401
|
Naeem A, Ahmed I, Silveyra P. Bronchopulmonary Dysplasia: An Update on Experimental Therapeutics. EUROPEAN MEDICAL JOURNAL 2019; 4:20-29. [PMID: 31372499 PMCID: PMC6673641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic inflammatory lung disease that affects thousands of newborns and infants every year. Although it is accepted that BPD results from lung damage and inflammation triggered by mechanical ventilation and hyperoxia, the causes and molecular events leading to lung damage and arrested development remain unknown. While recent advances in neonatal care have improved the survival of very low-weight infants, the rates of BPD have not improved accordingly. This is mainly due to our limited understanding of the disease's pathogenesis and the effective therapeutic options available. Current therapeutics for BPD involve ventilation management, steroid treatment, and administration of various agents, such as pulmonary surfactant, caffeine, vitamin A, nitric oxide, and stem cells. However, the efficacy of these agents in preventing and ameliorating BPD symptoms varies depending on the populations studied and the disease stage. As the field moves towards personalised therapeutic approaches, this review summarises clinical and experimental studies conducted in various models, aiming to increase understanding of the cellular and molecular mechanisms by which these agents can prevent or treat BPD. Due to the increasing number of extremely premature infants, it is imperative that we continue to work towards understanding the mechanisms of BPD pathogenesis and generating more effective therapeutic options.
Collapse
|
402
|
Qiu JJ, Lin XJ, Zheng TT, Tang XY, Zhang Y, Hua KQ. The Exosomal Long Noncoding RNA aHIF is Upregulated in Serum From Patients With Endometriosis and Promotes Angiogenesis in Endometriosis. Reprod Sci 2019; 26:1590-1602. [PMID: 30808247 DOI: 10.1177/1933719119831775] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The transfer of long noncoding RNAs (lncRNAs) via exosomes to modulate recipient cells represents an important mechanism for disease progression. Antisense hypoxia-inducible factor (aHIF) is a well-known angiogenesis-related lncRNA. Here, we aimed to investigate the clinical implications of aHIF and exosomal aHIF in endometriosis and the involvement of exosome-shuttled aHIF in endometriosis angiogenesis. STUDY DESIGN The distribution and expression of aHIF in ectopic, eutopic, and normal endometria was evaluated. Serum exosomal aHIF levels in patients with endometriosis were tested. The correlation between serum exosomal aHIF and aHIF expression in ectopic endometria was analyzed. Endometriotic cyst stromal cells (ECSCs)-derived exosomes were characterized. The internalization of exosomes by human umbilical vein endothelial cells (HUVECs) was observed. A series of in vitro assays were conducted to investigate the roles and mechanisms of exosomal aHIF in endometriosis angiogenesis. RESULTS Clinically, aHIF was highly expressed in ectopic endometria and serum exosomes in patients with endometriosis. Serum exosomal aHIF was significantly correlated to aHIF expression in matched ectopic endometria. In vitro, PKH67-labeled exosomes derived from aHIF high expression ECSCs were effectively internalized by recipient HUVECs. Notably, exosome-shuttled aHIF was transferred from ECSCs to HUVECs, which in turn elicited proangiogenic behavior in HUVECs by activating vascular endothelial growth factor (VEGF)-A, VEGF-D, and basic fibroblast growth factor, thereby facilitating endometriosis angiogenesis. CONCLUSION Our study illustrates a potential cell-cell communication between ECSCs and HUVECs in an ectopic environment, provides a novel mechanistic model explaining how ECSCs induce angiogenesis from the perspective of the "exosomal transfer of aHIF," and highlights the clinical value of circulating exosomal aHIF in endometriosis.
Collapse
Affiliation(s)
- Jun-Jun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xiao-Jing Lin
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ting-Ting Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xiao-Yan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ying Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ke-Qin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
403
|
Stem Cell-Derived Extracellular Vesicles as Immunomodulatory Therapeutics. Stem Cells Int 2019; 2019:5126156. [PMID: 30936922 PMCID: PMC6413386 DOI: 10.1155/2019/5126156] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been reported to possess regulatory functions on immune cells which make them alternative therapeutics for the treatment of inflammatory and autoimmune diseases. The interaction between MSCs and immune cells through paracrine factors might be crucial for these immunomodulatory effects of MSCs. Extracellular vesicles (EVs) are defined as bilayer membrane structures including exosomes and microvesicles which contain bioactive paracrine molecules affecting the characteristics of target cells. Recently, several studies have revealed that EVs derived from MSCs (MSC-EVs) can reproduce similar therapeutic impacts of parent MSCs; MSC-EVs could regulate proliferation, maturation, polarization, and migration of various immune effector cells and modulate the immune microenvironment depending on the context by delivering inflammatory cytokines, transcription factors, and microRNAs. Therefore, MSC-EVs can be applied as novel and promising tools for the treatment of immune-related disorders to overcome the limitations of conventional cell therapy regarding efficacy and toxicity issues. In this review, we will discuss current insights regarding the major outcomes in the evaluation of MSC-EV function against inflammatory disease models, as well as immune cells.
Collapse
|
404
|
Li Y, Zhang D, Xu L, Dong L, Zheng J, Lin Y, Huang J, Zhang Y, Tao Y, Zang X, Li D, Du M. Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell Mol Immunol 2019; 16:908-920. [PMID: 30778166 DOI: 10.1038/s41423-019-0204-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/21/2019] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs), which are pluripotent cells with immunomodulatory properties, have been considered good candidates for the therapy of several immune disorders, such as inflammatory bowel diseases, concanavalin A-induced liver injury, and graft-versus-host disease. The embryo is a natural allograft to the maternal immune system. A successful pregnancy depends on the timely extinction of the inflammatory response induced by embryo implantation, followed by the switch to a tolerant immune microenvironment in both the uterus and the system. Excessive infiltration of immune cells and serious inflammatory responses are triggers for embryo rejection, which results in miscarriage. Here, we demonstrated that adoptive transfer of MSCs could prevent fetal loss in a lipopolysaccharide (LPS)-induced abortion model and immune response-mediated spontaneous abortion model. The immunosuppressive MSCs alleviated excessive inflammation by inhibiting CD4 + T cell proliferation and promoting the decidual macrophage switch to M2 in a tumor necrosis factor-stimulated gene-6 (TSG-6)-dependent manner. Cell-to-cell contact with proinflammatory macrophages increased the TSG-6 production by the MSCs, thereby enhancing the suppressive regulation of T cells and macrophages. Moreover, proinflammatory macrophages in contact with the MSCs upregulated the expression of CD200 on the stem cells and facilitated the reprogramming of macrophages towards an anti-inflammatory skew through the interaction of CD200 with CD200R on proinflammatory macrophages. Therefore, the results demonstrate that a TSG-6-mediated paracrine effect, reinforced by cell-to-cell contact between MSCs and proinflammatory macrophages, is involved in the mechanism of MSC-mediated abortion relief through the induction of immune tolerance. Our study also indicates the potential application of MSCs in clinical recurrent miscarriages.
Collapse
Affiliation(s)
- Yanhong Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Di Zhang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ling Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Lin Dong
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ji Zheng
- Department of Immunology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yikong Lin
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiefang Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanyun Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Tao
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xingxing Zang
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
405
|
The Regenerative Potential of Amniotic Fluid Stem Cell Extracellular Vesicles: Lessons Learned by Comparing Different Isolation Techniques. Sci Rep 2019; 9:1837. [PMID: 30755672 PMCID: PMC6372651 DOI: 10.1038/s41598-018-38320-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
Extracellular vesicles (EVs) derived from amniotic fluid stem cells (AFSCs) mediate anti-apoptotic, pro-angiogenic, and immune-modulatory effects in multiple disease models, such as skeletal muscle atrophy and Alport syndrome. A source of potential variability in EV biological functions is how EV are isolated from parent cells. Currently, a comparative study of different EV isolation strategies using conditioned medium from AFSCs is lacking. Herein, we examined different isolation strategies for AFSC-EVs, using common techniques based on differential sedimentation (ultracentrifugation), solubility (ExoQuick, Total Exosome Isolation Reagent, Exo-PREP), or size-exclusion chromatography (qEV). All techniques isolated AFSC-EVs with typical EV morphology and protein markers. In contrast, AFSC-EV size, protein content, and yield varied depending on the method of isolation. When equal volumes of the different AFSC-EV preparations were used as treatment in a model of lung epithelial injury, we observed a significant variation in how AFSC-EVs were able to protect against cell death. AFSC-EV enhancement of cell survival appeared to be dose dependent, and largely uninfluenced by variation in EV-size distributions, relative EV-purity, or their total protein content. The variation in EV-mediated cell survival obtained with different isolation strategies emphasizes the importance of testing alternative isolation techniques in order to maximize EV regenerative capacity.
