BMC Evol Biol 2019; 19:55. [PMID: 30764768 PMCID: PMC6376759 DOI: 10.1186/s12862-019-1382-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background Micro RNAs (miRNAs), a class of small non-coding RNAs, have been implicated in various aspects of plant development. miR394 is required for shoot apical meristem organization, stem cell maintenance and abiotic stress responses in Arabidopsis, where it functions by negatively regulating the transcript level of target LEAF CURLING RESPONSIVENESS (LCR), which is an F-box protein-coding gene. The evolutionary conservation of stem cell regulatory miR394-LCR module among plants remains elusive. Results Our study has identified 79 miR394 and 43 target sequences across 40 plant species using various homology based search tools and databases, and analysed their co-evolution pattern. We customised an annotation workflow which computationally validates 20 novel miR394s from 14 plant species. Independent phylogenetic trees were reconstructed with precursor MIR394s, mature miR394s, and their target sequences along with complementary miR394 binding sites. The phylogeny revealed that mature sequences of miR394s as well as their targets belonging to the F-box protein encoding gene families, were highly conserved. Though, miR394–3p were complementary to miR394s/miR394–5p, they clustered separately. Conclusion The existence and separate clustering of miR394–3p and miR394s/miR394–5p indicate their independent regulation. The phylogeny also suggests that miR394s had evolved at the beginning of gymnosperm-angiosperm divergence. Despite strong conservation, some level of sequence variation in miR394s and the complementary binding sites of their targets suggests possible functional diversification of miR394-LCR mediated stem cell regulation in plants. Electronic supplementary material The online version of this article (10.1186/s12862-019-1382-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashutosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pramod Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shalini Mukherjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swati Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
434
|
Zhang S, Hong Z. Mobile RNAs—the magical elf traveling between plant and the associated organisms. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0007-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
435
|
Yu D, Wan Y, Ito H, Ma X, Xie T, Wang T, Shao C, Meng Y. PmiRDiscVali: an integrated pipeline for plant microRNA discovery and validation. BMC Genomics 2019; 20:133. [PMID: 30760208 PMCID: PMC6375137 DOI: 10.1186/s12864-019-5478-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs (miRNAs) constitute a well-known small RNA (sRNA) species with important regulatory roles. To date, several bioinformatics tools have been developed for large-scale prediction of miRNAs based on high-throughput sequencing data. However, some of these tools become invalid without reference genomes, while some tools cannot supply user-friendly outputs. Besides, most of the current tools focus on the importance of secondary structures and sRNA expression patterns for miRNA prediction, while they do not pay attention to miRNA processing for reliability check. Results Here, we reported a pipeline PmiRDiscVali for plant miRNA discovery and partial validation. This pipeline integrated the popular tool miRDeep-P for plant miRNA prediction, making PmiRDiscVali compatible for both reference-based and de novo predictions. To check the prediction reliability, we adopted the concept that the miRNA processing intermediates could be tracked by degradome sequencing (degradome-seq) during the development of PmiRDiscVali. A case study was performed by using the public sequencing data of Dendrobium officinale, in order to show the clear and concise presentation of the prediction results. Conclusion Summarily, the integrated pipeline PmiRDiscVali, featured with degradome-seq data-based validation and vivid result presentation, should be useful for large-scale identification of plant miRNA candidates. Electronic supplementary material The online version of this article (10.1186/s12864-019-5478-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Street 16#, Xiasha, Hangzhou, 310036, People's Republic of China
| | - Ying Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Street 16#, Xiasha, Hangzhou, 310036, People's Republic of China
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Street 16#, Xiasha, Hangzhou, 310036, People's Republic of China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Wenyixi Road 1378#, Hangzhou, 311121, People's Republic of China.
| | - Tingzhang Wang
- Key Laboratory of microbiological technology and Bioinformatics in Zhejiang Province, Hangzhou, 310036, People's Republic of China
| | - Chaogang Shao
- College of Life Sciences, Huzhou University, Huzhou, 313000, People's Republic of China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Street 16#, Xiasha, Hangzhou, 310036, People's Republic of China.
