401
|
Ferreira S, Couto B, Sousa M, Vieira R, Sousa N, Picó-Pérez M, Morgado P. Stress Influences the Effect of Obsessive-Compulsive Symptoms on Emotion Regulation. Front Psychiatry 2020; 11:594541. [PMID: 33551866 PMCID: PMC7854917 DOI: 10.3389/fpsyt.2020.594541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is associated with emotion regulation impairments, namely the frequent use of maladaptive strategies such as suppression and the decreased use of reappraisal strategies. Additionally, these patients exhibit elevated stress levels. Since stress exposure affects emotion regulation abilities, stress might influence the relationship between obsessive-compulsive symptoms and emotion regulation. In this study, we explored the effects of stress and obsessive-compulsive symptoms on emotion regulation in a sample of healthy and OCD individuals. We used self-reported psychometric scales to measure stress levels, obsessive-compulsive symptoms, and emotion reappraisal and suppression skills. We applied multiple regression and mediation analyses. Our results demonstrated that increased reappraisal scores were associated with higher suppression scores. Additionally, elevated stress values predicted increased scores for suppression and decreased scores for reappraisal. Furthermore, the reappraisal abilities resulted from a combination of a direct effect of obsessive-compulsive symptoms and an indirect effect of obsessive-compulsive symptoms mediated by stress. The reliance on suppression strategies and the difficulty in using reappraisal approaches are explained by stress levels and are not directly explained by obsessive-compulsive symptoms. This study highlights the necessity of targeting stress in current therapy-based treatments for OCD.
Collapse
Affiliation(s)
- Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS-3Bs PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Beatriz Couto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS-3Bs PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Mafalda Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS-3Bs PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Rita Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS-3Bs PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS-3Bs PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS-3Bs PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS-3Bs PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| |
Collapse
|
402
|
Clarke T, Jamieson JD, Malone P, Rayhan RU, Washington S, VanMeter JW, Baraniuk JN. Connectivity differences between Gulf War Illness (GWI) phenotypes during a test of attention. PLoS One 2019; 14:e0226481. [PMID: 31891592 PMCID: PMC6938369 DOI: 10.1371/journal.pone.0226481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 11/26/2019] [Indexed: 01/05/2023] Open
Abstract
One quarter of veterans returning from the 1990–1991 Persian Gulf War have developed Gulf War Illness (GWI) with chronic pain, fatigue, cognitive and gastrointestinal dysfunction. Exertion leads to characteristic, delayed onset exacerbations that are not relieved by sleep. We have modeled exertional exhaustion by comparing magnetic resonance images from before and after submaximal exercise. One third of the 27 GWI participants had brain stem atrophy and developed postural tachycardia after exercise (START: Stress Test Activated Reversible Tachycardia). The remainder activated basal ganglia and anterior insulae during a cognitive task (STOPP: Stress Test Originated Phantom Perception). Here, the role of attention in cognitive dysfunction was assessed by seed region correlations during a simple 0-back stimulus matching task (“see a letter, push a button”) performed before exercise. Analysis was analogous to resting state, but different from psychophysiological interactions (PPI). The patterns of correlations between nodes in task and default networks were significantly different for START (n = 9), STOPP (n = 18) and control (n = 8) subjects. Edges shared by the 3 groups may represent co-activation caused by the 0-back task. Controls had a task network of right dorsolateral and left ventrolateral prefrontal cortex, dorsal anterior cingulate cortex, posterior insulae and frontal eye fields (dorsal attention network). START had a large task module centered on the dorsal anterior cingulate cortex with direct links to basal ganglia, anterior insulae, and right dorsolateral prefrontal cortex nodes, and through dorsal attention network (intraparietal sulci and frontal eye fields) nodes to a default module. STOPP had 2 task submodules of basal ganglia–anterior insulae, and dorsolateral prefrontal executive control regions. Dorsal attention and posterior insulae nodes were embedded in the default module and were distant from the task networks. These three unique connectivity patterns during an attention task support the concept of Gulf War Disease with recognizable, objective patterns of cognitive dysfunction.
