401
|
|
402
|
Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J Cyst Fibros 2015; 14:419-30. [PMID: 25814049 DOI: 10.1016/j.jcf.2015.03.003] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/08/2015] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
Abstract
Lung disease is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). Although CF lung disease is primarily an infectious disorder, the associated inflammation is both intense and ineffective at clearing pathogens. Persistent high-intensity inflammation leads to permanent structural damage of the CF airways and impaired lung function that eventually results in respiratory failure and death. Several defective inflammatory responses have been linked to cystic fibrosis transmembrane conductance regulator (CFTR) deficiency including innate and acquired immunity dysregulation, cell membrane lipid abnormalities, various transcription factor signaling defects, as well as altered kinase and toll-like receptor responses. The inflammation of the CF lung is dominated by neutrophils that release oxidants and proteases, particularly elastase. Neutrophil elastase in the CF airway secretions precedes the appearance of bronchiectasis, and correlates with lung function deterioration and respiratory exacerbations. Anti-inflammatory therapies are therefore of particular interest for CF lung disease but must be carefully studied to avoid suppressing critical elements of the inflammatory response and thus worsening infection. This review examines the role of inflammation in the pathogenesis of CF lung disease, summarizes the results of past clinical trials and explores promising new anti-inflammatory options.
Collapse
Affiliation(s)
- André M Cantin
- Pulmonary Division, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada.
| | - Dominik Hartl
- CF Center, Children's Hospital of the University of Tübingen, Tübingen, Germany
| | - Michael W Konstan
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
403
|
Tiddens HAWM, Puderbach M, Venegas JG, Ratjen F, Donaldson SH, Davis SD, Rowe SM, Sagel SD, Higgins M, Waltz DA. Novel outcome measures for clinical trials in cystic fibrosis. Pediatr Pulmonol 2015; 50:302-315. [PMID: 25641878 PMCID: PMC4365726 DOI: 10.1002/ppul.23146] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/20/2014] [Accepted: 11/02/2014] [Indexed: 12/25/2022]
Abstract
Cystic fibrosis (CF) is a common inherited condition caused by mutations in the gene encoding the CF transmembrane regulator protein. With increased understanding of the molecular mechanisms underlying CF and the development of new therapies there comes the need to develop new outcome measures to assess the disease, its progression and response to treatment. As there are limitations to the current endpoints accepted for regulatory purposes, a workshop to discuss novel endpoints for clinical trials in CF was held in Anaheim, California in November 2011. The pros and cons of novel outcome measures with potential utility for evaluation of novel treatments in CF were critically evaluated. The highlights of the 2011 workshop and subsequent advances in technologies and techniques that could be used to inform the development of clinical trial endpoints are summarized in this review. Pediatr Pulmonol. © 2014 The Authors. Pediatric Pulmonology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Harm A W M Tiddens
- Department of Pediatric Pulmonology and Allergology, Department of Radiology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Michael Puderbach
- Department for Diagnostic and Interventional Radiology, Hufeland Klinikum, Bad Langensalza, Germany
| | - Jose G Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Felix Ratjen
- Department of Pediatrics, Division of Respiratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario
| | - Scott H Donaldson
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Stephanie D Davis
- Department of Pediatrics, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott D Sagel
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Denver, Colorado
| | | | | |
Collapse
|
404
|
Sagel SD. The challenges of developing effective anti-inflammatory agents in cystic fibrosis. J Cyst Fibros 2015; 14:164-6. [DOI: 10.1016/j.jcf.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
405
|
Borowitz D, Gelfond D. Equivalent substrates enable simultaneous study of gastrointestinal pH and CF-related diabetes. J Cyst Fibros 2015; 14:e6-8. [PMID: 25698452 DOI: 10.1016/j.jcf.2015.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
406
|
Bodewes FAJA, Verkade HJ, Taminiau JAJM, Borowitz D, Wilschanski M. Cystic fibrosis and the role of gastrointestinal outcome measures in the new era of therapeutic CFTR modulation. J Cyst Fibros 2015; 14:169-77. [PMID: 25677689 DOI: 10.1016/j.jcf.2015.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 01/01/2023]
Abstract
With the development of new drugs that directly affect CFTR protein function, clinical trials are being designed or initiated for a growing number of patients with cystic fibrosis. The currently available and accepted clinical endpoints, FEV1 and BMI, have limitations. The aim of this report is to draw attention to the need and the ample possibilities for the development and validation of relevant gastrointestinal clinical endpoints for scientific evaluation of CFTR modulation treatment, particularly in young children and infants. The gastrointestinal tract offers very good opportunities to measure CFTR protein function and systematically evaluate CF related clinical outcomes based on the principal clinical gastrointestinal manifestations of CF: intestinal pH, intestinal transit time, intestinal bile salt malabsorption, intestinal inflammation, exocrine pancreatic function and intestinal fat malabsorption. We present a descriptive analysis of a variety of gastrointestinal outcome measures for clinical relevance, reliability, validity, responsiveness to interventions, feasibility in particular in young children and the availability of reference values.