| |
Collapse
|
436
|
Li D, Mou W, Xia R, Li L, Zawora C, Ying T, Mao L, Liu Z, Luo Z. Integrated analysis of high-throughput sequencing data shows abscisic acid-responsive genes and miRNAs in strawberry receptacle fruit ripening. HORTICULTURE RESEARCH 2019; 6:26. [PMID: 30729016 DOI: 10.1038/s41438-018-0100-108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/25/2018] [Accepted: 09/02/2018] [Indexed: 05/25/2023]
Abstract
The perception and signal transduction of the plant hormone abscisic acid (ABA) are crucial for strawberry fruit ripening, but the underlying mechanism of how ABA regulates ripening-related genes has not been well understood. By employing high-throughput sequencing technology, we comprehensively analyzed transcriptomic and miRNA expression profiles simultaneously in ABA- and nordihydroguaiaretic acid (NDGA, an ABA biosynthesis blocker)-treated strawberry fruits with temporal resolution. The results revealed that ABA regulated many genes in different pathways, including hormone signal transduction and the biosynthesis of secondary metabolites. Transcription factor genes belonging to WRKY and heat shock factor (HSF) families might play key roles in regulating the expression of ABA inducible genes, whereas the KNOTTED1-like homeobox protein and Squamosa Promoter-Binding-like protein 18 might be responsible for ABA-downregulated genes. Additionally, 20 known and six novel differentially expressed miRNAs might be important regulators that assist ABA in regulating target genes that are involved in versatile physiological processes, such as hormone balance regulation, pigments formation and cell wall degradation. Furthermore, degradome analysis showed that one novel miRNA, Fa_novel6, could degrade its target gene HERCULES1, which likely contributed to fruit size determination during strawberry ripening. These results expanded our understanding of how ABA drives the strawberry fruit ripening process as well as the role of miRNAs in this process.
Collapse
Affiliation(s)
- Dongdong Li
- 1College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
- 2Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Wangshu Mou
- 1College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Rui Xia
- 3State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642 Guangzhou, P.R. China
| | - Li Li
- 1College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Christopher Zawora
- 2Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Tiejin Ying
- 1College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Linchun Mao
- 1College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Zhongchi Liu
- 2Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Zisheng Luo
- 1College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| |
Collapse
|
437
|
Detection of Histone Modifications Associated with miRNAs. Methods Mol Biol 2019. [PMID: 30701512 DOI: 10.1007/978-1-4939-9042-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The posttranslational modifications of histones and miRNAs are key epigenetic mechanisms participating in the development, growth, and reproduction of plants. Recently, coordination between these two mechanisms has been demonstrated; each mechanism can be controlled by the other for the regulation of several biological processes. For example, the acetylation of histone H3, a key modification for chromatin remodeling and gene activation, has been linked to the actions of miRNA. In this work, we describe a method for the isolation and immunodetection of two posttranslational modifications in the residues of lysine 9 and 27 of H3, which have been associated with long miRNAs in plants.
Collapse
|
438
|
Li D, Mou W, Xia R, Li L, Zawora C, Ying T, Mao L, Liu Z, Luo Z. Integrated analysis of high-throughput sequencing data shows abscisic acid-responsive genes and miRNAs in strawberry receptacle fruit ripening. HORTICULTURE RESEARCH 2019; 6:26. [PMID: 30729016 PMCID: PMC6355886 DOI: 10.1038/s41438-018-0100-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/25/2018] [Accepted: 09/02/2018] [Indexed: 05/04/2023]
Abstract
The perception and signal transduction of the plant hormone abscisic acid (ABA) are crucial for strawberry fruit ripening, but the underlying mechanism of how ABA regulates ripening-related genes has not been well understood. By employing high-throughput sequencing technology, we comprehensively analyzed transcriptomic and miRNA expression profiles simultaneously in ABA- and nordihydroguaiaretic acid (NDGA, an ABA biosynthesis blocker)-treated strawberry fruits with temporal resolution. The results revealed that ABA regulated many genes in different pathways, including hormone signal transduction and the biosynthesis of secondary metabolites. Transcription factor genes belonging to WRKY and heat shock factor (HSF) families might play key roles in regulating the expression of ABA inducible genes, whereas the KNOTTED1-like homeobox protein and Squamosa Promoter-Binding-like protein 18 might be responsible for ABA-downregulated genes. Additionally, 20 known and six novel differentially expressed miRNAs might be important regulators that assist ABA in regulating target genes that are involved in versatile physiological processes, such as hormone balance regulation, pigments formation and cell wall degradation. Furthermore, degradome analysis showed that one novel miRNA, Fa_novel6, could degrade its target gene HERCULES1, which likely contributed to fruit size determination during strawberry ripening. These results expanded our understanding of how ABA drives the strawberry fruit ripening process as well as the role of miRNAs in this process.
