401
|
Zis P, Daskalaki A, Bountouni I, Sykioti P, Varrassi G, Paladini A. Depression and chronic pain in the elderly: links and management challenges. Clin Interv Aging 2017; 12:709-720. [PMID: 28461745 PMCID: PMC5407450 DOI: 10.2147/cia.s113576] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aging is an inevitable process and represents the accumulation of bodily alterations over time. Depression and chronic pain are highly prevalent in elderly populations. It is estimated that 13% of the elderly population will suffer simultaneously from the two conditions. Accumulating evidence suggests than neuroinflammation plays a critical role in the pathogenesis of both depression and chronic pain. Apart from the common pathophysiological mechanisms, however, the two entities have several clinical links. Their management is challenging for the pain physician; however, both pharmacologic and nonpharmacologic approaches are available and can be used when the two conditions are comorbid in the elderly patients.
Collapse
Affiliation(s)
- Panagiotis Zis
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Argyro Daskalaki
- Department of Neurology, Evangelismos General Hospital, Athens, Greece
| | - Ilia Bountouni
- Belgrave Liaison Team, Child and Adolescent Mental Health Services, South London and Maudsley NHS Foundation Trust, London, UK
| | - Panagiota Sykioti
- Belgrave Liaison Team, Child and Adolescent Mental Health Services, South London and Maudsley NHS Foundation Trust, London, UK
| | | | | |
Collapse
|
402
|
Tang M, Liu P, Li X, Wang JW, Zhu XC, He FP. Protective action of B1R antagonist against cerebral ischemia-reperfusion injury through suppressing miR-200c expression of Microglia-derived microvesicles. Neurol Res 2017; 39:612-620. [PMID: 28398146 DOI: 10.1080/01616412.2016.1275096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Min Tang
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Liu
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Li
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian-wen Wang
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiong-chao Zhu
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fang-ping He
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
403
|
Abstract
Depression is caused by a change in neural activity resulting from an increase in glutamate that drives excitatory neurons and may be responsible for the decline in the activity and number of the GABAergic inhibitory neurons. This imbalance between the excitatory and inhibitory neurons may contribute to the onset of depression. At the cellular level there is an increase in the concentration of intracellular Ca2+ within the inhibitory neurons that is driven by an increase in entry through the NMDA receptors (NMDARs) and through activation of the phosphoinositide signaling pathway that generates inositol trisphosphate (InsP3) that releases Ca2+ from the internal stores. The importance of these two pathways in driving the elevation of Ca2+ is supported by the fact that depression can be alleviated by ketamine that inhibits the NMDARs and scopolamine that inhibits the M1 receptors that drive InsP3/Ca2+ pathway. This increase in Ca2+ not only contributes to depression but it may also explain why individuals with depression have a strong likelihood of developing Alzheimer's disease. The enhanced levels of Ca2+ may stimulate the formation of Aβ to initiate the onset and progression of Alzheimer's disease. Just how vitamin D acts to reduce depression is unclear. The phenotypic stability hypothesis argues that vitamin D acts by reducing the increased neuronal levels of Ca2+ that are driving depression. This action of vitamin D depends on its function to maintain the expression of the Ca2+ pumps and buffers that reduce Ca2+ levels, which may explain how it acts to reduce the onset of depression.