Collapse
Affiliation(s)
- Tomas Clarke
- Center for Functional and Molecular Imaging, Georgetown University, Washington, DC, United States of America
| | - Jessie D. Jamieson
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Patrick Malone
- Center for Functional and Molecular Imaging, Georgetown University, Washington, DC, United States of America
| | - Rakib U. Rayhan
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States of America
| | - Stuart Washington
- Division of Rheumatology, Immunology and Allergy, Georgetown University, Washington, DC, United States of America
| | - John W. VanMeter
- Center for Functional and Molecular Imaging, Georgetown University, Washington, DC, United States of America
| | - James N. Baraniuk
- Division of Rheumatology, Immunology and Allergy, Georgetown University, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
403
|
Sroor HM, Hassan AM, Zenz G, Valadez-Cosmes P, Farzi A, Holzer P, El-Sharif A, Gomaa FAZM, Kargl J, Reichmann F. Experimental colitis reduces microglial cell activation in the mouse brain without affecting microglial cell numbers. Sci Rep 2019; 9:20217. [PMID: 31882991 PMCID: PMC6934553 DOI: 10.1038/s41598-019-56859-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) patients frequently suffer from anxiety disorders and depression, indicating that altered gut-brain axis signalling during gastrointestinal inflammation is a risk factor for psychiatric disease. Microglia, immune cells of the brain, is thought to be involved in a number of mental disorders, but their role in IBD is largely unknown. In the current work, we investigated whether colitis induced by dextran sulphate sodium (DSS), a murine model of IBD, alters microglial phenotypes in the brain. We found that colitis caused a reduction of Iba-1 and CD68 immunoreactivity, microglial activation markers, in specific brain regions of the limbic system such as the medial prefrontal cortex (mPFC), while other areas remained unaffected. Flow cytometry showed an increase of monocyte-derived macrophages during colitis and gene expression analysis in the mPFC showed pronounced changes of microglial markers including cluster of differentiation 86 (CD86), tumour necrosis factor-α, nitric oxide synthase 2, CD206 and chitinase-like protein 3 consistent with both M1 and M2 activation. Taken together, these findings suggest that experimental colitis-induced inflammation is propagated to the brain altering microglial function.
Collapse
Affiliation(s)
- Hoda M Sroor
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
- Microbiology and Immunology Department, Faculty of Pharmacy-Girls, Al-Azar University, Cairo, Egypt
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Paulina Valadez-Cosmes
- Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Amany El-Sharif
- Microbiology and Immunology Department, Faculty of Pharmacy-Girls, Al-Azar University, Cairo, Egypt
| | - Fatma Al-Zahraa M Gomaa
- Microbiology and Immunology Department, Faculty of Pharmacy-Girls, Al-Azar University, Cairo, Egypt
- Pharmacognosy and Medicinal Herbs Department, Faculty of Clinical Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria.
| |
Collapse
|
404
|
Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci 2019; 52:2487-2515. [DOI: 10.1111/ejn.14615] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
- Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
| |
Collapse
|
405
|
Cannizzaro E, Ramaci T, Cirrincione L, Plescia F. Work-Related Stress, Physio-Pathological Mechanisms, and the Influence of Environmental Genetic Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4031. [PMID: 31640269 PMCID: PMC6843930 DOI: 10.3390/ijerph16204031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/16/2022]
Abstract
Work-related stress is a growing health problem in modern society. The stress response is characterized by numerous neurochemicals, neuroendocrine and immune modifications that involve various neurological systems and circuits, and regulation of the gene expression of the different receptors. In this regard, a lot of research has focused the attention on the role played by the environment in influencing gene expression, which in turn can control the stress response. In particular, genetic factors can moderate the sensitivities of specific types of neural cells or circuits mediating the imprinting of the environment on different biological systems. In this current review, we wish to analyze systematic reviews and recent experimental research on the physio-pathological mechanisms that underline stress-related responses. In particular, we analyze the relationship between genetic and epigenetic factors in the stress response.