Collapse
Affiliation(s)
- Dongdong Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Wangshu Mou
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642 Guangzhou, P.R. China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Christopher Zawora
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| |
Collapse
|
439
|
Su Y, Xiao X, Ling H, Huang N, Liu F, Su W, Zhang Y, Xu L, Muhammad K, Que Y. A dynamic degradome landscape on miRNAs and their predicted targets in sugarcane caused by Sporisorium scitamineum stress. BMC Genomics 2019; 20:57. [PMID: 30658590 PMCID: PMC6339412 DOI: 10.1186/s12864-018-5400-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sugarcane smut is a fungal disease caused by Sporisorium scitamineum. Cultivation of smut-resistant sugarcane varieties is the most effective way to control this disease. The interaction between sugarcane and S. scitamineum is a complex network system. However, to date, there is no report on the identification of microRNA (miRNA) target genes of sugarcane in response to smut pathogen infection by degradome technology. RESULTS TaqMan qRT-PCR detection and enzyme activity determination showed that S. scitamineum rapidly proliferated and incurred significant enzyme activity changes in the reactive oxygen species metabolic pathway and phenylpropanoid metabolic pathway at 2 d and 5 d after inoculation, which was the best time points to study target gene degradation during sugarcane and S. scitamineum interaction. A total of 122.33 Mb of raw data was obtained from degradome sequencing analysis of YC05-179 (smut-resistant) and ROC22 (smut-susceptible) after inoculation. The Q30 of each sample was > 93%, and the sequence used for degradation site analysis exactly matched the sugarcane reference sequence. A total of 309 target genes were predicted in sugarcane, corresponding to 97 known miRNAs and 112 novel miRNAs, and 337 degradation sites, suggesting that miRNAs can efficiently direct cleavage at multiple sites in the predicted target mRNAs. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the predicted target genes were involved in various regulatory processes, such as signal transduction mechanisms, inorganic ion transport and metabolism, defense mechanisms, translation, posttranslational modifications, energy production and conversion, and glycerolipid metabolism. qRT-PCR analysis of the expression level of 13 predicted target genes and their corresponding miRNAs revealed that there was no obvious negative regulatory relationship between miRNAs and their target genes. In addition, a number of putative resistance-related target genes regulated by miRNA-mediated cleavage were accumulated in sugarcane during S. scitamineum infection, suggesting that feedback regulation of miRNAs may be involved in the response of sugarcane to S. scitamineum infection. CONCLUSIONS This study elucidates the underlying response of sugarcane to S. scitamineum infection, and also provides a resource for miRNAs and their predicted target genes for smut resistance improvement in sugarcane.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xinhuan Xiao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ning Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Feng Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuye Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Khushi Muhammad
- Department of Genetics, Hazara University, Mansehra, 21300 Pakistan
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
440
|
Yin Z, Murawska Z, Xie F, Pawełkowicz M, Michalak K, Zhang B, Lebecka R. microRNA response in potato virus Y infected tobacco shows strain-specificity depending on host and symptom severity. Virus Res 2019; 260:20-32. [PMID: 30423361 DOI: 10.1016/j.virusres.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
Abstract
The present study demonstrates how different potato virus Y (PVY) strains affect the miRNA balance in tobacco cv. Samsun. The two prevalent strains PVYNTN and PVYN-Wi caused severe and mild veinal necrosis (VN) respectively, and the unique PVYZ-NTN strain induced milder vein clearing (VCl) in the upper non-inoculated leaves. A single amino acid polymorphisms (SAPs) I252V and a Q412 to R412 substitution in the HC-Pro cistron of the PVYZ-NTN strain might relate to the loss of VN in tobacco. The abundance of 18 out of the 26 tested miRNAs was increased upon infection by the severe strains PVYNTN and PVYN-Wi. Expression of a group of defense related transcripts were increased accordingly. Two miRNAs, nta-miR6020a-5p and nta-miR6164a/b, which target the TIR-NBS-LRR type resistant TMV N genes involving in signal transduction, might correlate with the PVYNTN and PVYN-Wi induced VN. The down-regulated mRNAs, e.g., RAP2-7 and TOE3, PXC3, LRR-RLK, ATHB-14 and TCP4 targeted by nta-miR172, nta-miR390, nta-miR482, nta-miR166 and nta-miR319/159 respectively, were related to regulation of transcription, protein phosphorylation and cell differentiation. The observed strain-specific alteration of miRNAs and their targets are host dependent and corresponds to the symptom severity and the viral HC-Pro RNA levels.