Collapse
Affiliation(s)
- Michael J Berridge
- Emeritus Babraham Fellow, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
404
|
Sarko DK, McKinney CE. Exosomes: Origins and Therapeutic Potential for Neurodegenerative Disease. Front Neurosci 2017; 11:82. [PMID: 28289371 PMCID: PMC5326777 DOI: 10.3389/fnins.2017.00082] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes, small lipid bilayer vesicles, are part of the transportable cell secretome that can be taken up by nearby recipient cells or can travel through the bloodstream to cells in distant organs. Selected cellular cytoplasm containing proteins, RNAs, and other macromolecules is packaged into secreted exosomes. This cargo has the potential to affect cellular function in either healthy or pathological ways. Exosomal content has been increasingly shown to assist in promoting pathways of neurodegeneration such as β-amyloid peptide (Aβ) accumulation forming amyloid plaques in the brains of patients with Alzheimer's disease, and pathological aggregates of proteins containing α-synuclein in Parkinson's disease transferred to the central nervous system via exosomes. In attempting to address such debilitating neuropathologies, one promising utility of exosomes lies in the development of methodology to use exosomes as natural delivery vehicles for therapeutics. Because exosomes are capable of penetrating the blood-brain barrier, they can be strategically engineered to carry drugs or other treatments, and possess a suitable half-life and stability for this purpose. Overall, analyses of the roles that exosomes play between diverse cellular sites will refine our understanding of how cells communicate. This mini-review introduces the origin and biogenesis of exosomes, their roles in neurodegenerative processes in the central nervous system, and their potential utility to deliver therapeutic drugs to cellular sites.
Collapse
Affiliation(s)
- Diana K. Sarko
- Department of Anatomy, Southern Illinois University School of MedicineCarbondale, IL, USA
| | - Cindy E. McKinney
- Department of Genetics and iPSC Stem Cell Lab, Edward Via College of Osteopathic MedicineSpartanburg, SC, USA
| |
Collapse
|
405
|
Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol 2017; 35:441-468. [PMID: 28226226 DOI: 10.1146/annurev-immunol-051116-052358] [Citation(s) in RCA: 1658] [Impact Index Per Article: 207.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microglia are resident cells of the brain that regulate brain development, maintenance of neuronal networks, and injury repair. Microglia serve as brain macrophages but are distinct from other tissue macrophages owing to their unique homeostatic phenotype and tight regulation by the central nervous system (CNS) microenvironment. They are responsible for the elimination of microbes, dead cells, redundant synapses, protein aggregates, and other particulate and soluble antigens that may endanger the CNS. Furthermore, as the primary source of proinflammatory cytokines, microglia are pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Alterations in microglia functionality are implicated in brain development and aging, as well as in neurodegeneration. Recent observations about microglia ontogeny combined with extensive gene expression profiling and novel tools to study microglia biology have allowed us to characterize the spectrum of microglial phenotypes during development, homeostasis, and disease. In this article, we review recent advances in our understanding of the biology of microglia, their contribution to homeostasis, and their involvement in neurodegeneration. Moreover, we highlight the complexity of targeting microglia for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
406
|
Zarezadeh M, Baluchnejadmojarad T, Kiasalari Z, Afshin-Majd S, Roghani M. Garlic active constituent s-allyl cysteine protects against lipopolysaccharide-induced cognitive deficits in the rat: Possible involved mechanisms. Eur J Pharmacol 2017; 795:13-21. [DOI: 10.1016/j.ejphar.2016.11.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
|
407
|
Lee HU, McPherson ZE, Tan B, Korecka A, Pettersson S. Host-microbiome interactions: the aryl hydrocarbon receptor and the central nervous system. J Mol Med (Berl) 2017; 95:29-39. [PMID: 27858116 PMCID: PMC5225196 DOI: 10.1007/s00109-016-1486-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022]
Abstract
The microbiome located within a given host and its organs forms a holobiont, an intimate functional entity with evolutionarily designed interactions to support nutritional intake and reproduction. Thus, all organs in a holobiont respond to changes within the microbiome. The development and function of the central nervous system and its homeostatic mechanisms are no exception and are also subject to regulation by the gut microbiome. In order for the holobiont to function effectively, the microbiome and host must communicate. The aryl hydrocarbon receptor is an evolutionarily conserved receptor recognizing environmental compounds, including a number of ligands produced directly and indirectly by the microbiome. This review focuses on the microbiome-gut-brain axis in regard to the aryl hydrocarbon receptor signaling pathway and its impact on underlying mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Hae Ung Lee
- The LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Zachary E McPherson
- The School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Bryan Tan
- The School of Medicine, Imperial College, London, UK
| | - Agata Korecka
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Solna, Sweden
| | - Sven Pettersson
- The LKC School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
408
|
Haroon E, Miller AH, Sanacora G. Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology 2017; 42:193-215. [PMID: 27629368 PMCID: PMC5143501 DOI: 10.1038/npp.2016.199] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
Increasing data indicate that inflammation and alterations in glutamate neurotransmission are two novel pathways to pathophysiology in mood disorders. The primary goal of this review is to illustrate how these two pathways may converge at the level of the glia to contribute to neuropsychiatric disease. We propose that a combination of failed clearance and exaggerated release of glutamate by glial cells during immune activation leads to glutamate increases and promotes aberrant extrasynaptic signaling through ionotropic and metabotropic glutamate receptors, ultimately resulting in synaptic dysfunction and loss. Furthermore, glutamate diffusion outside the synapse can lead to the loss of synaptic fidelity and specificity of neurotransmission, contributing to circuit dysfunction and behavioral pathology. This review examines the fundamental role of glia in the regulation of glutamate, followed by a description of the impact of inflammation on glial glutamate regulation at the cellular, molecular, and metabolic level. In addition, the role of these effects of inflammation on glia and glutamate in mood disorders will be discussed along with their translational implications.