Collapse
Affiliation(s)
- Frank A J A Bodewes
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center, Groningen, The Netherlands.
| | - Henkjan J Verkade
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | | | - Drucy Borowitz
- Department of Pediatrics, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Women and Children's Hospital of Buffalo, Buffalo, NY, United States
| | - Michael Wilschanski
- Pediatric Gastroenterology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
407
|
Zhang PX, Cheng J, Zou S, D’Souza AD, Koff JL, Lu J, Lee PJ, Krause DS, Egan ME, Bruscia EM. Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation. Nat Commun 2015; 6:6221. [PMID: 25665524 PMCID: PMC4324503 DOI: 10.1038/ncomms7221] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
In cystic fibrosis (CF) patients, hyper-inflammation is a key factor in lung destruction and disease morbidity. We have previously demonstrated that macrophages drive the lung hyper-inflammatory response to LPS in CF mice, because of reduced levels of the scaffold protein CAV1 with subsequent uncontrolled TLR4 signalling. Here we show that reduced CAV1 and, consequently, increased TLR4 signalling, in human and murine CF macrophages and murine CF lungs, is caused by high microRNA-199a-5p levels, which are PI3K/AKT-dependent. Downregulation of microRNA-199a-5p or increased AKT signalling restores CAV1 expression and reduces hyper-inflammation in CF macrophages. Importantly, the FDA-approved drug celecoxib re-establishes the AKT/miR-199a-5p/CAV1 axis in CF macrophages, and ameliorates lung hyper-inflammation in Cftr-deficient mice. Thus, we identify the AKT/miR-199a-5p/CAV1 pathway as a regulator of innate immunity, which is dysfunctional in CF macrophages contributing to lung hyper-inflammation. In addition, we found that this pathway can be targeted by celecoxib.
Collapse
Affiliation(s)
- Ping-xia Zhang
- Department of Pediatrics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Department of Laboratory Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Jijun Cheng
- Department of Genetics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Stem Cell Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Cancer Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Siying Zou
- Department of Cell Biology, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Anthony D. D’Souza
- Department of Laboratory Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Jonathan L. Koff
- Department of Pulmonary, Critical Care and Sleep Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Jun Lu
- Department of Genetics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Stem Cell Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Cancer Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Patty J. Lee
- Department of Pulmonary, Critical Care and Sleep Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Diane S. Krause
- Department of Laboratory Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Stem Cell Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Cancer Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Department of Cell Biology, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Marie E. Egan
- Department of Pediatrics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Department of Cellular and Molecular Physiology, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Emanuela M. Bruscia
- Department of Pediatrics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| |
Collapse
|
408
|
Affiliation(s)
- Wylie Burke
- Department of Bioethics and Humanities, School of Medicine, University of Washington, Seattle, WA
| | - Kenneth Thummel
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA
| |
Collapse
|
409
|