Collapse
Affiliation(s)
- Zhimin Yin
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, PL-05-831, Młochów, Poland.
| | - Zofia Murawska
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, PL-05-831, Młochów, Poland
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding & Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska Street 159, PL-02-776, Warsaw, Poland
| | - Krystyna Michalak
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, PL-05-831, Młochów, Poland
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Renata Lebecka
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, PL-05-831, Młochów, Poland
| |
Collapse
|
441
|
RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells 2019; 8:cells8010038. [PMID: 30634662 PMCID: PMC6356646 DOI: 10.3390/cells8010038] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
During plant-pathogen interactions, plants have to defend the living transposable elements from pathogens. In response to such elements, plants activate a variety of defense mechanisms to counteract the aggressiveness of biotic stressors. RNA interference (RNAi) is a key biological process in plants to inhibit gene expression both transcriptionally and post-transcriptionally, using three different groups of proteins to resist the virulence of pathogens. However, pathogens trigger an anti-silencing mechanism through the expression of suppressors to block host RNAi. The disruption of the silencing mechanism is a virulence strategy of pathogens to promote infection in the invaded hosts. In this review, we summarize the RNA silencing pathway, anti-silencing suppressors, and counter-defenses of plants to viral, fungal, and bacterial pathogens.
Collapse
|
442
|
Dubey H, Kiran K, Jaswal R, Jain P, Kayastha AM, Bhardwaj SC, Mondal TK, Sharma TR. Discovery and profiling of small RNAs from Puccinia triticina by deep sequencing and identification of their potential targets in wheat. Funct Integr Genomics 2019; 19:391-407. [PMID: 30618015 DOI: 10.1007/s10142-018-00652-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/30/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
Cross-kingdom RNAi is a well-documented phenomenon where sRNAs generated by host and pathogens may govern resistance or susceptible phenotypes during host-pathogen interaction. With the first example of the direct involvement of fungal generated sRNAs in virulence of plant pathogenic fungi Botrytis cinerea and recently from Puccinia striiformis f. sp. tritici, we attempted to identify sRNAs in Puccinia triticina (P. triticina). Four sRNA libraries were prepared and sequenced using Illumina sequencing technology and a total of ~ 1-1.28 million potential sRNAs and two microRNA-like small RNA (mil-RNAs) candidates were identified. Computational prediction of targets using a common set of sRNAs and P. triticina mil-RNAs (pt-mil-RNAs) within P. triticina and wheat revealed the majority of the targets as repetitive elements in P. triticina whereas in wheat, the target genes were identified to be involved in many biological processes including defense-related pathways. We found 9 receptor-like kinases (RLKs) and 14 target genes of each related to reactive oxygen species (ROS) pathway and transcription factors respectively, including significant numbers of target genes from various other categories. Expression analysis of twenty selected sRNAs, targeting host genes pertaining to ROS related, disease resistance, metabolic processes, transporter, apoptotic inhibitor, and transcription factors along with two pt-mil-RNAs by qRT-PCR showed distinct patterns of expression of the sRNAs in urediniospore-specific libraries. In this study, for the first time, we report identification of novel sRNAs identified in P. triticina including two pt-mil-RNAs that may play an important role in biotrophic growth and pathogenicity.