Collapse
Affiliation(s)
- Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
409
|
Exploring New Inflammatory Biomarkers and Pathways during LPS-Induced M1 Polarization. Mediators Inflamm 2016; 2016:6986175. [PMID: 28096568 PMCID: PMC5209629 DOI: 10.1155/2016/6986175] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/18/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022] Open
Abstract
Identification of mediators triggering microglia activation and transference of noncoding microRNA (miRNA) into exosomes are critical to dissect the mechanisms underlying neurodegeneration. We used lipopolysaccharide- (LPS-) induced N9 microglia activation to explore new biomarkers/signaling pathways and to identify inflammatory miRNA (inflamma-miR) in cells and their derived exosomes. Upregulation of iNOS and MHC-II (M1-markers) and downregulation of arginase 1, FIZZ1 (M2-markers), and CX3CR1 (M0/M2 polarization) confirmed the switch of N9 LPS-treated cells into the M1 phenotype, as described for macrophages/microglia. Cells showed increased proliferation, activated TLR4/TLR2/NF-κB pathway, and enhanced phagocytosis, further corroborated by upregulated MFG-E8. We found NLRP3-inflammasome activation in these cells, probably accounting for the increased extracellular content of the cytokine HMGB1 and of the MMP-9 we have observed. We demonstrate for the first time that the inflamma-miR profiling (upregulated miR-155 and miR-146a plus downregulated miR-124) in M1 polarized N9 cells, noticed by others in activated macrophages/microglia, was replicated in their derived exosomes, likely regulating the inflammatory response of recipient cells and dissemination processes. Data show that LPS-treated N9 cells behave like M1 polarized microglia/macrophages, while providing new targets for drug discovery. In particular, the study yields novel insights into the exosomal circulating miRNA during neuroinflammation important for emerging therapeutic approaches targeting microglia activation.
Collapse
|
410
|
Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, Zaheer S, Iyer SS, Zaheer A. Neuroinflammation Induces Neurodegeneration. JOURNAL OF NEUROLOGY, NEUROSURGERY AND SPINE 2016; 1:1003. [PMID: 28127589 PMCID: PMC5260818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Multiple Sclerosis (MS) are characterized by neuronal degeneration and neuronal death in specific regions of the central nervous system (CNS). In AD, neurons of the hippocampus and entorhinal cortex are the first to degenerate, whereas in PD, dopaminergic neurons in the substantia nigra degenerate. MS patients show destruction of the myelin sheath. Once the CNS neurons are damaged, they are unable to regenerate unlike any other tissue in the body. Neurodegeneration is mediated by inflammatory and neurotoxic mediators such as interleukin-1beta (IL-1β), IL-6, IL-8, IL-33, tumor necrosis factor-alpha (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), CCL5, matrix metalloproteinase (MMPs), granulocyte macrophage colony-stimulating factor (GM-CSF), glia maturation factor (GMF), substance P, reactive oxygen species (ROS), reactive nitrogen species (RNS), mast cells-mediated histamine and proteases, protease activated receptor-2 (PAR-2), CD40, CD40L, CD88, intracellular Ca+ elevation, and activation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-B (NF-kB). Activated microglia, astrocytes, neurons, T-cells and mast cells release these inflammatory mediators and mediate neuroinflammation and neurodegeneration in a vicious manner. Further, immune and inflammatory cells and inflammatory mediators from the periphery cross the defective blood-brain-barrier (BBB) and augment neuroinflammation. Though inflammation is crucial in the onset and the progression of neurodegenerative diseases, anti-inflammatory drugs do not provide significant therapeutic effects in these patients till date, as the disease pathogenesis is not yet clearly understood. In this review, we discuss the possible factors involved in neuroinflammation-mediated neurodegeneration.