Collapse
|
406
|
Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK, Toh WS. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials 2019; 200:35-47. [PMID: 30771585 DOI: 10.1016/j.biomaterials.2019.02.006] [Citation(s) in RCA: 375] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/11/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
The efficacy of mesenchymal stem cell (MSC) therapies is increasingly attributed to paracrine secretion, particularly exosomes. In this study, we investigated the role of MSC exosomes in the regulation of inflammatory response, nociceptive behaviour, and condylar cartilage and subchondral bone healing in an immunocompetent rat model of temporomandibular joint osteoarthritis (TMJ-OA). We observed that exosome-mediated repair of osteoarthritic TMJs was characterized by early suppression of pain and degeneration with reduced inflammation, followed by sustained proliferation and gradual improvements in matrix expression and subchondral bone architecture, leading to overall joint restoration and regeneration. Using chondrocyte cultures, we could attribute some of the cellular activities during exosome-mediated joint repair to adenosine activation of AKT, ERK and AMPK signalling. Specifically, MSC exosomes enhanced s-GAG synthesis impeded by IL-1β, and suppressed IL-1β-induced nitric oxide and MMP13 production. These effects were partially abrogated by inhibitors of adenosine receptor activation, AKT, ERK and AMPK phosphorylation. Together, our observations suggest that MSC exosomes promote TMJ repair and regeneration in OA through a well-orchestrated mechanism of action that involved multiple cellular processes to restore the matrix and overall joint homeostasis. This study demonstrates the translational potential of a cell-free ready-to-use exosome-based therapeutic for treating TMJ pain and degeneration.
Collapse
Affiliation(s)
- Shipin Zhang
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | - Ruenn Chai Lai
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
407
|
Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur J Pharmacol 2019; 852:68-76. [PMID: 30682335 DOI: 10.1016/j.ejphar.2019.01.022] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
Abstract
MiR-21-5p is an anti-apoptotic miRNA known to mediate the protective effect of mesenchymal stromal cell-secreted exosomes (MSC-Exo) against oxidative stress-induced cell death. In the present research we employed murine lung ischemia/reperfusion (I/R) model and in vitro hypoxia/reoxygenation (H/R) model using primary murine pulmonary endothelial cells to investigate whether MSC-Exo could alleviate lung IRI by transporting miR-21-5p. Our data suggested that intratracheal administration of MSC-Exo or miR-21-5p agomir significantly reduced lung edema and dysfunction, M1 polarization of alveolar macrophages as well as secretion of HMGB1, IL-8, IL-1β, IL-6, IL-17 and TNF-α. Pre-challenge of MSCs by H/R significant increased miR-21-5p expression level in exosomes they secreted and the anti-IRI effect of these MSC-Exo, while pre-treatment of MSCs with miR-21-5p antagomir showed opposite effect. We further demonstrated that MSC-Exo ameliorated IRI in vivo or H/R induced apoptosis in vitro by inhibiting both intrinsic and extrinsic apoptosis pathway via miR-21-5p targeting PTEN and PDCD4, while artificial overexpressing PTEN or PDCD4 significantly attenuated the anti-apoptotic effect of MSC-Exo in vitro. Treatment with miR-21-5p agomir mimicked the IRI-reducing and anti-apoptotic effect of MSC-Exo. Our data suggested that MSC-Exo alleviate IRI in lung in an exosomal miR-21-5p-dependent manner. Treatment with MSC-Exo or miR-21-5p agomir might ameliorate IRI in lung.
Collapse
|
408
|
Sjöqvist S, Ishikawa T, Shimura D, Kasai Y, Imafuku A, Bou-Ghannam S, Iwata T, Kanai N. Exosomes derived from clinical-grade oral mucosal epithelial cell sheets promote wound healing. J Extracell Vesicles 2019; 8:1565264. [PMID: 30719240 PMCID: PMC6346716 DOI: 10.1080/20013078.2019.1565264] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
The oral mucosa exhibits unique regenerative properties, sometimes referred to as foetal-like wound healing. Researchers from our institute have used sheets of oral mucosa epithelial cells (OMECs) for regenerative medicine applications including cornea replacement and oesophageal epithelial regeneration for stricture prevention. Here, we have isolated exosomes from clinical-grade production of OMEC sheets from healthy human donors (n = 8), aiming to evaluate the clinical potential of the exosomes to stimulate epithelial regeneration and to improve understanding of the mode-of-action of the cells. Exosomes were isolated from conditioned (cExo) and non-conditioned (ncExo) media. Characterization was performed using Western blot for common exosomal-markers: CD9 and flotillin were positive while annexin V, EpCam and contaminating marker GRP94 were negative. Nanoparticle tracking analysis revealed a diameter of ~120 nm and transmission electron microscopy showed a corresponding size and spherical appearance. Human skin fibroblasts exposed to exosomes showed dose-dependent reduction of proliferation and a considerable increase of growth factor gene expression (HGF, VEGFA, FGF2 and CTGF). The results were similar for both groups, but with a trend towards a larger effect from cExo. To study adhesion, fluorescently labelled exosomes were topically applied to pig oesophageal wound-beds ex vivo and subsequently washed. Positive signal could be detected after as little as 1 min of adhesion, but increased adhesion time produced a stronger signal. Next, labelled exosomes were added to full-thickness skin wounds in rats and signal was detected up to 5 days after application. cExo significantly reduced the wound size at days 6 and 17. In conclusion, exosomes from OMEC sheets showed pro-regenerative effects on skin wound healing. This is the first time that the healing capacity of the oral mucosa is studied from an exosome perspective. These findings might lead to a combinational therapy of cell sheets and exosomes for future patients with early oesophageal cancer.
Collapse
Affiliation(s)
- Sebastian Sjöqvist
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Iwate Medical University, School of Dentistry, Iwate, Japan
| | - Daisuke Shimura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshiyuki Kasai
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Aya Imafuku
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Sophia Bou-Ghannam
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.,Department of Biomedical Engineering, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Takanori Iwata
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobuo Kanai
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
409
|
Crain SK, Robinson SR, Thane KE, Davis AM, Meola DM, Barton BA, Yang VK, Hoffman AM. Extracellular Vesicles from Wharton's Jelly Mesenchymal Stem Cells Suppress CD4 Expressing T Cells Through Transforming Growth Factor Beta and Adenosine Signaling in a Canine Model. Stem Cells Dev 2019; 28:212-226. [PMID: 30412034 DOI: 10.1089/scd.2018.0097] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely investigated as potential therapeutic agents due to their potent immunomodulatory capacity. Although specific mechanisms by which MSC acts on immune cells are emerging, many questions remain, including the potential of extracellular vesicles (EVs) to mediate biological activities. Canine MSCs are of interest for both veterinary and comparative models of disease and have been shown to suppress CD4pos T cell proliferation. The aim of this study was to determine whether EV isolated from canine Wharton's jelly-derived MSC (WJ-MSC EV) suppresses CD4pos T cell proliferation using biochemical mechanisms previously ascribed to soluble mediators [transforming growth factor beta (TGF-β) and adenosine]. WJ-MSC EV exhibited mode of 125 nm diameter, low buoyant density (1.1 g/mL), and expression of EV proteins Alix and TSG101. Functionally, EVs inhibited CD4pos T cell proliferation in a dose-dependent manner, which was absent in EV-depleted samples and EVs from non-MSC fibroblasts. EV suppression of CD4pos T cell proliferation was inhibited by a TGF-βRI antagonist, neutralizing antibodies to TGF-β, or A2A adenosine receptor blockade. TGF-β was present on EVs as latent complexes most likely tethered to EV membrane by betaglycan. These data demonstrate that canine WJ-MSC EV utilizes TGF-β and adenosine signaling to suppress proliferation of CD4pos T cell and will enable further investigation into mechanisms of immune cell modulation, as well as refinement of WJ-MSC and their EVs for therapeutic application.
Collapse
Affiliation(s)
- Sarah K Crain
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Sally R Robinson
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Kristen E Thane
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Airiel M Davis
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Dawn M Meola
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Bruce A Barton
- 2 Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Vicky K Yang
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Andrew M Hoffman
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| |
Collapse
|
410
|
Porzionato A, Zaramella P, Dedja A, Guidolin D, Van Wemmel K, Macchi V, Jurga M, Perilongo G, De Caro R, Baraldi E, Muraca M. Intratracheal administration of clinical-grade mesenchymal stem cell-derived extracellular vesicles reduces lung injury in a rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 316:L6-L19. [DOI: 10.1152/ajplung.00109.2018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) prevent the onset of bronchopulmonary dysplasia (BPD) in animal models, an effect that seems to be mediated by their secreted extracellular vesicles (EVs). The aim of this study was to compare the protective effects of intratracheally (IT) administered MSCs versus MSC-EVs in a hyperoxia-induced rat model of BPD. At birth, rats were distributed as follows: animals raised in ambient air for 2 wk ( n = 10), and animals exposed to 60% oxygen for 2 wk and treated with IT-administered physiological solution ( n = 10), MSCs ( n = 10), or MSC-EVs ( n = 10) on postnatal days 3, 7, and 10. The sham-treated hyperoxia-exposed animals showed reductions in total surface area of alveolar air spaces, and total number of alveoli ( Nalv), and an increased mean alveolar volume (Valv). EVs prompted a significant increase in Nalv ( P < 0.01) and a significant decrease in Valv ( P < 0.05) compared with sham-treated animals, whereas MSCs only significantly improved Nalv ( P < 0.05). Small pulmonary vessels of the sham-treated hyperoxia-exposed rats also showed an increase in medial thickness, which only EVs succeeded in preventing significantly ( P < 0.05). In conclusion, both EVs and MSCs reduce hyperoxia-induced damage, with EVs obtaining better results in terms of alveolarization and lung vascularization parameters. This suggests that IT-administered EVs could be an effective approach to BPD treatment.