Collapse
Affiliation(s)
- Himanshu Dubey
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.,School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kanti Kiran
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 160071, India
| | - Priyanka Jain
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, 171009, India
| | - Tapan Kumar Mondal
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India. .,National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 160071, India.
| |
Collapse
|
443
|
Wang M, Sun R, Wang Q, Zhang B. Overexpression of miRNA in Cotton via Agrobacterium-Mediated Transformation. Methods Mol Biol 2019; 1902:223-231. [PMID: 30543075 DOI: 10.1007/978-1-4939-8952-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
microRNAs (miRNAs) are an extensive class of newly identified endogenous small regulatory molecules. Many studies show that miRNAs play a critical role in almost all biological and metabolic progress through targeting protein-coding genes for mRNA cleavage or translation inhibition. Many miRNAs are also identified from cotton using computational and/or experimental approaches, including the next-generation deep sequencing technology. However, their functions are unclear. In this chapter, we describe a detailed method for overexpressing miRNA, miR156 as an example, in cotton using Agrobacterium-mediated genetic transformation. This provides an approach to investigate the function and regulatory mechanism of miRNAs in cotton.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Runrun Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, China
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
444
|
Kramer MC, Gregory BD. Using Protein Interaction Profile Sequencing (PIP-seq) to Identify RNA Secondary Structure and RNA-Protein Interaction Sites of Long Noncoding RNAs in Plants. Methods Mol Biol 2019; 1933:343-361. [PMID: 30945196 DOI: 10.1007/978-1-4939-9045-0_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
From the moment of transcription, RNA molecules are continuously bound by RNA-binding proteins (RBPs). While the majority of research has focused on how these RBPs regulate posttranscriptional gene regulation of messenger RNAs (mRNAs), the majority of cellular RNAs do not code for proteins, such as ribosomal RNAs, transfer RNAs, and microRNAs. Since these RNAs do not code for protein, their function is mainly determined by their interactions with RBPs as well as their intramolecular base pairing, or RNA secondary structure. One class of noncoding RNAs termed long noncoding RNAs (lncRNAs) have recently become the subject of intense research interest. To study the function of lncRNAs in eukaryotic cells, it is important to examine both their interactions with RBPs as well as their RNA secondary structure. Protein interaction profile sequencing (PIP-seq) is a genome-wide method that uses structure-specific ribonucleases (RNases) to identify regions of double-stranded and single-stranded RNA as well as regions that are protected from these RNases, which represent sites of RBP binding. This method is a very powerful way to examine RNA-protein interactions and RNA secondary structure of all lncRNAs expressed in cells and tissues and can reveal cell-type-specific or tissue-specific patterns of these RNA features. Here, we give a step-by-step account of performing this technique for comprehensively analyzing RNA-protein interactions and RNA secondary structure in plant transcriptomes.
Collapse
Affiliation(s)
- Marianne C Kramer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
445
|
Li YF, Zhao M, Wang M, Guo J, Wang L, Ji J, Qiu Z, Zheng Y, Sunkar R. An improved method of constructing degradome library suitable for sequencing using Illumina platform. PLANT METHODS 2019; 15:134. [PMID: 31832076 PMCID: PMC6859640 DOI: 10.1186/s13007-019-0524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/09/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Post-transcriptional gene regulation is one of the critical layers of overall gene expression programs and microRNAs (miRNAs) play an indispensable role in this process by guiding cleavage on the messenger RNA targets. The transcriptome-wide cleavages on the target transcripts can be identified by analyzing the degradome or PARE or GMUCT libraries. However, high-throughput sequencing of PARE or degradome libraries using Illumina platform, a widely used platform, is not so straightforward. Moreover, the currently used degradome or PARE methods utilize MmeI restriction site in the 5' RNA adapter and the resulting fragments are only 20-nt long, which often poses difficulty in distinguishing between the members of the same target gene family or distinguishing miRNA biogenesis intermediates from the primary miRNA transcripts belonging to the same miRNA family. Consequently, developing a method which can generate longer fragments from the PARE or degradome libraries which can also be sequenced easily using Illumina platform is ideal. RESULTS In this protocol, 3' end of the 5'RNA adaptor of TruSeq small RNA library is modified by introducing EcoP15I recognition site. Correspondingly, the double-strand DNA (dsDNA) adaptor sequence is also modified to suit with the ends generated by the restriction enzyme EcoP15I. These modifications allow amplification of the degradome library by primer pairs used for small RNA library preparation, thus amenable for sequencing using Illumina platform, like small RNA library. CONCLUSIONS Degradome library generated using this improved protocol can be sequenced easily using Illumina platform, and the resulting tag length is ~ 27-nt, which is longer than the MmeI generated fragment (20-nt) that can facilitate better accuracy in validating target transcripts belonging to the same gene family or distinguishing miRNA biogenesis intermediates of the same miRNA family. Furthermore, this improved method allows pooling and sequencing degradome libraries and small RNA libraries simultaneously using Illumina platform.