Heltshe SL, Mayer-Hamblett N, Burns JL, Khan U, Baines A, Ramsey BW, Rowe SM. Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor. Clin Infect Dis 2014; 60:703-12. [PMID: 25425629 DOI: 10.1093/cid/ciu944] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ivacaftor improves outcomes in cystic fibrosis (CF) patients with the G551D mutation; however, effects on respiratory microbiology are largely unknown. This study examines changes in CF respiratory pathogens with ivacaftor and correlates them with baseline characteristics and clinical response. METHODS The G551D Observational Study enrolled a longitudinal observational cohort of US patients with CF aged 6 years and older with at least 1 copy of the G551D mutation. Results were linked with retrospective and prospective culture data in the US Cystic Fibrosis Foundation's National Patient Registry. Pseudomonas aeruginosa infection category in the year before and year after ivacaftor was compared and correlated with clinical findings. RESULTS Among 151 participants prescribed ivacaftor, 29% (26/89) who were culture positive for P. aeruginosa the year prior to ivacaftor use were culture negative the year following treatment; 88% (52/59) of those P. aeruginosa free remained uninfected. The odds of P. aeruginosa positivity in the year after ivacaftor compared with the year prior were reduced by 35% (odds ratio [OR], 0.65; P < .001). Ivacaftor was also associated with reduced odds of mucoid P. aeruginosa (OR, 0.77; P = .013) and Aspergillus (OR, 0.47; P = .039), but not Staphylococcus aureus or other common CF pathogens. Patients with intermittent culture positivity and higher forced expiratory volume in 1 second (FEV1) were most likely to turn culture negative. Reduction in P. aeruginosa was not associated with change in FEV1, body mass index, or hospitalizations. CONCLUSIONS Pseudomonas aeruginosa culture positivity was significantly reduced following ivacaftor treatment. Efficacious CFTR modulation may contribute to lower frequency of culture positivity for P. aeruginosa and other respiratory pathogens, particularly in patients with less established disease.
Collapse
Affiliation(s)
- Sonya L Heltshe
- Department of Pediatrics, University of Washington School of Medicine, Seattle Coordinating Center
| | - Nicole Mayer-Hamblett
- Department of Pediatrics, University of Washington School of Medicine, Seattle Coordinating Center
| | - Jane L Burns
- Department of Pediatrics, University of Washington School of Medicine, Seattle Center for CF Microbiology, Cystic Fibrosis Foundation Therapeutics Development Network, Seattle Children's Research Institute, Washington
| | | | | | - Bonnie W Ramsey
- Department of Pediatrics, University of Washington School of Medicine, Seattle Coordinating Center
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham
| | | |
Collapse
|
410
|
Eldredge LC, Ramsey BW. Remarkable progress toward new treatments for cystic fibrosis. THE LANCET RESPIRATORY MEDICINE 2014; 2:962-4. [PMID: 25466347 DOI: 10.1016/s2213-2600(14)70272-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Laurie C Eldredge
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Bonnie W Ramsey
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington, Seattle, WA 98121, USA.
| |
Collapse
|
411
|
Dekkers R, Vijftigschild LAW, Vonk AM, Kruisselbrink E, de Winter-de Groot KM, Janssens HM, van der Ent CK, Beekman JM. A bioassay using intestinal organoids to measure CFTR modulators in human plasma. J Cyst Fibros 2014; 14:178-81. [PMID: 25467948 DOI: 10.1016/j.jcf.2014.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/24/2014] [Accepted: 10/30/2014] [Indexed: 01/22/2023]
Abstract
Treatment efficacies of drugs depend on patient-specific pharmacokinetic and pharmacodynamic properties. Here, we developed an assay to measure functional levels of the CFTR potentiator VX-770 in human plasma and observed that VX-770 in plasma from different donors induced variable CFTR function in intestinal organoids. This assay can help to understand variability in treatment response to CFTR potentiators by functionally modeling individual pharmacokinetics.