Collapse
Affiliation(s)
- Emanuele Cannizzaro
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities "Giuseppe D'Alessandro", University of Palermo, via del Vespro 133, 90127 Palermo, Italy.
| | - Tiziana Ramaci
- Faculty of Human and Social Sciences, Kore University of Enna, 94100 Enna, Italy.
| | - Luigi Cirrincione
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities "Giuseppe D'Alessandro", University of Palermo, via del Vespro 133, 90127 Palermo, Italy.
| | - Fulvio Plescia
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities "Giuseppe D'Alessandro", University of Palermo, via del Vespro 133, 90127 Palermo, Italy.
| |
Collapse
|
406
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
407
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
408
|
Baritaki S, de Bree E, Chatzaki E, Pothoulakis C. Chronic Stress, Inflammation, and Colon Cancer: A CRH System-Driven Molecular Crosstalk. J Clin Med 2019; 8:E1669. [PMID: 31614860 PMCID: PMC6833069 DOI: 10.3390/jcm8101669] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is thought to be involved in the occurrence and progression of multiple diseases, via mechanisms that still remain largely unknown. Interestingly, key regulators of the stress response, such as members of the corticotropin-releasing-hormone (CRH) family of neuropeptides and receptors, are now known to be implicated in the regulation of chronic inflammation, one of the predisposing factors for oncogenesis and disease progression. However, an interrelationship between stress, inflammation, and malignancy, at least at the molecular level, still remains unclear. Here, we attempt to summarize the current knowledge that supports the inseparable link between chronic stress, inflammation, and colorectal cancer (CRC), by modulation of a cascade of molecular signaling pathways, which are under the regulation of CRH-family members expressed in the brain and periphery. The understanding of the molecular basis of the link among these processes may provide a step forward towards personalized medicine in terms of CRC diagnosis, prognosis and therapeutic targeting.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Division of Surgery, School of Medicine, University of Crete, Heraklion, 71500 Crete, Greece.
| | - Eelco de Bree
- Division of Surgery, School of Medicine, University of Crete, Heraklion, 71500 Crete, Greece.
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Charalabos Pothoulakis
- IBD Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 10833, USA.
| |
Collapse
|
409
|
de Assis GG, Gasanov EV. BDNF and Cortisol integrative system - Plasticity vs. degeneration: Implications of the Val66Met polymorphism. Front Neuroendocrinol 2019; 55:100784. [PMID: 31425696 DOI: 10.1016/j.yfrne.2019.100784] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
UNLABELLED BDNF is the neurotrophin mediating pro-neuronal survival and plasticity. Cortisol (COR), in turn, is engaged in the coordination of several processes in the brain homeostasis. Stress-responsive, both factors show an integrative role through their receptor's dynamics in neurophysiology. Furthermore, the Val66Met BDNF polymorphism may play a role in this mechanism. AIM to investigate BDNF-COR interaction in the human neurophysiology context. METHODS We collected all papers containing BDNF and COR parameters or showing COR analyses in genotyped individuals in a PubMed search - full description available on PROSPERO - CRD42016050206. DISCUSSION BDNF and COR perform distinct roles in the physiology of the brain whose systems are integrated by glucocorticoid receptors dynamics. The BDNF polymorphism appears to have an influence on individual COR responsivity to stress. BDNF and COR play complementary roles in the nervous system where COR is a regulator of positive/negative effects. Exercise positively regulates both factors, regardless of BDNF polymorphism.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland; Lab. of Behavioral Endocrinology, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Eugene V Gasanov
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Poland
| |
Collapse
|
410
|
Martínez de Toda I, Miguélez L, Siboni L, Vida C, De la Fuente M. High perceived stress in women is linked to oxidation, inflammation and immunosenescence. Biogerontology 2019; 20:823-835. [PMID: 31396798 DOI: 10.1007/s10522-019-09829-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/25/2019] [Indexed: 02/01/2023]
Abstract