Collapse
Affiliation(s)
- Andrea Porzionato
- Human Anatomy Section, Department of Neurosciences, University of Padova, Padua, Italy
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
| | - Arben Dedja
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua, Italy
| | - Diego Guidolin
- Human Anatomy Section, Department of Neurosciences, University of Padova, Padua, Italy
| | | | - Veronica Macchi
- Human Anatomy Section, Department of Neurosciences, University of Padova, Padua, Italy
| | - Marcin Jurga
- The Cell Factory BVBA (Esperite NV), Niel, Belgium
| | - Giorgio Perilongo
- Pediatric Clinic, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Institute of Pediatric Research, “Città della Speranza,” Padua, Italy
| | - Raffaele De Caro
- Human Anatomy Section, Department of Neurosciences, University of Padova, Padua, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Institute of Pediatric Research, “Città della Speranza,” Padua, Italy
| | - Maurizio Muraca
- Institute of Pediatric Research, “Città della Speranza,” Padua, Italy
- Stem Cell and Regenerative Medicine Laboratory, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
| |
Collapse
|
411
|
Park J, Kim S, Lim H, Liu A, Hu S, Lee J, Zhuo H, Hao Q, Matthay MA, Lee JW. Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax 2019; 74:43-50. [PMID: 30076187 PMCID: PMC6295323 DOI: 10.1136/thoraxjnl-2018-211576] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND We previously reported that microvesicles (MVs) released by human mesenchymal stem cells (MSC) were as effective as the cells themselves in both Escherichia coli lipopolysaccharide and live bacteria-induced acute lung injury (ALI) mice models. However, it remained unclear whether the biological effect of MSC MV can be applied to human ALI. METHODS In the current study, we tested the therapeutic effects of MSC MVs in a well-established ex vivo perfused human model of bacterial pneumonia. Using human donor lungs not used for transplantation, we instilled E. coli bacteria intrabronchially and, 1 hour later, administered MSC MVs into the perfusate as therapy. RESULTS After 6 hours, instillation of E. coli bacteria caused influx of inflammatory cells, which resulted in significant inflammation, lung protein permeability and pulmonary oedema formation. Administration of MSC MV significantly increased alveolar fluid clearance and reduced protein permeability and numerically lowered the bacterial load in the injured alveolus. The beneficial effect on bacterial killing was more pronounced with pretreatment of MSCs with a Toll-like receptor 3 agonist, polyinosinic:polycytidylic acid (Poly (I:C)), prior to the isolation of MVs. Isolated human alveolar macrophages had increased antimicrobial activity with MSC MV treatment in vitro as well. Although oxygenation and lung compliance levels were similar between injury and treatment groups, administration of MSC MVs numerically decreased median pulmonary artery pressure at 6 hours. CONCLUSIONS In summary, MSC MVs increased alveolar fluid clearance and reduced lung protein permeability, and pretreatment with Poly (I:C) enhanced the antimicrobial activity of MVs in an ex vivo perfused human lung with severe bacteria pneumonia.
Collapse
Affiliation(s)
- Jeonghyun Park
- Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Seonguk Kim
- Department of Pediatrics, Korea University Guro Hospital, Seoul, The Republic of Korea
| | - Hyungsun Lim
- Department of Anesthesiology, Jeonbuk National University Medical School, Jeonju, The Republic of Korea
| | - Airan Liu
- Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Shuling Hu
- Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - JaeHoon Lee
- Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Hanjing Zhuo
- Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Qi Hao
- Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Michael A Matthay
- Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Jae-W Lee
- Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
412
|
Chaudhury S, Saqibuddin J, Birkett R, Falcon-Girard K, Kraus M, Ernst LM, Grobman W, Mestan KK. Variations in Umbilical Cord Hematopoietic and Mesenchymal Stem Cells With Bronchopulmonary Dysplasia. Front Pediatr 2019; 7:475. [PMID: 31799226 PMCID: PMC6867971 DOI: 10.3389/fped.2019.00475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022] Open
Abstract
Objective: To test the hypothesis that umbilical cord blood-derived CD34+ hematopoietic stem cells (HPSC), cord tissue-derived CD90+ and CD105+ mesenchymal stem cells (MSC) vary with bronchopulmonary dysplasia (BPD). Methods: We conducted a prospective longitudinal study at a large birth center (Prentice Women's Hospital in Chicago, IL). Premature infants (N = 200) were enrolled in 2:1:1 ratio based on gestational age (GA): mildly preterm (31-32 weeks), moderately preterm (29-30 weeks), and extremely preterm (23-28 weeks). Cord blood (CB) and cord tissues (CT) were collected at birth using commercial banking kits, and analyzed for collection blood volume, tissue mass, CD34+, CD90+, CD105+ counts, and concentrations. Multiplex immunoassay was used to measure 12 cytokines and growth factors in CB plasma of 74 patients. BPD severity was defined according to NIH consensus definitions. Univariate and multivariate regression models were used to identify perinatal covariates and assess associations between stem cell concentrations, cytokines, and BPD outcomes. Results: Of 200 patients enrolled (mean GA = 30 ± 2 weeks), 30 developed mild, 24 moderate, and 19 severe BPD. Concentrations of HPSC and MSC, as measured by %CD34+, %CD90+, and %CD105+ of total cells, increased with degree of prematurity. Collection parameters varied with GA, birth weight (BW), gender, prolonged rupture of membranes, mode of delivery, chorioamnionitis, and multiple gestation. Moderate-severe BPD or death was increased with lower GA, BW, Apgar scores, and documented delayed cord clamping. %CD34+ and %CD90+ were increased with BPD and directly correlated with BPD severity. Severe BPD was positively associated with %CD34+ (beta-coefficient = 0.9; 95% CI = 0.4-1.5; P < 0.01) and %CD90+ (beta-coefficient = 0.4; 95% CI = 0.2-0.6; P < 0.001) after adjustment for covariates. CB plasma granulocyte-colony stimulating factor (G-CSF) was inversely associated with %CD90+, and decreased with BPD. Below median G-CSF combined with elevated %CD90+ predicted BPD (positive predictive value = 100%). Conclusions: CB and CT collections yielded high concentrations of HPSCs and MSCs in BPD infants, accompanied by low circulating G-CSF. These variations suggest possible mechanisms by which stem cell differentiation and function predict BPD.
Collapse
Affiliation(s)
- Sonali Chaudhury
- Division of Hematology/Stem Cell Transplant, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Juanita Saqibuddin
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Robert Birkett
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Morey Kraus
- ViaCord LLC, A Perkin Elmer Company, Cambridge, MA, United States
| | - Linda M Ernst
- Department of Pathology, NorthShore University, Evanston, IL, United States
| | - William Grobman
- Department of Obstetrics & Gynecology and Maternal Fetal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Karen K Mestan
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
413
|
Burgess JK, Heijink IH. Paving the Road for Mesenchymal Stem Cell-Derived Exosome Therapy in Bronchopulmonary Dysplasia and Pulmonary Hypertension. STEM CELL-BASED THERAPY FOR LUNG DISEASE 2019. [PMCID: PMC7122497 DOI: 10.1007/978-3-030-29403-8_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic neonatal lung disease characterized by inflammation and arrest of alveolarization. Its common sequela, pulmonary hypertension (PH), presents with elevated pulmonary vascular resistance associated with remodeling of the pulmonary arterioles. Despite notable advancements in neonatal medicine, there is a severe lack of curative treatments to help manage the progressive nature of these diseases. Numerous studies in preclinical models of BPD and PH have demonstrated that therapies based on mesenchymal stem/stromal cells (MSCs) can resolve pulmonary inflammation and ameliorate the severity of disease. Recent evidence suggests that novel, cell-free approaches based on MSC-derived exosomes (MEx) might represent a compelling therapeutic alternative offering major advantages over treatments based on MSC transplantation. Here, we will discuss the development of MSC-based therapies, stressing the centrality of paracrine action as the actual vector of MSC therapeutic functionality, focusing on MEx. We will briefly present our current understanding of the biogenesis and secretion of MEx, and discuss potential mechanisms by which they afford such beneficial effects, including immunomodulation and restoration of homeostasis in diseased states. We will also review ongoing clinical trials using MSCs as treatment for BPD that pave the way for bringing cell-free, MEx-based therapeutics from the bench to the NICU setting.
Collapse
Affiliation(s)
- Janette K. Burgess
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Irene H. Heijink
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|
414
|
Michael Z, Spyropoulos F, Ghanta S, Christou H. Bronchopulmonary Dysplasia: An Update of Current Pharmacologic Therapies and New Approaches. Clin Med Insights Pediatr 2018; 12:1179556518817322. [PMID: 30574005 PMCID: PMC6295761 DOI: 10.1177/1179556518817322] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most prevalent long-term morbidity of surviving extremely preterm infants and is associated with significant health care utilization in infancy and beyond. Recent advances in neonatal care have resulted in improved survival of extremely low birth weight (ELBW) infants; however, the incidence of BPD has not been substantially impacted by novel interventions in this vulnerable population. The multifactorial cause of BPD requires a multi-pronged approach for prevention and treatment. New approaches in assisted ventilation, optimal nutrition, and pharmacologic interventions are currently being evaluated. The focus of this review is the current state of the evidence for pharmacotherapy in BPD. Promising future approaches in need of further study will also be reviewed.