Collapse
Affiliation(s)
- Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Miao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Menglei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Junqiang Guo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Li Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Jie Ji
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Zongbo Qiu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Yun Zheng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| |
Collapse
|
446
|
Nadiya F, Anjali N, Thomas J, Gangaprasad A, Sabu KK. Deep sequencing identified potential miRNAs involved in defence response, stress and plant growth characteristics of wild genotypes of cardamom. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:3-14. [PMID: 30098091 DOI: 10.1111/plb.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Cardamom has long been used as a food flavouring agent and in ayurvedic medicines for mouth ulcers, digestive problems and even depression. Extensive occurrence of pests and diseases adversely affect its cultivation and result in substantial reductions in total production and productivity. Numerous studies revealed the significant role of miRNAs in plant biotic stress responses. In the current study, miRNA profiling of cultivar and wild cardamom genotypes was performed using an Ion Proton sequencer. We identified 161 potential miRNAs representing 42 families, including monocot/tissue-specific and 14 novel miRNAs in both genotypes. Significant differences in miRNA family abundance between the libraries were observed in read frequencies. A total of 19 miRNAs (from known miRNAs) displayed a twofold difference in expression between wild and cultivar genotypes. We found 1168 unique potential targets for 40 known miRNA families in wild and 1025 potential targets for 42 known miRNA families in cultivar genotypes. The differential expression analysis revealed that most miRNAs identified were highly expressed in cultivars and, furthermore, lower expression of miR169 and higher expression of miR529 in wild cardamom proved evidence that wild genotypes have stronger drought stress tolerance and floral development than cultivars. Potential targets predicted for the newly identified miRNAs from the miRNA libraries of wild and cultivar cardamom genotypes involved in metabolic and developmental processes and in response to various stimuli. qRT-PCR confirmed miRNAs were differentially expressed between wild and cultivar genotypes. Furthermore, four target genes were validated experimentally to confirm miRNA-mRNA target pairing using RNA ligase-mediated 5' Rapid Amplification of cDNA Ends (5'RLM-RACE) PCR.