Chronic stress situations lead to an impairment of immune response and higher oxidative and inflammatory stress, which are important underlying mechanisms of the ageing process. However, given that the physiological stress response depends on the subjective appraisal of a given stressor, the aim of the study was to investigate the effect that different degrees of perceived stress have, regardless of their type, on immune functions, oxidative and inflammatory stress and ageing rate of women (30-50 years old). For that purpose, a group of 49 women was classified, according to their scores obtained in the perceived stress scale (PSS), into low (n = 23), moderate (n = 14) and high (n = 12) degree of perceived stress. The immune functions studied were: neutrophil and lymphocyte chemotaxis, neutrophil phagocytic capacity, natural killer activity, lymphoproliferation and LPS-stimulated cytokine release. Basal cytokine release was studied as an inflammatory stress marker. Antioxidant (superoxide dismutase, glutathione peroxidase and reductase activities, and reduced glutathione) and oxidant compounds (oxidized glutathione and malondialdehyde) were also investigated in whole blood as markers of oxidative stress. The results show that, in general, women with a moderate or high degree of perceived stress have a worse immune functionality and higher oxidative and inflammatory stress compared to women with low stress perception. In addition, a positive correlation was found between PSS scores and the biological age of each woman (P ≤ 0.001). In conclusion, high levels of perceived stress in women are associated with a higher oxidative and inflammatory stress and immunosenescence, which seem to accelerate their ageing rate.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, José Antonio Nováis 12, 28040, Madrid, Spain
- Institute of Biomedical Research Hospital 12 Octubre (imas12), Madrid, Spain
| | - Lara Miguélez
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, José Antonio Nováis 12, 28040, Madrid, Spain
| | - León Siboni
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, José Antonio Nováis 12, 28040, Madrid, Spain
| | - Carmen Vida
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, José Antonio Nováis 12, 28040, Madrid, Spain
- Institute of Biomedical Research Hospital 12 Octubre (imas12), Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, José Antonio Nováis 12, 28040, Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), Madrid, Spain.
| |
Collapse
|
411
|
Urbanavicius J, Fabius S, Roncalho A, Joca S, Torterolo P, Scorza C. Melanin-concentrating hormone in the Locus Coeruleus aggravates helpless behavior in stressed rats. Behav Brain Res 2019; 374:112120. [PMID: 31376444 DOI: 10.1016/j.bbr.2019.112120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
Animal studies have shown that antagonists of receptor 1 of Melanin-Concentrating Hormone (MCH-R1) elicit antidepressive-like behavior, suggesting that MCH-R1 might be a novel target for the treatment of depression and supports the hypothesis that MCHergic signaling regulates depressive-like behaviors. Consistent with the evidence that MCHergic neurons send projections to dorsal and median raphe nuclei, we have previously demonstrated that MCH microinjections in both nuclei induced a depressive-like behavior. Even though MCH neurons also project to Locus Coeruleus (LC), only a few studies have reported the behavioral and neurochemical effect of MCH into the LC. We studied the effects of MCH (100 and 200 ng) into the LC on coping-stress related behaviors associated with depression, using two different behavioral tests: the forced swimming test (FST) and the learned helplessness (LH). To characterize the functional interaction between MCH and the noradrenergic LC system, we also evaluated the neurochemical effects of MCH (100 ng) on the extracellular levels of noradrenaline (NA) in the medial prefrontal cortex (mPFC), an important LC terminal region involved in emotional processing. MCH administration into the LC elicited a depressive-like behavior evidenced in both paradigms. Interestingly, in the LH, MCH (100) elicited a significant increase in escape failures only in stressed animals. A significant decrease in prefrontal levels of NA was observed after MCH microinjection into the LC. Our results demonstrate that increased MCH signaling into the LC triggers depressive-like behaviors, especially in stressed animals. These data further corroborate the important role of MCH in the neurobiology of depression.
Collapse
Affiliation(s)
- Jessika Urbanavicius
- Departament of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| | - Sara Fabius
- Departament of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| | - Aline Roncalho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Samia Joca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Pablo Torterolo
- Department of Physiology, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Scorza
- Departament of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay.