Collapse
Affiliation(s)
- Zoe Michael
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fotios Spyropoulos
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
415
|
Haraszti RA, Miller R, Stoppato M, Sere YY, Coles A, Didiot MC, Wollacott R, Sapp E, Dubuke ML, Li X, Shaffer SA, DiFiglia M, Wang Y, Aronin N, Khvorova A. Exosomes Produced from 3D Cultures of MSCs by Tangential Flow Filtration Show Higher Yield and Improved Activity. Mol Ther 2018; 26:2838-2847. [PMID: 30341012 PMCID: PMC6277553 DOI: 10.1016/j.ymthe.2018.09.015] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Exosomes can deliver therapeutic RNAs to neurons. The composition and the safety profile of exosomes depend on the type of the exosome-producing cell. Mesenchymal stem cells are considered to be an attractive cell type for therapeutic exosome production. However, scalable methods to isolate and manufacture exosomes from mesenchymal stem cells are lacking, a limitation to the clinical translation of exosome technology. We evaluate mesenchymal stem cells from different sources and find that umbilical cord-derived mesenchymal stem cells produce the highest exosome yield. To optimize exosome production, we cultivate umbilical cord-derived mesenchymal stem cells in scalable microcarrier-based three-dimensional (3D) cultures. In combination with the conventional differential ultracentrifugation, 3D culture yields 20-fold more exosomes (3D-UC-exosomes) than two-dimensional cultures (2D-UC-exosomes). Tangential flow filtration (TFF) in combination with 3D mesenchymal stem cell cultures further improves the yield of exosomes (3D-TFF-exosomes) 7-fold over 3D-UC-exosomes. 3D-TFF-exosomes are seven times more potent in small interfering RNA (siRNA) transfer to neurons compared with 2D-UC-exosomes. Microcarrier-based 3D culture and TFF allow scalable production of biologically active exosomes from mesenchymal stem cells. These findings lift a major roadblock for the clinical utility of mesenchymal stem cell exosomes.
Collapse
Affiliation(s)
- Reka Agnes Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rachael Miller
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marie-Cecile Didiot
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Ellen Sapp
- Mass General Institute for Neurodegenerative Disease, Boston, MA, USA
| | - Michelle L Dubuke
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Xuni Li
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Scott A Shaffer
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Marian DiFiglia
- Mass General Institute for Neurodegenerative Disease, Boston, MA, USA
| | | | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
416
|
Abstract
: Improved survival among HIV-1-infected individuals with the advent of antiretroviral therapy has clearly led to a greater prevalence of noninfectious complications. One of the most devastating sequelae in these individuals is the development of pulmonary arterial hypertension (PAH). Various epidemiological studies suggest worse survival of HIV-PAH patients when compared with other forms of PAH. Given that only a subset and not all HIV-infected individuals develop HIV-PAH, it is suggested that an additional second-hit of genetic or environmental trigger is needed for the development of PAH. In this context, it has been well documented that HIV patients who abuse illicit drugs such as stimulants, opioids, and the like, are more susceptible to develop PAH. In this review, we highlight the studies that support the significance of a double hit of HIV and drug abuse in the incidence of PAH and focus on the research that has been undertaken to unravel the pathobiology and vascular remodeling mechanisms underlying the deleterious synergy between HIV infection and drugs of abuse in orchestrating the development of PAH.
Collapse
|
417
|
Mohammadipoor A, Antebi B, Batchinsky AI, Cancio LC. Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respir Res 2018; 19:218. [PMID: 30413158 PMCID: PMC6234778 DOI: 10.1186/s12931-018-0921-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSCs) possess robust self-renewal characteristics and the ability to differentiate into tissue-specific cells. Their therapeutic potential appears promising as evident from their efficacy in several animal models of pulmonary disorders as well as early-phase clinical trials of acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). Such therapeutic efficacy might be attributed to MSC-derived products (the "secretome"), namely conditioned media (CM) and extracellular vesicles (EVs), which have been shown to play pivotal roles in the regenerative function of MSCs. Importantly, the EVs secreted by MSCs can transfer a variety of bioactive factors to modulate the function of recipient cells via various mechanisms, including ligand-receptor interactions, direct membrane fusion, endocytosis, or phagocytosis.Herein, we review the current state-of-the-science of MSC-derived CM and EVs as potential therapeutic agents in lung diseases. We suggest that the MSC-derived secretome might be an appropriate therapeutic agent for treating aggressive pulmonary disorders because of biological and logistical advantages over live cell therapy. Nonetheless, further studies are warranted to elucidate the safety and efficacy of these components in combating pulmonary diseases.
Collapse
Affiliation(s)
- Arezoo Mohammadipoor
- Multi-Organ Support Technology (MOST) Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA. .,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
| | - Ben Antebi
- Multi-Organ Support Technology (MOST) Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| | - Andriy I Batchinsky
- Multi-Organ Support Technology (MOST) Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA.,The Geneva Foundation, Tacoma, WA, USA
| | - Leopoldo C Cancio
- Multi-Organ Support Technology (MOST) Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| |
Collapse
|
418
|
Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang XN. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Dendritic Cell Maturation and Function. Front Immunol 2018; 9:2538. [PMID: 30473695 PMCID: PMC6237916 DOI: 10.3389/fimmu.2018.02538] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are potent regulators of immune responses largely through paracrine signaling. MSC secreted extracellular vesicles (MSC-EVs) are increasingly recognized as the key paracrine factors responsible for the biological and therapeutic function of MSCs. We report the first comprehensive study demonstrating the immunomodulatory effect of MSC-EVs on dendritic cell (DC) maturation and function. MSC-EVs were isolated from MSC conditioned media using differential ultracentrifugation. Human monocyte-derived DCs were generated in the absence or presence of MSC-EVs (20 ug/ml) then subjected to phenotypic and functional analysis in vitro. MSC-EV treatment impaired antigen uptake by immature DCs and halted DC maturation resulting in reduced expression of the maturation and activation markers CD83, CD38, and CD80, decreased secretion of pro-inflammatory cytokines IL-6 and IL-12p70 and increased production of anti-inflammatory cytokine TGF-β. MSC-EV treated DCs also demonstrated a diminished CCR 7 expression after LPS stimulation, coupled with a significantly reduced ability to migrate toward the CCR7-ligand CCL21, although they were still able to stimulate allogeneic T cell proliferation in vitro. Through microRNA profiling we have identified 49 microRNAs, which were significantly enriched in MSC-EVs compared to their parent MSCs. MicroRNAs with known effect on DC maturation and functions, including miR-21-5p, miR-142-3p, miR-223-3p, and miR-126-3p, were detected within the top 10 most enriched miRNAs in MSC-EVs, with MiR-21-5p as the third highest expressed miRNA in MSC-EVs. In silico analysis revealed that miR-21-5p targets the CCR7 gene for degradation. To verify these observations, DCs were transfected with miR-21-5p mimics and analyzed for their ability to migrate toward the CCR7-ligand CCL21 in vitro. MiR-21-5p mimic transfected DCs showed a clear trend of reduced CCR7 expression and a significantly decreased migratory ability toward the CCL21. Our findings suggest that MSC-EVs are able to recapitulate MSC mediated DC modulation and MSC-EV enclosed microRNAs may represent a novel mechanism through which MSCs modulate DC functions. As MSCs are currently used in clinical trials to treat numerous diseases associated with immune dysregulation, such as graft-versus-host disease and inflammatory bowel disease, our data provide novel evidence to inform potential future application of MSC-EVs as a cell-free therapeutic agent.
Collapse
Affiliation(s)
- Monica Reis
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Mavin
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lindsay Nicholson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kile Green
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne M Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Xiao-Nong Wang
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
419
|
Thébaud B. Stem cell-based therapies in neonatology: a new hope. Arch Dis Child Fetal Neonatal Ed 2018; 103:F583-F588. [PMID: 29973349 DOI: 10.1136/archdischild-2017-314451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023]
Abstract
Despite progress made in neonatal intensive care, complications of extreme preterm birth still contribute as the main cause of death to children below 5 years of age. Stem cell-based therapies-mesenchymal stromal cells in particular-offer a new hope in preventing and/or restoring organ damage in extreme preterm infants. Early phase clinical trials, fueled by promising preclinical studies on lung and brain injury, have begun. While the enthusiasm in the neonatal community is palpable, much more needs to be learnt about cell-based therapies. Maintaining the balance between temptation and a cautious, evidence-based approach will be critical for cell therapies to fulfil their promise in substantially improving the outcome of extreme preterm infants.
Collapse
Affiliation(s)
- Bernard Thébaud
- Regenerative Medicine Program, Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
420
|
Lesage F, Thébaud B. Nanotherapies for micropreemies: Stem cells and the secretome in bronchopulmonary dysplasia. Semin Perinatol 2018; 42:453-458. [PMID: 30376986 DOI: 10.1053/j.semperi.2018.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Improved survival of extreme preterm infants has made the task of protecting the ever more immature lung from injury more challenging. As a consequence, the incidence of bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, has remained unchanged. The multifactorial disease pathogenesis of BPD - including amongst others inflammation, oxidative stress and excessive lung stretch - adds further complexity to finding effective therapies that would prevent lung injury and promote lung growth. Mesenchymal stromal cells and the discovery of their pleiotropic effects represent an appealing approach for the prevention of BPD. Mesenchymal stromal cells do not engraft but exert their therapeutic benefit through paracrine effects. These paracrine effects seem to be mediated through the release of nanosized extra-cellular vesicles used for cell-cell communication. This review will summarize our current knowledge on these potential nanotherapies for micropreemies.