Collapse
Affiliation(s)
- R Dekkers
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - L A W Vijftigschild
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - A M Vonk
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - E Kruisselbrink
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - K M de Winter-de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - H M Janssens
- Department of Pediatric Pulmonology, Erasmus University Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - J M Beekman
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands; Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands.
| |
Collapse
|
412
|
Reverri EJ, Morrissey BM, Cross CE, Steinberg FM. Inflammation, oxidative stress, and cardiovascular disease risk factors in adults with cystic fibrosis. Free Radic Biol Med 2014; 76:261-77. [PMID: 25172163 DOI: 10.1016/j.freeradbiomed.2014.08.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) represents one of a number of localized lung and non-lung diseases with an intense chronic inflammatory component associated with evidence of systemic oxidative stress. Many of these chronic inflammatory diseases are accompanied by an array of atherosclerotic processes and cardiovascular disease (CVD), another condition strongly related to inflammation and oxidative stress. As a consequence of a dramatic increase in long-lived patients with CF in recent decades, the specter of CVD must be considered in these patients who are now reaching middle age and beyond. Buttressed by recent data documenting that CF patients exhibit evidence of endothelial dysfunction, a recognized precursor of atherosclerosis and CVD, the spectrum of risk factors for CVD in CF is reviewed here. Epidemiological data further characterizing the presence and extent of atherogenic processes in CF patients would seem important to obtain. Such studies should further inform and offer mechanistic insights into how other chronic inflammatory diseases potentiate the processes leading to CVDs.
Collapse
Affiliation(s)
- Elizabeth J Reverri
- Department of Nutrition, University of California Davis, One Shields Avenue, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Brian M Morrissey
- Adult Cystic Fibrosis Clinic and Division of Pulmonary-Critical Care Medicine, University of California Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA
| | - Carroll E Cross
- Adult Cystic Fibrosis Clinic and Division of Pulmonary-Critical Care Medicine, University of California Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA.
| | - Francene M Steinberg
- Department of Nutrition, University of California Davis, One Shields Avenue, 3135 Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
413
|
Mutation-targeted personalised medicine for cystic fibrosis. THE LANCET RESPIRATORY MEDICINE 2014; 2:863-865. [DOI: 10.1016/s2213-2600(14)70191-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
414
|
McKone EF, Borowitz D, Drevinek P, Griese M, Konstan MW, Wainwright C, Ratjen F, Sermet-Gaudelus I, Plant B, Munck A, Jiang Y, Gilmartin G, Davies JC. Long-term safety and efficacy of ivacaftor in patients with cystic fibrosis who have the Gly551Asp-CFTR mutation: a phase 3, open-label extension study (PERSIST). THE LANCET RESPIRATORY MEDICINE 2014; 2:902-910. [PMID: 25311995 DOI: 10.1016/s2213-2600(14)70218-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator, is approved for the treatment of patients with cystic fibrosis aged 6 years or older with Gly551Asp-CFTR. We assessed the safety and efficacy of ivacaftor during 96 weeks of PERSIST in patients with cystic fibrosis who completed a previous 48-week, placebo-controlled trial of the drug (STRIVE or ENVISION). METHODS In this phase 3, open-label extension study, patients received ivacaftor 150 mg every 12 h in addition to their prescribed cystic fibrosis therapies. Patients who received placebo in their previous study initiated ivacaftor in this extension study. Patients were eligible if they had a Gly551Asp-CFTR mutation on at least one allele. The primary objective was to assess the long-term safety profile of ivacaftor as assessed by adverse events, clinical laboratory assessments, electrocardiograms, vital signs, and physical examination; secondary measures included change in forced expiratory volume in one second (FEV1), weight, and pulmonary exacerbations. This study is registered with ClinicalTrials.gov, number NCT01117012 and EudraCT, number 2009-012997-11. FINDINGS Between July 8, 2010, and April 8, 2013, 144 adolescents/adults (≥12 years) from STRIVE and 48 children (6-11 years) from ENVISION were enrolled. Across both trials, 38 (20%) patients had a serious adverse event during the first 48 weeks and 44 (23%) during the subsequent 48 weeks. Two adults (1%) and one child (<1%) discontinued because of adverse events. The most common adverse events were pulmonary exacerbation, cough, and upper respiratory tract infection. Patients previously treated with ivacaftor had sustained improvements in FEV1, weight, and rate of pulmonary exacerbations for up to 144 weeks of treatment. Among adolescents/adults and children who previously received ivacaftor, absolute change in FEV1 at week 96 (144 weeks ivacaftor) was 9·4 and 10·3 % points and absolute increase in weight was 4·1 kg and 14·8 kg, respectively. For adolescents/adults only, the pulmonary exacerbation rate remained suppressed compared with that of patients who received placebo in the placebo-controlled study. INTERPRETATION At 144 weeks of treatment, ivacaftor was well tolerated, with no new safety concerns. Ivacaftor also provided durable effects for 144 weeks in patients who had received active treatment in the placebo-controlled study. Those patients who previously received placebo had improvements comparable to those of patients treated with ivacaftor in the placebo-controlled study. FUNDING Vertex Pharmaceuticals Inc.