| |
Collapse
|
412
|
Yisireyili M, Wulamu W, Aili A, Li Y, Alimujiang A, Aipire A, Aizezi M, Zhang W, Cao Z, Mijiti A, Abudureyimu K. Chronic restraint stress induces esophageal fibrosis with enhanced oxidative stress in a murine model. Exp Ther Med 2019; 18:1375-1383. [PMID: 31316626 DOI: 10.3892/etm.2019.7669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/11/2019] [Indexed: 12/29/2022] Open
Abstract
Although the underlying mechanism of stress remains unknown, it has been associated with the pathophysiology of gastroesophageal reflux diseases, the development of which appear to be accelerated by oxidative stress and fibrosis. The aim of the current study was to investigate the effect of chronic restraint stress on esophageal oxidative stress and fibrosis, as well as the impact of oxidative stress in a murine model whereby 8-week old C57BL/6J male mice were subjected to intermittent chronic restraint stress for a two-week period. The current study demonstrated that chronic restraint stress significantly reduced the body weight of mice compared with the control group. Although chronic restraint stress did not significantly alter the levels of triglycerides or cholesterol, free fatty acid concentration was significantly increased compared with the control group. Furthermore, chronic restraint stress significantly upregulated the expression levels of several fibrotic biomarkers including collagen type I, transforming growth factor β-1, α-smooth muscle actin and SMAD-3 compared with the control group. In addition, the expression levels of the reactive oxygen species (ROS) NADPH oxidase-4 and malondialdehyde were significantly increased, while the expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 were significantly decreased in esophageal tissue from mice in the chronic restraint stress group compared with the control group. In conclusion, chronic restraint stress may induce esophageal fibrosis by accumulating ROS and increasing fibrotic gene expression in a murine model.
Collapse
Affiliation(s)
- Maimaiti Yisireyili
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China.,Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Wubulikasimu Wulamu
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China.,Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Aikebaier Aili
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China.,Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Yiliang Li
- Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Aziguli Alimujiang
- Department of Obstetrics and Gynecology Clinic, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Aliyeguli Aipire
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Maimaitiaili Aizezi
- Department of Cardiac Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Weimin Zhang
- Department of Cardiac Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Zhengyi Cao
- Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Abulajiang Mijiti
- Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Kelimu Abudureyimu
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China.,Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| |
Collapse
|
413
|
Gross JJ, Uusberg H, Uusberg A. Mental illness and well-being: an affect regulation perspective. World Psychiatry 2019; 18:130-139. [PMID: 31059626 PMCID: PMC6502417 DOI: 10.1002/wps.20618] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mental health crucially depends upon affective states such as emotions, stress responses, impulses and moods. These states shape how we think, feel and behave. Often, they support adaptive functioning. At other times, however, they can become detrimental to mental health via maladaptive affect generation processes and/or maladaptive affect regulation processes. Here, we present an integrative framework for considering the role of affect generation and regulation in mental illness and well-being. Our model views affect generation as an iterative cycle of attending to, appraising and responding to situations. It views affect regulation as an iterative series of decisions aimed at altering affect generation. Affect regulation decisions include identifying what, if anything, should be changed about affect, selecting where to intervene in the affect generation cycle, choosing how to implement this intervention, and monitoring the regulation attempt to decide whether to maintain, switch or stop it. Difficulties with these decisions, often arising from biased inputs to them, can contribute to manifestations of mental illness such as clinical symptoms, syndromes and disorders. The model has a number of implications for clinical assessment and treatment. Specifically, it offers a common set of concepts for characterizing different affective states; it highlights interactions between affect generation and affect regulation; it identifies assessment and treatment targets among the component processes of affect regulation; and it is applicable to prevention and treatment of mental illness as well as to promotion and restoration of psychological well-being.
Collapse
Affiliation(s)
- James J. Gross
- Department of PsychologyStanford UniversityStanfordCAUSA
| | - Helen Uusberg
- Institute of PsychologyUniversity of TartuTartuEstonia
| | | |
Collapse
|
414
|
Zhu Y, Klomparens EA, Guo S, Geng X. Neuroinflammation caused by mental stress: the effect of chronic restraint stress and acute repeated social defeat stress in mice. Neurol Res 2019; 41:762-769. [PMID: 31092145 DOI: 10.1080/01616412.2019.1615670] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objectives: Cerebrovascular disease (CVD) is the leading cause of permanent disability worldwide. Inflammation has been reported to play an important role in the progression of CVD. Neuropsychiatric disorders such as depression are associated with increased incidence of CVD epidemiologically, although the mechanisms underlying this association are not clear. In this study, we assessed the effect of the acute repeated social defeat stress (RSDS) and chronic restraint stress (CRS) on neuroinflammation in mice. Methods: A total of 40 6-week-old male C57BL/6J mice were divided into RSDS, CRS, and corresponding control groups. In the RSDS group, male C57BL/6J mice were repeatedly subjected to bouts of social defeat by a larger CD-1 mouse for 10 min daily for 10 consecutive days. In the CRS group, the mice were exposed to restraint stress for 6 h per day for 28 consecutive days. Depressive behavior was evaluated by conducting sucrose preference test over 24 h. Peripheral blood serum and brain tissues were collected for measurement of corticosterone (CORT), epinephrine (EPI), and inflammatory factors (TNF-α and IL-6) using ELISA or real-time PCR 24 h after the sucrose preference test. Results: Both RSDS and CRS decreased the sucrose preference ratio. The acute stress increased serum CORT and EPI, while the chronic stress did not significantly influence them. Both stress models induced an inflammatory response in peripheral serum and the brain. Conclusions: RSDS and CRS are two effective models of depressive behavior, and both models cause neuroinflammation, which may be responsible for the increased risk of CVD seen in patients with depression.