Collapse
Affiliation(s)
- Flore Lesage
- Ottawa Hospital Research Institute, Sinclair Centre for Regenerative Medicine, 501 Smyth Rd, Ottawa K1H 8L6, ON, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, Sinclair Centre for Regenerative Medicine, 501 Smyth Rd, Ottawa K1H 8L6, ON, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.
| |
Collapse
|
421
|
Lee JH, Park J, Lee JW. Therapeutic use of mesenchymal stem cell-derived extracellular vesicles in acute lung injury. Transfusion 2018; 59:876-883. [PMID: 30383895 DOI: 10.1111/trf.14838] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022]
Abstract
Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical animal studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury (ALI) holds great promise, and Phase I and II clinical trials are currently under way internationally. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, as well as the prohibitive cost of production, storage, and distribution of cells in bone marrow transplant facilities, may limit access to this lifesaving therapy. Accumulating evidence now suggest that novel stem cell-derived therapies, including MSC-conditioned medium and extracellular vesicles (EVs) released from MSCs, might constitute compelling alternatives. The current review summarizes the preclinical studies testing MSC EVs as treatment for ALI and other inflammatory lung diseases. While certain logistic obstacles limit the clinical applications of MSC-conditioned medium such as the volume required for treatment and lack of standardization of what constitutes the components of conditioned medium, the therapeutic application of MSC EVs remains promising, primarily due to ability of EVs to maintain the functional phenotype of the parent cell. However, utilization of MSC EVs will require large-scale production and standardization concerning identification, characterization, and quantification.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Anesthesiology, University of California at San Francisco, San Francisco, California.,Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeonghyun Park
- Department of Anesthesiology, University of California at San Francisco, San Francisco, California
| | - Jae-Woo Lee
- Department of Anesthesiology, University of California at San Francisco, San Francisco, California
| |
Collapse
|
422
|
Toh WS, Zhang B, Lai RC, Lim SK. Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy 2018; 20:1419-1426. [PMID: 30352735 DOI: 10.1016/j.jcyt.2018.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cell (MSC) therapies have demonstrated therapeutic efficacy in a wide-ranging array of tissue injury and disease indications. An important aspect of MSC-mediated therapeutic activities is immune modulation. Consistent with the concentration of MSC therapeutic potency in its secretion, a significant proportion of MSC immune potency resides in the small extracellular vesicles (sEVs) secreted by MSCs. These sEVs, which also include exosomes, carry a large cargo enriched in proteins with potent immunomodulatory activities. They have been reported to exert potent effects on humoral and cellular components of the immune system in vitro and in vivo, and may have the potential to support the diametrically opposite pro- and anti-inflammatory functions necessary for tissue repair and regeneration following injury. Following injury, pro-inflammatory activities are necessary to neutralize injury and remove dead or injured tissue, while anti-inflammatory activities to facilitate migration and proliferation of reparative cell types and to increase vascularization and nutrient supply are necessary to repair and regenerate new tissue. Therefore, a critical immunomodulatory requisite of MSC sEVs in tissue regeneration is the capacity to support the appropriate immune activities at the appropriate time. Here, we review how some of the immune regulatory targets of MSC sEVs could support the dynamic immunomodulatory activities during tissue repair and regeneration.
Collapse
Affiliation(s)
- Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore
| | - Bin Zhang
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Ruenn Chai Lai
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
423
|
Ren K. Exosomes in perspective: a potential surrogate for stem cell therapy. Odontology 2018; 107:271-284. [PMID: 30324571 DOI: 10.1007/s10266-018-0395-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
Exosomes as a unique subtype of small extracellular vesicles (sEVs) have attracted increasing interest in recent years in the fields of mesenchymal stromal cell (MSC) research. Studies have confirmed that exosomes derived from MSCs preserve immunosuppressive phenotype and can mimic therapeutic benefits of their parent cells. This review briefly summarizes most recent findings on the potential of exosomes as an alternative of therapeutic MSCs, focusing on the role of MSCs and their secreted exosomes in regulation of immune cells, preclinical and clinical evidence of therapeutic outcomes of MSC exosomes, and the biodistribution and pharmacokinetic profile of systemically administered exosomes. It is appreciated that exosomes from MSCs of different sources have variable contents including inflammatory mediators, tropic factors, signaling molecules, and nucleic acids (DNA, mRNA, microRNA and long non-coding RNA). Diverse functions of exosomes derived from different sources are expected. More importantly, exosomes isolated in vitro may not mirror that from in vivo, where donor MSCs are exposed to specific disease or injury-related conditions. Simulating in vivo microenvironment by pretreatment of MSCs with relevant chemical mediators may lead to their secretion of therapeutically more efficient exosomes/sEVs. However, we know very little about the key molecules involved and the differences between exosomes released under different conditions. These issues would be of tremendous interest to preclinical research that pursues exosome biology-underlain therapeutic mechanisms of MSCs. Further studies are expected to demonstrate the superiority of MSC-derived exsomes/sEVs as a pharmaceutical entity with regard to efficacy, safety, and practicability.
Collapse
Affiliation(s)
- Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, 650 W. Baltimore St, Dental-8 South, Baltimore, MD, 21201, USA.
| |
Collapse
|
424
|
Clinical Application of Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapeutics for Inflammatory Lung Diseases. J Clin Med 2018; 7:jcm7100355. [PMID: 30322213 PMCID: PMC6210470 DOI: 10.3390/jcm7100355] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023] Open
Abstract
It is currently thought that extracellular vesicles (EVs), such as exosomes and microvesicles, play an important autocrine/paracrine role in intercellular communication. EVs package proteins, mRNA and microRNA (miRNA), which have the ability to transfer biological information to recipient cells in the lungs. Depending on their origin, EVs fulfil different functions. EVs derived from mesenchymal stem cells (MSCs) have been found to promote therapeutic activities that are comparable to MSCs themselves. Recent animal model-based studies suggest that MSC-derived EVs have significant potential as a novel alternative to whole-cell therapies. Compared to their parent cells, EVs may have a superior safety profile and can be stored without losing function. It has been observed that MSC-derived EVs suppress pro-inflammatory processes and reduce oxidative stress, pulmonary fibrosis and remodeling in a variety of in vivo inflammatory lung disease models by transferring their components. However, there remain significant challenges to translate this therapy to the clinic. From this view point, we will summarize recent studies on EVs produced by MSCs in preclinical experimental models of inflammatory lung diseases. We will also discuss the most relevant issues in bringing MSC-derived EV-based therapeutics to the clinic for the treatment of inflammatory lung diseases.
Collapse
|
425
|
Off-label mesenchymal stromal cell treatment in two infants with severe bronchopulmonary dysplasia: clinical course and biomarkers profile. Cytotherapy 2018; 20:1337-1344. [PMID: 30327248 DOI: 10.1016/j.jcyt.2018.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most prevalent sequelae of premature birth, for which therapeutic options are currently limited. Mesenchymal stromal cells (MSCs) are a potential therapy for prevention or reversal of BPD. SERIES OF CASES We report on two infants with severe BPD in whom off-label treatment with repeated intravenous doses of allogeneic bone marrow-derived MSCs were administered. We analyzed the temporal profile of serum and tracheal cytokines and growth factors as well as safety, tolerability and clinical response. The administration of repeated intravenous doses of MSCs in two human babies with severe and advanced BPD was feasible and safe and was associated with a decrease of pro-inflammatory molecules and lung injury biomarkers. Both patients were at very advanced stages of BPD with very severe lung fibrosis and did not survive the disease. CONCLUSIONS MSCs are a promising therapy for BPD, but they should be administered in early stages of the disease.
Collapse
|
426
|
Letsiou E, Bauer N. Endothelial Extracellular Vesicles in Pulmonary Function and Disease. CURRENT TOPICS IN MEMBRANES 2018; 82:197-256. [PMID: 30360780 DOI: 10.1016/bs.ctm.2018.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pulmonary vascular endothelium is involved in the pathogenesis of acute and chronic lung diseases. Endothelial cell (EC)-derived products such as extracellular vesicles (EVs) serve as EC messengers that mediate inflammatory as well as cytoprotective effects. EC-EVs are a broad term, which encompasses exosomes and microvesicles of endothelial origin. EVs are comprised of lipids, nucleic acids, and proteins that reflect not only the cellular origin but also the stimulus that triggered their biogenesis and secretion. This chapter presents an overview of the biology of EC-EVs and summarizes key findings regarding their characteristics, components, and functions. The role of EC-EVs is specifically delineated in pulmonary diseases characterized by endothelial dysfunction, including pulmonary hypertension, acute respiratory distress syndrome and associated conditions, chronic obstructive pulmonary disease, and obstructive sleep apnea.