Collapse
Affiliation(s)
- D Kempuraj
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - R Thangavel
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - PA Natteru
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - GP Selvakumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - D Saeed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - H Zahoor
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - S Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - SS Iyer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - A Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| |
Collapse
|
411
|
O'Connor RM, Gururajan A, Dinan TG, Kenny PJ, Cryan JF. All Roads Lead to the miRNome: miRNAs Have a Central Role in the Molecular Pathophysiology of Psychiatric Disorders. Trends Pharmacol Sci 2016; 37:1029-1044. [PMID: 27832923 DOI: 10.1016/j.tips.2016.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Current treatment strategies for psychiatric disorders remain inadequate. Impeding development of novel therapeutics is our incomplete knowledge of the molecular pathophysiology underlying these disorders. Changes to miRNA function and expression are increasingly being associated with pathological behavioral states. Furthermore, the prospect of using of miRNA expression profiles (the miRNome) as objective psychiatric diagnosis tools is gaining traction. In this review, we focus on recent findings surrounding the link between miRNA function and psychiatric disorders, and outline some of the key challenges that will need to be overcome if the therapeutic potential of these molecular effectors is to be fully realized.
Collapse
Affiliation(s)
- Richard M O'Connor
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai Hospital, NY, USA.
| | - Anand Gururajan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai Hospital, NY, USA
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| |
Collapse
|
412
|
Antidepressant-like effect of pramipexole in an inflammatory model of depression. Behav Brain Res 2016; 320:365-373. [PMID: 27825895 DOI: 10.1016/j.bbr.2016.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/31/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
Pramipexole (PPX), a dopamine D2/3 receptor preferring agonist, is currently in use for the treatment of Parkinson's disease symptoms and restless legs syndrome. Recently, anti-inflammatory properties of PPX have been shown in an autoimmune model of multiple sclerosis, and case reports indicate PPX ameliorates depressive symptoms. Since peripheral inflammation is known to induce depression-like behavior in rodents, we assessed the potential antidepressant effect of PPX in an inflammatory model of depression induced by LPS. Repeated (daily for 7days, 1mg/kg, i.p.), but not acute (1h before LPS) treatment with PPX abolished the depression-like behavior induced by LPS (0.1mg/kg, i.p.) in the forced swim test, and the anhedonic behavior in the splash test. Interestingly, PPX per se decreased interleukin 1β levels and reversed LPS-induced increase in its content in mice hippocampus⋅ Repeated PPX treatment also prevented the increase in hippocampal levels of the 3-nitrotyrosine protein adducts induced by LPS. Haloperidol (0.2mg/kg, i.p.) and sulpiride (50mg/kg, i.p.) were unable to prevent the antidepressant-like effect of PPX in LPS-treated mice. Altogether, these results suggest that the observed antidepressant-like effect of PPX in LPS-treated mice may be dependent on its anti-inflammatory properties and may not be related to dopamine D2 receptor activation.