Collapse
Affiliation(s)
- Yuequan Zhu
- a China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Eric Allen Klomparens
- b Department of Neurosurgery, Wayne State University School of Medicine , Detroit , USA
| | - Sichao Guo
- a China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Xiaokun Geng
- a China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University , Beijing , China.,b Department of Neurosurgery, Wayne State University School of Medicine , Detroit , USA.,c Department of Neurology, Beijing Luhe Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
415
|
Umeoka EHL, Robinson EJ, Turimella SL, van Campen JS, Motta-Teixeira LC, Sarabdjitsingh RA, Garcia-Cairasco N, Braun K, de Graan PN, Joëls M. Hyperthermia-induced seizures followed by repetitive stress are associated with age-dependent changes in specific aspects of the mouse stress system. J Neuroendocrinol 2019; 31:e12697. [PMID: 30773738 DOI: 10.1111/jne.12697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 11/28/2022]
Abstract
Stress is among the most frequently self-reported factors provoking epileptic seizures in children and adults. It is still unclear, however, why some people display stress-sensitive seizures and others do not. Recently, we showed that young epilepsy patients with stress-sensitive seizures exhibit a dysregulated hypothalamic-pituitary-adrenal (HPA)-axis. Most likely, this dysregulation gradually develops, and is triggered by stressors occurring early in life (early-life stress [ELS]). ELS may be particularly impactful when overlapping with the period of epileptogenesis. To examine this in a controlled and prospective manner, the present study investigated the effect of repetitive variable stressors or control treatment between postnatal day (PND) 12 and 24 in male mice exposed on PND10 to hyperthermia (HT)-induced prolonged seizures (control: normothermia). A number of peripheral and central indices of HPA-axis activity were evaluated at pre-adolescent and young adult age (ie, at PND25 and 90, respectively). At PND25 but not at PND90, body weight gain and absolute as well as relative (to body weight) thymus weight were reduced by ELS (vs control), whereas relative adrenal weight was enhanced, confirming the effectiveness of the stress treatment. Basal and stress-induced corticosterone levels were unaffected, though, by ELS at both ages. HT by itself did not affect any of these peripheral markers of HPA-axis activity, nor did it interact with ELS. However, centrally we did observe age-specific interaction effects of HT and ELS with regard to hippocampal glucocorticoid receptor mRNA expression, neurogenesis with the immature neurone marker doublecortin and the number of hilar (ectopic) granule cells using Prox1 staining. This lends some support to the notion that exposure to repetitive stress after HT-induced seizures may dysregulate central components of the stress system in an age-dependent manner. Such dysregulation could be one of the mechanisms conferring higher vulnerability of individuals with epilepsy to develop seizures in the face of stress.