Collapse
Affiliation(s)
- Eleftheria Letsiou
- Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Natalie Bauer
- Department of Pharmacology & Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States.
| |
Collapse
|
427
|
Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A. Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics. Stem Cells Int 2018; 2018:9415367. [PMID: 30275839 PMCID: PMC6157150 DOI: 10.1155/2018/9415367] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted tremendous research interest due to their ability to repair tissues and reduce inflammation when implanted into a damaged or diseased site. These therapeutic effects have been largely attributed to the collection of biomolecules they secrete (i.e., their secretome). Recent studies have provided evidence that similar effects may be produced by utilizing only the secretome fraction containing extracellular vesicles (EVs). EVs are cell-derived, membrane-bound vesicles that contain various biomolecules. Due to their small size and relative mobility, they provide a stable mechanism to deliver biomolecules (i.e., biological signals) throughout an organism. The use of the MSC secretome, or its components, has advantages over the implantation of the MSCs themselves: (i) signals can be bioengineered and scaled to specific dosages, and (ii) the nonliving nature of the secretome enables it to be efficiently stored and transported. However, since the composition and therapeutic benefit of the secretome can be influenced by cell source, culture conditions, isolation methods, and storage conditions, there is a need for standardization of bioprocessing parameters. This review focuses on key parameters within the MSC culture environment that affect the nature and functionality of the secretome. This information is pertinent to the development of bioprocesses aimed at scaling up the production of secretome-derived products for their use as therapeutics.
Collapse
Affiliation(s)
- Jolene Phelps
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Amir Sanati-Nezhad
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Mark Ungrin
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Faculty of Veterinary Medicine, Heritage Medical Research Building, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, Canada T2N 4N1
| | - Neil A. Duncan
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Musculoskeletal Mechanobiology and Multiscale Mechanics Bioengineering Lab, Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| |
Collapse
|
428
|
Zhang Z, Sun C, Wang J, Jiang W, Xin Q, Luan Y. Timing of erythropoietin modified mesenchymal stromal cell transplantation for the treatment of experimental bronchopulmonary dysplasia. J Cell Mol Med 2018; 22:5759-5763. [PMID: 30160360 PMCID: PMC6201357 DOI: 10.1111/jcmm.13843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 01/08/2023] Open
Abstract
The aim of this study is to optimize the timing of erythropoietin gene modified mesenchymal stem cells (EPO‐MSCs) transplantation for bronchopulmonary dysplasia (BPD). Three weeks post‐operation, the results indicated that the damage of airway structure and apoptosis were significantly decreased, the proliferation was increased in three EPO‐MSCs transplantation groups as compared with BPD mice. Moreover, the inflammation cytokines were improvement in early EPO‐MSCs injection mice than in BPD mice, but there was no significant difference between late injection and BPD groups. Furthermore, the protein expression ratio of p‐p38/p38MAPK was down‐regulation in early mice but not in late transplantation mice. Our findings suggest that EPO‐MSCs maybe attenuate BPD injury in early than in late administration by inhibiting inflammation response through down‐regulation of the p38MAPK signalling pathway.
Collapse
Affiliation(s)
- Zhaohua Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, China
| | - Chao Sun
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Jue Wang
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Wen Jiang
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Qian Xin
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Yun Luan
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
429
|
Willis GR, Fernandez-Gonzalez A, Reis M, Mitsialis SA, Kourembanas S. Macrophage Immunomodulation: The Gatekeeper for Mesenchymal Stem Cell Derived-Exosomes in Pulmonary Arterial Hypertension? Int J Mol Sci 2018; 19:ijms19092534. [PMID: 30150544 PMCID: PMC6164282 DOI: 10.3390/ijms19092534] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by remodeling of the pulmonary arteries, increased pulmonary infiltrates, loss of vascular cross-sectional area, and elevated pulmonary vascular resistance. Despite recent advances in the management of PAH, there is a pressing need for the development of new tools to effectively treat and reduce the risk of further complications. Dysregulated immunity underlies the development of PAH, and macrophages orchestrate both the initiation and resolution of pulmonary inflammation, thus, manipulation of lung macrophage function represents an attractive target for emerging immunomodulatory therapies, including cell-based approaches. Indeed, mesenchymal stem cell (MSC)-based therapies have shown promise, effectively modulating the macrophage fulcrum to favor an anti-inflammatory, pro-resolving phenotype, which is associated with both histological and functional benefits in preclinical models of pulmonary hypertension (PH). The complex interplay between immune system homeostasis and MSCs remains incompletely understood. Here, we highlight the importance of macrophage function in models of PH and summarize the development of MSC-based therapies, focusing on the significance of MSC exosomes (MEx) and the immunomodulatory and homeostatic mechanisms by which such therapies may afford their beneficial effects.
Collapse
Affiliation(s)
- Gareth R Willis
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Monica Reis
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - S Alex Mitsialis
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Stella Kourembanas
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
430
|
Braun RK, Chetty C, Balasubramaniam V, Centanni R, Haraldsdottir K, Hematti P, Eldridge MW. Intraperitoneal injection of MSC-derived exosomes prevent experimental bronchopulmonary dysplasia. Biochem Biophys Res Commun 2018; 503:2653-2658. [PMID: 30093115 DOI: 10.1016/j.bbrc.2018.08.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cell (MSC) derived exosomes mediate tissue protection and regeneration in many injuries and diseases by modulating cell protein production, protecting from apoptosis, inhibiting inflammation, and increasing angiogenesis. In the present study, daily intraperitoneal injection of MSC-derived exosomes protected alveolarization and angiogenesis in a newborn rat model of bronchopulmonary dysplasia (BPD) induced by 14 days of neonatal hyperoxia exposure (85% O2). Exosome treatment during hyperoxia prevented disruption of alveolar growth, increased small blood vessel number, and inhibited right heart hypertrophy at P14, P21, and P56. In vitro, exosomes significantly increased tube-like network formation by HUVEC, in part through a VEGF mediated mechanism. In summary, daily intraperitoneal injection of exosomes increased blood vessel number and size in the lung through pro-angiogenic mechanisms. MSC-derived exosomes therefore have both anti-inflammatory and pro-angiogenic mechanism to protect the lung from hyperoxia induced lung and heart disease associated with BPD.
Collapse
Affiliation(s)
- Rudolf K Braun
- Department of Pediatrics, University of Wisconsin Madison, Madison, WI, USA.
| | - Chandramu Chetty
- Department of Pediatrics, University of Wisconsin Madison, Madison, WI, USA
| | | | - Ryan Centanni
- Department of Pediatrics, University of Wisconsin Madison, Madison, WI, USA
| | | | - Peiman Hematti
- Department of Medicine, University of Wisconsin Madison, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin Madison, Madison, WI, USA
| | - Marlowe W Eldridge
- Department of Pediatrics, University of Wisconsin Madison, Madison, WI, USA.
| |
Collapse
|
431
|
Bronchopulmonary dysplasia: what's new on the horizon? THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:549-551. [DOI: 10.1016/s2352-4642(18)30181-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/06/2023]
|
432
|
Human Bone Marrow Mesenchymal Stem Cells Promote Gastric Cancer Growth via Regulating c-Myc. Stem Cells Int 2018; 2018:9501747. [PMID: 30186330 PMCID: PMC6116400 DOI: 10.1155/2018/9501747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
The clinical application of human bone marrow mesenchymal stem cells (hBM-MSCs) has generated a great deal of interest because of their potential use in regenerative medicine and tissue engineering. However, safety concerns over hBM-MSCs limit their clinical application. In this study, we observed that hBM-MSC-conditioned medium (hBM-MSC-CM) promotes gastric cancer development via upregulation of c-Myc. Our results showed that c-Myc was upregulated in MGC-803 and BGC-823 cells after hBM-MSC-CM treatment. Moreover, we found that the c-Myc inhibitor JQ1 and c-Myc siRNA decreased the expression of c-Myc in hBM-MSC-CM-treated tumor cells in vitro. Additionally, hBM-MSC-CM enhanced the migration and glucose uptake of gastric cancer cells. In vivo studies showed that JQ1 inhibited hBM-MSC-CM-induced gastric cancer growth. These results indicated that hBM-MSC-CM induced gastric cancer growth via upregulation of c-Myc, which may be a potential risk factor and/or a therapeutic target for clinical applications.
Collapse
|
433
|
Chuang HM, Shih TE, Lu KY, Tsai SF, Harn HJ, Ho LI. Mesenchymal Stem Cell Therapy of Pulmonary Fibrosis: Improvement with Target Combination. Cell Transplant 2018; 27:1581-1587. [PMID: 29991279 PMCID: PMC6299195 DOI: 10.1177/0963689718787501] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the clinical application of new drugs has been shown to be effective in slowing disease progression and improving the quality of life in patients with pulmonary fibrosis, the damaged lung tissue does not recover with these drugs. Thus, there is an urgent need to establish regenerative therapy, such as stem cell therapy or tissue engineering. Moreover, the clinical application of mesenchymal stem cell (MSC) therapy has been shown to be safe in humans with idiopathic pulmonary fibrosis (IPF). It seems that a combination of MSC transplantation and pharmaceutical therapy might have additional benefits; however, the experimental design for its efficacy is still lacking. In this review, we provide an overview of the mechanisms that were identified when IPF was treated with MSC transplantation or new drugs. To maximize the therapeutic effect, we suggest that MSC transplantation is combined with drug application for synergistic effects. This review provides clinicians and scientists with the most efficient medical options, in the hope that this will spur on future research and lead to an eventual cure for this disease.