Collapse
Affiliation(s)
- F Nadiya
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - N Anjali
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - J Thomas
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - A Gangaprasad
- Department of Botany, University of Kerala, Thiruvananthapuram, India
| | - K K Sabu
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| |
Collapse
|
447
|
Pokoo R, Ren S, Wang Q, Motes CM, Hernandez TD, Ahmadi S, Monteros MJ, Zheng Y, Sunkar R. Genotype- and tissue-specific miRNA profiles and their targets in three alfalfa (Medicago sativa L) genotypes. BMC Genomics 2018; 19:913. [PMID: 30598106 PMCID: PMC6311939 DOI: 10.1186/s12864-018-5280-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) is a forage legume with significant agricultural value worldwide. MicroRNAs (miRNAs) are key components of post-transcriptional gene regulation and essentially regulate many aspects of plant growth and development. Although miRNAs were reported in alfalfa, their expression profiles in different tissues and the discovery of novel miRNAs as well as their targets have not been described in this plant species. RESULTS To identify tissue-specific miRNA profiles in whole plants, shoots and roots of three different alfalfa genotypes (Altet-4, NECS-141and NF08ALF06) were used. Small RNA libraries were generated and sequenced using a high-throughput sequencing platform. Analysis of these libraries enabled identification of100 miRNA families; 21 of them belong to the highly conserved families while the remaining 79 families are conserved at the minimum between M. sativa and the model legume and close relative, M. truncatula. The profiles of the six abundantly expressed miRNA families (miR156, miR159, miR166, miR319, miR396 and miR398) were relatively similar between the whole plants, roots and shoots of these three alfalfa genotypes. In contrast, robust differences between shoots and roots for miR160 and miR408 levels were evident, and their expression was more abundant in the shoots. Additionally, 17 novel miRNAs were identified and the relative abundance of some of these differed between tissue types. Further, the generation and analysis of degradome libraries from the three alfalfa genotypes enabled confirmation of 69 genes as targets for 31 miRNA families in alfalfa. CONCLUSIONS The miRNA profiles revealed both similarities and differences in the expression profiles between tissues within a genotype as well as between the genotypes. Among the highly conserved miRNA families, miR166 was the most abundantly expressed in almost all tissues from the three genotypes. The identification of conserved and novel miRNAs as well as their targets in different tissues of multiple genotypes increased our understanding of miRNA-mediated gene regulation in alfalfa and could provide valuable insights for practical research and plant improvement applications in alfalfa and related legume species.
Collapse
Affiliation(s)
- Robert Pokoo
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| | - Shuchao Ren
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, 650500 Yunnan China
| | - Qingyi Wang
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, 650500 Yunnan China
| | | | | | - Sayvan Ahmadi
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| | | | - Yun Zheng
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, 650500 Yunnan China
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, 650500 Yunnan China
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| |
Collapse
|
448
|
Chloroplast-to-Nucleus Signaling Regulates MicroRNA Biogenesis in Arabidopsis. Dev Cell 2018; 48:371-382.e4. [PMID: 30595534 DOI: 10.1016/j.devcel.2018.11.046] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 10/15/2018] [Accepted: 11/28/2018] [Indexed: 01/04/2023]
Abstract
As integral regulators in plant development and stress response, microRNAs (miRNAs) themselves need to be tightly regulated. Here, we show that tocopherols (vitamin E), lipid-soluble antioxidants synthesized from tyrosine in chloroplasts, positively regulate the biogenesis of miRNAs. Tocopherols are required for the accumulation of 3'-phosphoadenosine 5'-phosphate (PAP), a retrograde inhibitor of the nuclear exoribonucleases (XRN), which may protect primary miRNAs from being degraded and promote mature miRNA production. Such regulation is involved in heat-induced accumulation of miR398 and plant acquisition of heat tolerance. Our study reveals a chloroplast-to-nucleus signaling mechanism that favors miRNA biogenesis under heat and possibly other environmental perturbations.
Collapse
|
449
|
Kumar A, Batra R, Gahlaut V, Gautam T, Kumar S, Sharma M, Tyagi S, Singh KP, Balyan HS, Pandey R, Gupta PK. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.). PLoS One 2018; 13:e0208409. [PMID: 30540790 PMCID: PMC6291158 DOI: 10.1371/journal.pone.0208409] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023] Open
Abstract
RWP-RKs represent a small family of transcription factors (TFs) that are unique to plants and function particularly under conditions of nitrogen starvation. These RWP-RKs have been classified in two sub-families, NLPs (NIN-like proteins) and RKDs (RWP-RK domain proteins). NLPs regulate tissue-specific expression of genes involved in nitrogen use efficiency (NUE) and RKDs regulate expression of genes involved in gametogenesis/embryogenesis. During the present study, using in silico approach, 37 wheat RWP-RK genes were identified, which included 18 TaNLPs (2865 to 7340 bp with 4/5 exons), distributed on 15 chromosomes from 5 homoeologous groups (with two genes each on 4B,4D and 5A) and 19 TaRKDs (1064 to 5768 bp with 1 to 6 exons) distributed on 12 chromosomes from 4 homoeologous groups (except groups 1, 4 and 5); 2–3 splice variants were also available in 9 of the 37 genes. Sixteen (16) of these genes also carried 24 SSRs (simple sequence repeats), while 11 genes had targets for 13 different miRNAs. At the protein level, MD simulation analysis suggested their interaction with nitrate-ions. Significant differences were observed in the expression of only two (TaNLP1 and TaNLP2) of the nine representative genes that were used for in silico expression analysis under varying levels of N at post-anthesis stage (data for other genes was not available for in silico expression analysis). Differences in expression were also observed during qRT-PCR, when expression of four representative genes (TaNLP2, TaNLP7, TaRKD6 and TaRKD9) was examined in roots and shoots of seedlings (under different conditions of N supply) in two contrasting genotypes which differed in NUE (C306 with low NUE and HUW468 with high NUE). These four genes for qRT-PCR were selected on the basis of previous literature, level of homology and the level of expression (in silico study). In particular, the TaNLP7 gene showed significant up-regulation in the roots and shoots of HUW468 (with higher NUE) during N-starvation; this gene has already been characterized in Arabidopsis and tobacco, and is known to be involved in nitrate-signal transduction pathway.