Collapse
Affiliation(s)
- Eduardo H L Umeoka
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Edward J Robinson
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Sada Lakshmi Turimella
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jolien S van Campen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lívia C Motta-Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - R Angela Sarabdjitsingh
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kees Braun
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pierre N de Graan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
416
|
Mayo LM, Heilig M. In the face of stress: Interpreting individual differences in stress-induced facial expressions. Neurobiol Stress 2019; 10:100166. [PMID: 31193535 PMCID: PMC6535645 DOI: 10.1016/j.ynstr.2019.100166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022] Open
Abstract
Stress is an inevitable part of life that can profoundly impact social and emotional functioning, contributing to the development of psychiatric disease. One key component of emotion and social processing is facial expressions, which humans can readily detect and react to even without conscious awareness. Facial expressions have been the focus of philosophic and scientific interest for centuries. Historically, facial expressions have been relegated to peripheral indices of fixed emotion states. More recently, affective neuroscience has undergone a conceptual revolution, resulting in novel interpretations of these muscle movements. Here, we review the role of facial expressions according to the leading affective neuroscience theories, including constructed emotion and social-motivation accounts. We specifically highlight recent data (Mayo et al, 2018) demonstrating the way in which stress shapes facial expressions and how this is influenced by individual factors. In particular, we focus on the consequence of genetic variation within the endocannabinoid system, a neuromodulatory system implicated in stress and emotion, and its impact on stress-induced facial muscle activity. In a re-analysis of this dataset, we highlight how gender may also influence these processes, conceptualized as variation in the "fight-or-flight" or "tend-and-befriend" behavioral responses to stress. We speculate on how these interpretations may contribute to a broader understanding of facial expressions, discuss the potential use of facial expressions as a trans-diagnostic marker of psychiatric disease, and suggest future work necessary to resolve outstanding questions.
Collapse
Affiliation(s)
- Leah M. Mayo
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | | |
Collapse
|
417
|
Bojić T. Editorial: Neurocardiovascular Diseases: New Aspects of the Old Issues. Front Neurosci 2019; 12:1032. [PMID: 30686991 PMCID: PMC6336917 DOI: 10.3389/fnins.2018.01032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/20/2018] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tijana Bojić
- Laboratory of Radiobiology and Molecular Genetics, Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
418
|
Terao R, Murata A, Sugamoto K, Watanabe T, Nagahama K, Nakahara K, Kondo T, Murakami N, Fukui K, Hattori H, Eto N. Immunostimulatory effect of kumquat (Fortunella crassifolia) and its constituents, β-cryptoxanthin andR-limonene. Food Funct 2019; 10:38-48. [DOI: 10.1039/c8fo01971a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The active constituents of kumquat in NK cell activation and anti-stress effects are β-cryptoxanthin andR-limonene.
Collapse
Affiliation(s)
- Rina Terao
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Akira Murata
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Kazuhiro Sugamoto
- Interdisciplinary Graduate School of Agriculture and Engineering
- University of Miyazaki
- Miyazaki
- Japan
| | | | - Kiyoko Nagahama
- Interdisciplinary Graduate School of Agriculture and Engineering
- University of Miyazaki
- Miyazaki
- Japan
| | - Keiko Nakahara
- Department of Veterinary Physiology
- Faculty of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Tomomi Kondo
- Miyazaki JA Food Research & Development Inc
- Miyazaki
- Japan
| | - Noboru Murakami
- Department of Veterinary Physiology
- Faculty of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Keiichi Fukui
- Miyazaki JA Food Research & Development Inc
- Miyazaki
- Japan
| | - Hidemi Hattori
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
- Interdisciplinary Graduate School of Agriculture and Engineering
| | - Nozomu Eto
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
- Interdisciplinary Graduate School of Agriculture and Engineering
| |
Collapse
|
419
|