Collapse
Affiliation(s)
- Hong-Meng Chuang
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan.,Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tina Emily Shih
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan
| | - Kang-Yun Lu
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Sheng-Feng Tsai
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan.,Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Li-Ing Ho
- Division of Respiratory Therapy, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
434
|
Luo J, Zhao S, Wang J, Luo L, Li E, Zhu Z, Liu Y, Kang R, Zhao Z. Bone marrow mesenchymal stem cells reduce ureteral stricture formation in a rat model via the paracrine effect of extracellular vesicles. J Cell Mol Med 2018; 22:4449-4459. [PMID: 29993184 PMCID: PMC6111875 DOI: 10.1111/jcmm.13744] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
With no effective therapy to prevent or treat ureteral stricture (US), a multifactorial fibrotic disease after iatrogenic injury of the ureter, the need for new therapies is urgent. Mesenchymal stem cells (MSCs) have been widely studied for treating tissue defects and excessive fibrosis, and recent studies established that one of the main therapeutic vectors of MSCs is comprised in their secretome and represented by extracellular vesicles (EVs). Thus, we have determined to explore the specific role of MSCs‐derived EVs (MSC‐EVs) treatment in a pre‐clinical model of US. The results firstly showed that either a bolus dose of MSCs or a bolus dose of MSC‐EVs (administration via renal‐arterial) significantly ameliorated ureteral fibrosis and recuperated ureter morphological development in a US rat model. We confirmed our observations through MSCs or MSC‐EVs treatment alleviated hydronephrosis, less renal dysfunction and blunted transforming growth factor‐β1 induced fibration. Due to MSC‐EVs are the equivalent dose of MSCs, and similar curative effects of transplantation of MSCs and MSC‐EVs were observed, we speculated the curative effect of MSCs in treating US might on account of the release of EVs through paracrine mechanisms. Our study demonstrated an innovative strategy to counteract ureteral stricture formation in a rat model of US.
Collapse
Affiliation(s)
- Jintai Luo
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shankun Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiamin Wang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lianmin Luo
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ermao Li
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiguo Zhu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangzhou Liu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhigang Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
435
|
Donda K, Zambrano R, Moon Y, Percival J, Vaidya R, Dapaah-Siakwan F, Luo S, Duncan MR, Bao Y, Wang L, Qin L, Benny M, Young K, Wu S. Riociguat prevents hyperoxia-induced lung injury and pulmonary hypertension in neonatal rats without effects on long bone growth. PLoS One 2018; 13:e0199927. [PMID: 29990355 PMCID: PMC6038999 DOI: 10.1371/journal.pone.0199927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common and serious chronic lung disease of premature infants. Severe BPD complicated with pulmonary hypertension (PH) increases the mortality of these infants. Riociguat is an allosteric soluble guanylate cyclase stimulator and is approved by the FDA for treating PH in adults. However, it has not been approved for use in neonates due to concern for adverse effects on long bone growth. To address this concern we investigated if administration of riociguat is beneficial in preventing hyperoxia-induced lung injury and PH without side effects on long bone growth in newborn rats. Newborn rats were randomized to normoxia (21% O2) or hyperoxia (85% O2) exposure groups within 24 hours of birth, and received riociguat or placebo by once daily intraperitoneal injections during continuous normoxia or hyperoxia exposure for 9 days. In the hyperoxia control group, radial alveolar count, mean linear intercept and vascular density were significantly decreased, the pathological hallmarks of BPD, and these were accompanied by an increased inflammatory response. There was also significantly elevated vascular muscularization of peripheral pulmonary vessels, right ventricular systolic pressure and right ventricular hypertrophy indicating PH. However, administration of riociguat significantly decreased lung inflammation, improved alveolar and vascular development, and decreased PH during hyperoxia by inducing cGMP production. Additionally, riociguat did not affect long bone growth or structure. These data indicate that riociguat is beneficial in preventing hyperoxia-induced lung injury and PH without affecting long bone growth and structure and hence, suggests riociguat may be a potential novel agent for preventing BPD and PH in neonates.
Collapse
Affiliation(s)
- Keyur Donda
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Ronald Zambrano
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Younghye Moon
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Justin Percival
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ruben Vaidya
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Fredrick Dapaah-Siakwan
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Shihua Luo
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Matthew R. Duncan
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Yong Bao
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Luqing Wang
- Department of Orthopedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ling Qin
- Department of Orthopedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Merline Benny
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Karen Young
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Shu Wu
- Pediatrics and Batchelor Children’s Research Institute, University of Miami School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
436
|
Chaubey S, Thueson S, Ponnalagu D, Alam MA, Gheorghe CP, Aghai Z, Singh H, Bhandari V. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther 2018; 9:173. [PMID: 29941022 PMCID: PMC6019224 DOI: 10.1186/s13287-018-0903-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/25/2018] [Accepted: 05/13/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are promising tools for the treatment of human lung disease and other pathologies relevant to newborn medicine. Recent studies have established MSC exosomes (EXO), as one of the main therapeutic vectors of MSCs in mouse models of multifactorial chronic lung disease of preterm infants, bronchopulmonary dysplasia (BPD). However, the mechanisms underlying MSC-EXO therapeutic action are not completely understood. Using a neonatal mouse model of human BPD, we evaluated the therapeutic efficiency of early gestational age (GA) human umbilical cord (hUC)-derived MSC EXO fraction and its exosomal factor, tumor necrosis factor alpha-stimulated gene-6 (TSG-6). METHODS Conditioned media (CM) and EXO fractions were isolated from 25 and 30 weeks GA hUC-MSC cultures grown in serum-free media (SFM) for 24 h. Newborn mice were exposed to hyperoxia (> 95% oxygen) and were given intraperitoneal injections of MSC-CM or MSC-CM EXO fractions at postnatal (PN) day 2 and PN4. They were then returned to room air until PN14 (in a mouse model of severe BPD). The treatment regime was followed with (rh)TSG-6, TSG-6-neutralizing antibody (NAb), TSG-6 (si)RNA-transfected MSC-CM EXO and their appropriate controls. Echocardiography was done at PN14 followed by harvesting of lung, heart and brain for assessment of pathology parameters. RESULTS Systemic administration of CM or EXO in the neonatal BPD mouse model resulted in robust improvement in lung, cardiac and brain pathology. Hyperoxia-exposed BPD mice exhibited pulmonary inflammation accompanied by alveolar-capillary leakage, increased chord length, and alveolar simplification, which was ameliorated by MSC CM/EXO treatment. Pulmonary hypertension and right ventricular hypertrophy was also corrected. Cell death in brain was decreased and the hypomyelination reversed. Importantly, we detected TSG-6, an immunomodulatory glycoprotein, in EXO. Administration of TSG-6 attenuated BPD and its associated pathologies, in lung, heart and brain. Knockdown of TSG-6 by NAb or by siRNA in EXO abrogated the therapeutic effects of EXO, suggesting TSG-6 as an important therapeutic molecule. CONCLUSIONS Preterm hUC-derived MSC-CM EXO alleviates hyperoxia-induced BPD and its associated pathologies, in part, via exosomal factor TSG-6. The work indicates early systemic intervention with TSG-6 as a robust option for cell-free therapy, particularly for treating BPD.
Collapse
Affiliation(s)
- Sushma Chaubey
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Sam Thueson
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Devasena Ponnalagu
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Mohammad Afaque Alam
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Ciprian P Gheorghe
- Department of Obstetrics and Gynecology, Loma Linda University School of Medicine, 11370 Anderson Street, Loma Linda, CA, 92354, USA
| | - Zubair Aghai
- Divison of Neonatology, Department of Pediatrics, Thomas Jefferson University Hospital, 132S, 10th Street, Philadelphia, PA, 19107, USA
| | - Harpreet Singh
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA.,Department of Medicine, Division of Cardiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Vineet Bhandari
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
437
|
Olsen TR, Ng KS, Lock LT, Ahsan T, Rowley JA. Peak MSC-Are We There Yet? Front Med (Lausanne) 2018; 5:178. [PMID: 29977893 PMCID: PMC6021509 DOI: 10.3389/fmed.2018.00178] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are a critical raw material for many regenerative medicine products, including cell-based therapies, engineered tissues, or combination products, and are on the brink of radically changing how the world of medicine operates. Their unique characteristics, potential to treat many indications, and established safety profile in more than 800 clinical trials have contributed to their current consumption and will only fuel future demand. Given the large target patient populations with typical dose sizes of 10's to 100's of millions of cells per patient, and engineered tissues being constructed with 100's of millions to billions of cells, an unprecedented demand has been created for hMSCs. The fulfillment of this demand faces an uphill challenge in the limited availability of large quantities of pharmaceutical grade hMSCs for the industry—fueling the need for parallel rapid advancements in the biomanufacturing of this living critical raw material. Simply put, hMSCs are no different than technologies like transistors, as they are a highly technical and modular product that requires stringent control over manufacturing that can allow for high quality and consistent performance. As hMSC manufacturing processes are optimized, it predicts a future time of abundance for hMSCs, where scientists and researchers around the world will have access to a consistent and readily available supply of high quality, standardized, and economical pharmaceutical grade product to buy off the shelf for their applications and drive product development—this is “Peak MSC.”