Collapse
|
413
|
Nur77 exacerbates PC12 cellular injury in vitro by aggravating mitochondrial impairment and endoplasmic reticulum stress. Sci Rep 2016; 6:34403. [PMID: 27679973 PMCID: PMC5041156 DOI: 10.1038/srep34403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/13/2016] [Indexed: 01/26/2023] Open
Abstract
The nuclear orphan receptor, Nur77 plays important roles in neuroimflammation, apoptosis, and dopaminergic neurodegeneration. We conducted a further mechanistic investigation into the association of Nur77 with cell death. Cytosporone B (Csn-B), an agonist for Nur77, and Nur77 knockdown were adopted in the 6-hydroxydopamine (OHDA)-lesioned PC12 cells to investigate the mechanisms underlying Nur77-mediated injury. The 6-OHDA incubation caused Nur77 translocation from the nucleus to cytosol and Endoplasm reticulum (ER) and induced co-localization of Tom20/Nur77 and Protein Disulfide Isomerase (PDI)/Nur77. Nur77 activation further decreased cell viability, aggravated intracellular LDH release, intracellular Ca2+, ROS levels, apoptosis, ER tress and, mitochondrial transmembrane potential (ΔΨm) decline. In addition, Nur77 activation significantly enhanced the efficiency of autophagy as indicated by an up-regulation of Beclin-1/LC-3 and downregulation of p62, and aggravated mitochondrial dysfunctions and ER stress as shown by increased HSP60/Cytochrome C (Cyt C) and CHOP-ATF3 levels respectively. These changes could be partially reversed by Nur77 knockdown. Moreover, Nur77 activation upregulated PINK1 and downregulated Parkin levels. We conclude that Nur77 exacerbates PC12 cell death at least partially by aggravating the mitochondrial impairment and ER stress and enhancing autophagy. We propose that Nur77 is likely a critical target in the PD therapy.
Collapse
|
414
|
Tishkina AO, Mart'yanova EK, Logashina YA, Andreev YA, Khaibullina SF, Martynova EV, Rizvanov AA, Gulyaeva NV, Grishin EV. Effects of intranasal administration of the peptide antagonist of type I vaniloid receptor (TRPV1) in the rodent central nervous system. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2016; 470:234-236. [PMID: 27822750 DOI: 10.1134/s0012496616050082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Intranasal administration of the polypeptide APHC3, an antagonist of the TRPV1 receptor, had acute anxiolytic and antidepressant effects, as well as an ability to modify the microglial response to proinflammatory stress and cytokine profile of the hippocampus. However, the acute antidepressant effect of the polypeptide was not related to the attenuation of neuroiflammation and probably had a different mechanism. The use of intranasal administration of the APHC3 peptide as a therapeutic approach aimed at decreasing depression symptoms needs additional studies in order to find the mechanism of action of this polypeptide in the central nervous system (CNS).
Collapse
Affiliation(s)
- A O Tishkina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | - E K Mart'yanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Yu A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ya A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - S F Khaibullina
- Kazan (Privolzhskii) Federal University, Kazan, Tatrstan, Russia
| | - E V Martynova
- Kazan (Privolzhskii) Federal University, Kazan, Tatrstan, Russia
| | - A A Rizvanov
- Kazan (Privolzhskii) Federal University, Kazan, Tatrstan, Russia
| | - N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - E V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
415
|
Du RH, Tan J, Sun XY, Lu M, Ding JH, Hu G. Fluoxetine Inhibits NLRP3 Inflammasome Activation: Implication in Depression. Int J Neuropsychopharmacol 2016; 19:pyw037. [PMID: 27207922 PMCID: PMC5043644 DOI: 10.1093/ijnp/pyw037] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Emerging evidence indicates that NLRP3 inflammasome-induced inflammation plays a crucial role in the pathogenesis of depression. Thus, inhibition of NLRP3 inflammasome activation may offer a therapeutic benefit in the treatment of depression. Fluoxetine, a widely used antidepressant, has been shown to have potential antiinflammatory activity, but the underlying mechanisms remain obscure. METHODS We used a chronic mild stress model and cultured primary macrophage/microglia to investigate the effects of fluoxetine on NLRP3 inflammasome and its underlying mechanisms. RESULTS We demonstrated that fluoxetine significantly suppressed NLRP3 inflammasome activation, subsequent caspase-1 cleavage, and interleukin-1β secretion in both peripheral macrophages and central microglia. We further found that fluoxetine reduced reactive oxygen species production, attenuated the phosphorylation of double-stranded RNA-dependent protein kinase, and inhibited the association of protein kinase with NLRP3. These data indicate that fluoxetine inhibits the activation of NLRP3 inflammasome via downregulating reactive oxygen species-protein kinase-NLRP3 signaling pathway. Correspondingly, in vivo data showed that fluoxetine also suppressed NLRP3 inflammasome activation in hippocampus and macrophages of chronic mild stress mice and alleviated chronic mild stress-induced depression-like behavior. CONCLUSIONS Our findings reveal that fluoxetine confers an antidepressant effect partly through inhibition of peripheral and central NLRP3 inflammasome activation and suggest the potential clinical use of fluoxetine in NLRP3 inflammasome-driven inflammatory diseases such as depression.