Non-trauma-focused meditation versus exposure therapy in veterans with post-traumatic stress disorder: a randomised controlled trial. Lancet Psychiatry 2018; 5:975-986. [PMID: 30449712 DOI: 10.1016/s2215-0366(18)30384-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a complex and difficult-to-treat disorder, affecting 10-20% of military veterans. Previous research has raised the question of whether a non-trauma-focused treatment can be as effective as trauma exposure therapy in reducing PTSD symptoms. This study aimed to compare the non-trauma-focused practice of Transcendental Meditation (TM) with prolonged exposure therapy (PE) in a non-inferiority clinical trial, and to compare both therapies with a control of PTSD health education (HE). METHODS We did a randomised controlled trial at the Department of Veterans Affairs San Diego Healthcare System in CA, USA. We included 203 veterans with a current diagnosis of PTSD resulting from active military service randomly assigned to a TM or PE group, or an active control group of HE, using stratified block randomisation. Each treatment provided 12 sessions over 12 weeks, with daily home practice. TM and HE were mainly given in a group setting and PE was given individually. The primary outcome was change in PTSD symptom severity over 3 months, assessed by the Clinician-Administered PTSD Scale (CAPS). Analysis was by intention to treat. We hypothesised that TM would show non-inferiority to PE in improvement of CAPS score (Δ=10), with TM and PE superior to PTSD HE. This study is registered with ClinicalTrials.gov, number NCT01865123. FINDINGS Between June 10, 2013, and Oct 7, 2016, 203 veterans were randomly assigned to an intervention group (68 to the TM group, 68 to the PE group, and 67 to the PTSD HE group). TM was significantly non-inferior to PE on change in CAPS score from baseline to 3-month post-test (difference between groups in mean change -5·9, 95% CI -14·3 to 2·4, p=0·0002). In standard superiority comparisons, significant reductions in CAPS scores were found for TM versus PTSD HE (-14·6 95% CI, -23·3 to -5·9, p=0·0009), and PE versus PTSD HE (-8·7 95% CI, -17·0 to -0·32, p=0·041). 61% of those receiving TM, 42% of those receiving PE, and 32% of those receiving HE showed clinically significant improvements on the CAPS score. INTERPRETATION A non-trauma-focused-therapy, TM, might be a viable option for decreasing the severity of PTSD symptoms in veterans and represents an efficacious alternative for veterans who prefer not to receive or who do not respond to traditional exposure-based treatments of PTSD. FUNDING Department of Defense, US Army Medical Research.
Collapse
|
420
|
Dragan WŁ, Domozych W, Czerski PM, Dragan M. Positive metacognitions about alcohol mediate the relationship between FKBP5 variability and problematic drinking in a sample of young women. Neuropsychiatr Dis Treat 2018; 14:2681-2688. [PMID: 30349266 PMCID: PMC6187977 DOI: 10.2147/ndt.s169514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Previous research has shown that polymorphisms in the FKBP5 gene are related to some psychiatric conditions, including alcohol dependence. These relationships are moderated by the level of adverse childhood experiences that one has undergone. Maladaptive metacognition, associated with symptoms of psychiatric disorders and disturbed emotional self-regulation, is also a strong predictor of problematic alcohol use. Recent studies suggest that maladaptive metacognitions may be part of the developmental pathway from childhood abuse to drinking problems. This study attempted to identify relationships between FKBP5 polymorphisms and metacognitions about the positive effects of alcohol use and problematic drinking in a group differing in levels of childhood trauma. METHODS The sample studied was composed of 502 female participants aged 18-25 years (M=21.78; SD=1.84). Positive metacognitions about alcohol use were measured with the Positive Alcohol Metacognitions Scale (PAMS) and problematic drinking was gauged using the WHO Alcohol Use Disorders Identification Test. Levels of childhood adverse experiences were determined with the use of the Childhood Questionnaire. A total of 18 single-nucleotide polymorphisms (SNPs) in the FKBP5 gene were genotyped. RESULTS We did not find any interaction between the gene and childhood trauma on problematic drinking or metacognitions. However we identified a strong main effect of two SNPs of the FKBP5 gene - rs755658 and rs1334894 - on the PAMS subscale measuring positive metacognitive beliefs about emotional self-regulation. We also found nominally significant relations of several other SNPs with metacognitions and problematic drinking. Additionally, we showed that positive alcohol metacognitions mediate the relationship between problematic drinking and both rs755658 and rs1334894. CONCLUSION Our results may shed some light on the biological underpinnings of the developmental pathway leading to problematic drinking through maladaptive metacognitions.
Collapse
Affiliation(s)
- Wojciech Łukasz Dragan
- The Interdisciplinary Centre for Behavioural Genetics Research, Faculty of Psychology, University of Warsaw, Warsaw, Poland,
| | - Wojciech Domozych
- The Interdisciplinary Centre for Behavioural Genetics Research, Faculty of Psychology, University of Warsaw, Warsaw, Poland,
| | - Piotr M Czerski
- Laboratory of Psychiatric Genetics, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|