Collapse
Affiliation(s)
| | - Kelvin S Ng
- RoosterBio, Inc. Frederick, MD, United States
| | - Lye T Lock
- RoosterBio, Inc. Frederick, MD, United States
| | | | | |
Collapse
|
438
|
Sharma H, Chinnappan M, Agarwal S, Dalvi P, Gunewardena S, O'Brien-Ladner A, Dhillon NK. Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse. FASEB J 2018; 32:5174-5185. [PMID: 29672222 PMCID: PMC6103174 DOI: 10.1096/fj.201701558r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our previous studies consistently demonstrate enhanced pulmonary vascular remodeling in HIV–infected intravenous drug users, and in simian immunodeficiency virus–infected macaques or HIV-transgenic rats exposed to opioids or cocaine. Although we reported an associated increase in perivascular inflammation, the exact role of inflammatory cells in the development of pulmonary vascular remodeling remains unknown. In this study, HIV–infected and cocaine (H+C)–treated human monocyte derived macrophages released a higher number of extracellular vesicles (EVs), compared to HIV-infected or uninfected cocaine-treated macrophages, with a significant increase in the particle size range to 100–150 nm. Treatment of primary human pulmonary arterial smooth muscle cells (HPASMCs) with these EVs resulted in a significant increase in smooth muscle proliferation. We also observed a significant increase in the miRNA-130a level in the EVs derived from H+C-treated macrophages that corresponded with the decrease in the expression of phosphatase and tensin homolog and tuberous sclerosis 1 and 2 and activation of PI3K/protein kinase B signaling in HPASMCs on addition of these EVs. Transfection of HPASMCs with antagomir-130a–ameliorated the EV-induced effect. Thus, we conclude that EVs derived from H+C-treated macrophages promote pulmonary smooth muscle proliferation by delivery of its prosurvival miRNA cargo, which may play a crucial role in the development of PAH.—Sharma, H., Chinnappan, M., Agarwal, S., Dalvi, P., Gunewardena, S., O’Brien-Ladner, A., Dhillon, N. K. Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse.
Collapse
Affiliation(s)
- Himanshu Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Mahendran Chinnappan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amy O'Brien-Ladner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
439
|
Hopper RK, Mullen MP. Genotypes and Phenotypes: Making Progress Toward a Precision Medicine Approach in Pediatric Pulmonary Hypertension. ACTA ACUST UNITED AC 2018. [DOI: 10.21693/1933-088x-17.4.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pediatric pulmonary hypertension (PH) is a heterogeneous disease that includes etiologies related to growth and development that are unique to children. Recent pediatric registry studies have characterized diverse phenotypes even within recognized PH subtypes, including PH associated with congenital heart disease and developmental lung disease. Advances in genetics are resulting in increased understanding of the genetic basis for PH, with recent discoveries such as TBX4 mutations specific for pediatric-onset pulmonary arterial hypertension (PAH) and SOX17 related to congenital heart disease–associated PAH. In addition to potential genetic underpinnings, PAH risk and clinical presentation in children with congenital heart disease may vary by cardiac condition, such as single-ventricle physiology or transposition of the great arteries. Growth and development of the pulmonary vasculature likely plays a role in all pediatric PH, which is highlighted by the disruption of normal lung growth in patients with PH related to prematurity and developmental lung disease. These diverse pediatric genotypes and phenotypes underscore a need for an individualized approach to diagnose and treat the complex pediatric PH population. Magnetic resonance imaging (MRI) is increasingly being used to improve clinical characterization of PH in children, with recent identification of specific MRI biomarkers associated with PH severity and outcomes. While much progress has been made, additional understanding of the important genetic causes and developmental concepts in pediatric PH is needed to develop a precision medicine approach to diagnosis and treatment of children with PH.
Collapse
Affiliation(s)
- Rachel K. Hopper
- Division of Cardiology, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital Stanford, Palo Alto, CA
| | - Mary P. Mullen
- Department of Cardiology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
440
|
"Good things come in small packages": application of exosome-based therapeutics in neonatal lung injury. Pediatr Res 2018; 83:298-307. [PMID: 28985201 PMCID: PMC5876073 DOI: 10.1038/pr.2017.256] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023]
Abstract
Infants born at very low gestational age contribute disproportionately to neonatal morbidity and mortality. Advancements in antenatal steroid therapies and surfactant replacement have favored the survival of infants with ever-more immature lungs. Despite such advances in medical care, cardiopulmonary and neurological impairment prevail in constituting the major adverse outcomes for neonatal intensive care unit survivors. With no single effective therapy for either the prevention or treatment of such neonatal disorders, the need for new tools to treat and reduce risk of further complications associated with extreme preterm birth is urgent. Mesenchymal stem/stromal cell (MSC)-based approaches have shown promise in numerous experimental models of lung injury relevant to neonatology. Recent studies have highlighted that the therapeutic potential of MSCs is harnessed in their secretome, and that the therapeutic vector therein is represented by the exosomes released by MSCs. In this review, we summarize the development and significance of stem cell-based therapies for neonatal diseases, focusing on preclinical models of neonatal lung injury. We emphasize the development of MSC exosome-based therapeutics and comment on the challenges in bringing these promising interventions to clinic.
Collapse
|
441
|
Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatr Res 2018; 83:214-222. [PMID: 28972960 DOI: 10.1038/pr.2017.249] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation represents the next breakthrough in the treatment of currently intractable and devastating neonatal disorders with complex multifactorial etiologies, including bronchopulmonary dysplasia, hypoxic ischemic encephalopathy, and intraventricular hemorrhage. Absent engraftment and direct differentiation of transplanted MSCs, and the "hit-and-run" therapeutic effects of these MSCs suggest that their pleiotropic protection might be attributable to paracrine activity via the secretion of various biologic factors rather than to regenerative activity. The transplanted MSCs, therefore, exert their therapeutic effects not by acting as "stem cells," but rather by acting as "paracrine factors factory." The MSCs sense the microenvironment of the injury site and secrete various paracrine factors that serve several reparative functions, including antiapoptotic, anti-inflammatory, antioxidative, antifibrotic, and/or antibacterial effects in response to environmental cues to enhance regeneration of the damaged tissue. Therefore, the therapeutic efficacy of MSCs might be dependent on their paracrine potency. In this review, we focus on recent investigations that elucidate the specifically regulated paracrine mechanisms of MSCs by injury type and discuss potential strategies to enhance paracrine potency, and thus therapeutic efficacy, of transplanted MSCs, including determining the appropriate source and preconditioning strategy for MSCs and the route and timing of their administration.
Collapse
|
442
|
Ee MT, Thébaud B. The Therapeutic Potential of Stem Cells for Bronchopulmonary Dysplasia: "It's About Time" or "Not so Fast" ? Curr Pediatr Rev 2018; 14:227-238. [PMID: 30205800 PMCID: PMC6416190 DOI: 10.2174/1573396314666180911100503] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE While the survival of extremely premature infants has improved over the past decades, the rate of complications - especially for bronchopulmonary dysplasia (BPD) - remains unacceptably high. Over the past 50 years, no safe therapy has had a substantial impact on the incidence and severity of BPD. METHODS This may stem from the multifactorial disease pathogenesis and the increasing lung immaturity. Mesenchymal Stromal Cells (MSCs) display pleiotropic effects and show promising results in neonatal rodents in preventing or rescuing lung injury without adverse effects. Early phase clinical trials are now underway to determine the safety and efficacy of this therapy in extremely premature infants. RESULTS AND CONCLUSION This review summarizes our current knowledge about MSCs, their mechanism of action and the results of preclinical studies that provide the rationale for early phase clinical trials and discuss remaining gaps in our knowledge.
Collapse
Affiliation(s)
- Mong Tieng Ee
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada.,Sinclair Centre for Regenerative Medicine, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
443
|
Willis GR, Kourembanas S, Mitsialis SA. Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency. Front Cardiovasc Med 2017; 4:63. [PMID: 29062835 PMCID: PMC5640880 DOI: 10.3389/fcvm.2017.00063] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Exosomes are defined as submicron (30-150 nm), lipid bilayer-enclosed extracellular vesicles (EVs), specifically generated by the late endosomal compartment through fusion of multivesicular bodies with the plasma membrane. Produced by almost all cells, exosomes were originally considered to represent just a mechanism for jettisoning unwanted cellular moieties. Although this may be a major function in most cells, evolution has recruited the endosomal membrane-sorting pathway to duties beyond mere garbage disposal, one of the most notable examples being its cooption by retroviruses for the generation of Trojan virions. It is, therefore, tempting to speculate that certain cell types have evolved an exosome subclass active in intracellular communication. We term this EV subclass "signalosomes" and define them as exosomes that are produced by the "signaling" cells upon specific physiological or environmental cues and harbor cargo capable of modulating the programming of recipient cells. Our recent studies have established that signalosomes released by mesenchymal stem/stromal cells (MSCs) represent the main vector of MSC immunomodulation and therapeutic action in animal models of lung disease. The efficacy of MSC-exosome treatments in a number of preclinical models of cardiovascular and pulmonary disease supports the promise of application of exosome-based therapeutics across a wide range of pathologies within the near future. However, the full realization of exosome therapeutic potential has been hampered by the absence of standardization in EV isolation, and procedures for purification of signalosomes from the main exosome population. This is mainly due to immature methodologies for exosome isolation and characterization and our incomplete understanding of the specific characteristics and molecular composition of signalosomes. In addition, difficulties in defining metrics for potency of exosome preparations and the challenges of industrial scale-up and good manufacturing practice compliance have complicated smooth and timely transition to clinical development. In this manuscript, we focus on cell culture conditions, exosome harvesting, dosage, and exosome potency, providing some empirical guidance and perspectives on the challenges in bringing exosome-based therapies to clinic.
Collapse
Affiliation(s)
- Gareth R Willis
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|