Collapse
Affiliation(s)
- Anuj Kumar
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, CCS University, Meerut, India
| | - Vijay Gahlaut
- Department of Plant Molecular Biology, South Campus, University of Delhi, Delhi, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, CCS University, Meerut, India
| | - Sanjay Kumar
- Bioinformatics Centre, Biotech Park, Lucknow, India
| | - Mansi Sharma
- ICMR- National Institute of Cancer Prevention and Research, Noida, India
| | - Sandhya Tyagi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Krishna Pal Singh
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, India
- Ch. Charan Singh Haryana Agricultural University, Hisar, India
| | | | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
450
|
Ünlü ES, Bataw S, Aslan Şen D, Şahin Y, Zencirci N. Identification of conserved miRNA molecules in einkorn wheat (Triticum monococcum subsp. monococcum) by using small RNA sequencing analysis. Turk J Biol 2018; 42:527-536. [PMID: 30983871 PMCID: PMC6451844 DOI: 10.3906/biy-1802-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Triticum monococcum subsp. monococcum as a first cultivated diploid wheat species possesses desirable agronomic and quality characteristics. Drought and salinity are the most dramatic environmental stress factors that have serious impact on yield and quality of crops; however, plants can use alternative defense mechanisms against these stresses. The posttranscriptional alteration of gene expression by microRNAs (miRNAs) is one of the most conserved mechanisms. In plant species including wheat genomes, miRNAs have been implicated in the management of salt and drought stress; however, studies on einkorn wheat (Triticum monococcum subsp. monococcum) are not yet available. In this study, we aimed to identify conserved miRNAs in einkorn wheat using next generation sequencing technology and bioinformatics analysis. In order to include a larger set of miRNAs, small RNA molecules from pooled plant samples grown under normal, drought, and salinity conditions were used for the library preparation and sequence analysis. After bioinformatics analysis, we identified 167 putative mature miRNA sequences belonging to 140 distinct miRNA families. We also presented a comparative analysis to propose that miRNAs and their target genes were involved in salt and drought stress control in addition to a comprehensive analysis of the scanned target genes in the T. aestivum genome.
Collapse
Affiliation(s)
- Ercan Selçuk Ünlü
- Department of Chemistry, Faculty of Arts and Science, Abant İzzet Baysal University , Bolu , Turkey
| | - Sara Bataw
- Department of Biology, Faculty of Arts and Science, Abant İzzet Baysal University , Bolu , Turkey
| | - Didem Aslan Şen
- Department of Biology, Faculty of Arts and Science, Abant İzzet Baysal University , Bolu , Turkey
| | - Yunus Şahin
- Department of Biochemistry, School of Medicine, Altınbaş University , İstanbul , Turkey.,Department of Biology, Faculty of Arts and Science, Abant İzzet Baysal University , Bolu , Turkey
| | - Nusret Zencirci
- Department of Biology, Faculty of Arts and Science, Abant İzzet Baysal University , Bolu , Turkey
| |
Collapse
|