Collapse
Affiliation(s)
- Ren-Hong Du
- Jiangsu Key Laboratory of Neurogeneration, Department of Pharmacology, Nanjing Medical University, Jiangsu, P.R. China (Drs Du, Tan, Sun, Lu, Ding, and Hu); Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China (Dr Hu)
| | - Jun Tan
- Jiangsu Key Laboratory of Neurogeneration, Department of Pharmacology, Nanjing Medical University, Jiangsu, P.R. China (Drs Du, Tan, Sun, Lu, Ding, and Hu); Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China (Dr Hu)
| | - Xi-Yang Sun
- Jiangsu Key Laboratory of Neurogeneration, Department of Pharmacology, Nanjing Medical University, Jiangsu, P.R. China (Drs Du, Tan, Sun, Lu, Ding, and Hu); Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China (Dr Hu)
| | - Ming Lu
- Jiangsu Key Laboratory of Neurogeneration, Department of Pharmacology, Nanjing Medical University, Jiangsu, P.R. China (Drs Du, Tan, Sun, Lu, Ding, and Hu); Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China (Dr Hu)
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurogeneration, Department of Pharmacology, Nanjing Medical University, Jiangsu, P.R. China (Drs Du, Tan, Sun, Lu, Ding, and Hu); Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China (Dr Hu)
| | - Gang Hu
- Jiangsu Key Laboratory of Neurogeneration, Department of Pharmacology, Nanjing Medical University, Jiangsu, P.R. China (Drs Du, Tan, Sun, Lu, Ding, and Hu); Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China (Dr Hu).
| |
Collapse
|
416
|
Mao S, Li X, Wang J, Ding X, Zhang C, Li L. miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation 2016; 13:208. [PMID: 27567678 PMCID: PMC5002215 DOI: 10.1186/s12974-016-0685-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022] Open
Abstract
Background Neural stem/precursor cells (NSCs) are of particular interest because of their potential application in cell therapy for brain damage. However, most brain injury cases are followed with neuroinflammatory stress, which affects the lineage selection of grafted NSCs by promoting astrocytogenesis, thus hampering the potential for neural replacement. The present study investigated the role of miR-17-92 in protecting against detrimental effects of neuroinflammation on NSC differentiation in cell therapy. Methods NSCs were treated with conditioned medium from lesioned astrocytes with/without neutralizing antibodies of leukemia inhibitory factor (LIF) or/and ciliary neurotrophic factor (CNTF), respectively. Afterward, the levels of p-STAT3 and p-JAK2 were determined by western blotting while expression of glial fibrillary acidic protein (GFAP) and β-tubulin III was assessed by immunostaining. The activation of JAK-STAT pathway and cell differentiation were also evaluated after we overexpressed miR-17-92 in NSCs under different neuroinflammatory conditions. After the transplantation of miR-17-92-overexpressing NSCs into injured mouse cortex, PH3, nestin, GFAP, and NeuN were analyzed by immunostaining. In addition, motor coordination of mice was evaluated by rotarod test. Results Conditioned medium from lesioned astrocytes activated JAK-STAT pathway and facilitated astrocytic differentiation in NSCs while neutralizing antibodies of LIF and CNTF remarkably attenuated such effects. miR-17-92 cluster repressed the expression of multiple proteins including GP130, CNTFR, JAK2, and STAT3 in JAK-STAT pathway. Overexpression of miR-17-92 in NSCs systematically blocked the activation of JAK-STAT pathway mediated by LIF and CNTF, which facilitated neuronal differentiation in vitro. Furthermore, miR-17-92 increased neuronal generation of grafted NSCs and reduced astrogliosis, which resulted in the improvement of motor coordination of brain-injured mice. Conclusions Our results suggest that miR-17-92 promotes neuronal differentiation of grafted NSCs under neuroinflammatory condition via inhibition of multiple proteins in JAK-STAT pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0685-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susu Mao
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China.,Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiuhua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Chenyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
417
|
Chiarlone A, Börner C, Martín-Gómez L, Jiménez-González A, García-Concejo A, García-Bermejo ML, Lorente M, Blázquez C, García-Taboada E, de Haro A, Martella E, Höllt V, Rodríguez R, Galve-Roperh I, Kraus J, Guzmán M. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling. Neuropharmacology 2016; 108:345-52. [PMID: 27179908 DOI: 10.1016/j.neuropharm.2016.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
Abstract
Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action.
Collapse
Affiliation(s)
- Anna Chiarlone
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Christine Börner
- Department of Pharmacology and Toxicology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Laura Martín-Gómez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Ada Jiménez-González
- Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Adrián García-Concejo
- Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007 Salamanca, Spain
| | | | - Mar Lorente
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain
| | - Cristina Blázquez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Elena García-Taboada
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Amador de Haro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain
| | - Elisa Martella
- Department of Pharmacology and Toxicology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Volker Höllt
- Department of Pharmacology and Toxicology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Raquel Rodríguez
- Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Ismael Galve-Roperh
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Jürgen Kraus
- Department of Pharmacology and Toxicology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Manuel Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Universitario de Investigación Neuroquímica (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, 28040 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain.
| |
Collapse
|
418
|
Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016; 68:1-19. [PMID: 27179453 DOI: 10.1016/j.neubiorev.2016.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Division of Neuromuscular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
419
|
Maggi E, Patterson NE, Montagna C. Technological advances in precision medicine and drug development. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016; 1:331-343. [PMID: 27622214 DOI: 10.1080/23808993.2016.1176527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New technologies are rapidly becoming available to expand the arsenal of tools accessible for precision medicine and to support the development of new therapeutics. Advances in liquid biopsies, which analyze cells, DNA, RNA, proteins, or vesicles isolated from the blood, have gained particular interest for their uses in acquiring information reflecting the biology of tumors and metastatic tissues. Through advancements in DNA sequencing that have merged unprecedented accuracy with affordable cost, personalized treatments based on genetic variations are becoming a real possibility. Extraordinary progress has been achieved in the development of biological therapies aimed to even further advance personalized treatments. We provide a summary of current and future applications of blood based liquid biopsies and how new technologies are utilized for the development of biological therapeutic treatments. We discuss current and future sequencing methods with an emphasis on how technological advances will support the progress in the field of precision medicine.
Collapse
Affiliation(s)
- Elaine Maggi
- Department of Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nicole E Patterson
- Department of Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cristina Montagna
- Department of Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Pathology Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
420
|
Abstract
Infectious agents are not the only agressors, and the immune system is not the sole defender of the organism. In an enlarged perspective, the ‘normative self model’ postulates that a ‘natural defense system’ protects man and other complex organisms against the environmental and internal hazards of life, including infections and cancers. It involves multiple error detection and correction mechanisms that confer robustness to the body at all levels of its organization. According to the model, the self relies on a set of physiological norms, and NONself (meaning : Non Obedient to the Norms of the self) is anything ‘off-norms’. The natural defense system comprises a set of ‘civil defenses’ (to which all cells in organs and tissues contribute), and a ‘professional army ‘, made of a smaller set of mobile cells. Mobile and non mobile cells differ in their tuning abilities. Tuning extends the recognition capabilities of NONself by the mobile cells, which increase their defensive function. To prevent them to drift, which would compromise self/NONself discrimination, the more plastic mobile cells need to periodically refer to the more stable non mobile cells to keep within physiological standards.