Collapse
Affiliation(s)
- Edward F McKone
- St Vincent's University Hospital, Dublin, Ireland; University College Dublin School of Medicine, Dublin, Ireland.
| | - Drucy Borowitz
- State University of New York at Buffalo, Buffalo, NY, USA
| | - Pavel Drevinek
- University Hospital Motol and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Matthias Griese
- Hauner Children's Hospital, Munich, Germany; Ludwig Maximillians University, Munich, Germany
| | - Michael W Konstan
- Case Western Reserve University School of Medicine and Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Claire Wainwright
- Royal Children's Hospital and Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | - Barry Plant
- Cork University Hospital, University College Cork, Ireland
| | - Anne Munck
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, CF Centre, Université Paris 7, Paris, France
| | - Ying Jiang
- Vertex Pharmaceuticals Inc, Boston, MA, USA
| | | | | |
Collapse
|
415
|
Molloy K, McElvaney NG. Ivacaftor: from bench to bedside... and back again. Am J Respir Crit Care Med 2014; 190:128-9. [PMID: 25025350 DOI: 10.1164/rccm.201406-1122ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kevin Molloy
- 1 Respiratory Research Division Royal College of Surgeons in Ireland Dublin, Ireland and
| | | |
Collapse
|
416
|
Pettit RS, Fellner C. CFTR Modulators for the Treatment of Cystic Fibrosis. P & T : A PEER-REVIEWED JOURNAL FOR FORMULARY MANAGEMENT 2014; 39:500-11. [PMID: 25083129 PMCID: PMC4103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Defects in a single gene lead to the defective proteins that cause cystic fibrosis, making the disease an ideal candidate for mutation-targeted therapy. Although ivacaftor is currently the only FDA-approved CFTR modifier, others are in development.
Collapse
|
417
|
Ivacaftor Therapy in CF Patients: Single Center Experience. Adv Med 2014; 2014:947923. [PMID: 26556432 PMCID: PMC4590953 DOI: 10.1155/2014/947923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/03/2014] [Accepted: 09/15/2014] [Indexed: 11/28/2022] Open
Abstract
Ivacaftor is the first novel cystic fibrosis pharmaceutical that acts at the molecular level to potentiate cystic fibrosis transmembrane conductance regulator (CFTR) function and was first approved for clinical use in 2012. We are sharing our single center experience of five patients: four from pediatric age group and one adult patient. All patients had both subjective and objective improvements in their health. Despite established lung disease, our patients had significant improvement in both their FEV1 (forced expiratory volume in 1 second) and FEF25-75 and BMI (body mass index). Larger studies demonstrated only 6.7% improvement in mean FEV1 after starting Ivacaftor therapy but their patient population had normal lung function to begin with. In contrast our case series demonstrates that, in patients with established lung disease and diminished lung function, Ivacaftor can be expected to result in much higher recovery in lung function. Mean FEV1 improved by 35% in our case series. Ivacaftor is extremely expensive, costing $300,000 per patient per year requiring lifelong therapy, hence requiring prior authorizations from most third-party payers in the USA. The knowledge shared from our experience will be useful for other clinicians to petition healthcare policymakers on behalf of their patients.
Collapse
|