Collapse
Affiliation(s)
- Philippe Kourilsky
- Department of Immunology, Institut Pasteur, Paris, France; Center for Interdisciplinary Research in Biology, CNRS/UMR 7241 - INSERM U1050, Collège de France, Paris, France
| |
Collapse
|
421
|
MicroRNA-19b-3p Modulates Japanese Encephalitis Virus-Mediated Inflammation via Targeting RNF11. J Virol 2016; 90:4780-4795. [PMID: 26937036 PMCID: PMC4836334 DOI: 10.1128/jvi.02586-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/18/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Japanese encephalitis virus (JEV) can invade the central nervous system and consequently induce neuroinflammation, which is characterized by profound neuronal cell damage accompanied by astrogliosis and microgliosis. Albeit microRNAs (miRNAs) have emerged as major regulatory noncoding RNAs with profound effects on inflammatory response, it is unknown how astrocytic miRNAs regulate JEV-induced inflammation. Here, we found the involvement of miR-19b-3p in regulating the JEV-induced inflammatory responsein vitroandin vivo The data demonstrated that miR-19b-3p is upregulated in cultured cells and mouse brain tissues during JEV infection. Overexpression of miR-19b-3p led to increased production of inflammatory cytokines, including tumor necrosis factor alpha, interleukin-6, interleukin-1β, and chemokine (C-C motif) ligand 5, after JEV infection, whereas knockdown of miR-19b-3p had completely opposite effects. Mechanistically, miR-19b-3p modulated the JEV-induced inflammatory response via targeting ring finger protein 11, a negative regulator of nuclear factor kappa B signaling. We also found that inhibition of ring finger protein 11 by miR-19b-3p resulted in accumulation of nuclear factor kappa B in the nucleus, which in turn led to higher production of inflammatory cytokines.In vivosilencing of miR-19b-3p by a specific antagomir reinvigorates the expression level of RNF11, which in turn reduces the production of inflammatory cytokines, abrogates gliosis and neuronal cell death, and eventually improves the survival rate in the mouse model. Collectively, our results demonstrate that miR-19b-3p positively regulates the JEV-induced inflammatory response. Thus, miR-19b-3p targeting may constitute a thought-provoking approach to rein in JEV-induced inflammation. IMPORTANCE Japanese encephalitis virus (JEV) is one of the major causes of acute encephalitis in humans worldwide. The pathological features of JEV-induced encephalitis are inflammatory reactions and neurological diseases resulting from glia activation. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally. Accumulating data indicate that miRNAs regulate a variety of cellular processes, including the host inflammatory response under pathological conditions. Recently, a few studies demonstrated the role of miRNAs in a JEV-induced inflammatory response in microglia; however, their role in an astrocyte-derived inflammatory response is largely unknown. The present study reveals that miR-19b-3p targets ring finger protein 11 in glia and promotes inflammatory cytokine production by enhancing nuclear factor kappa B activity in these cells. Moreover, administration of an miR-19b-3p-specific antagomir in JEV-infected mice reduces neuroinflammation and lethality. These findings suggest a new insight into the molecular mechanism of the JEV-induced inflammatory response and provide a possible therapeutic entry point for treating viral encephalitis.
Collapse
|
422
|
Changing the (Intercellular) Conversation: a Potential Role for Exosomal Transfer of microRNA in Environmental Health. CURR EPIDEMIOL REP 2016. [DOI: 10.1007/s40471-016-0074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
423
|
Zhao Y, Alexandrov PN, Lukiw WJ. Anti-microRNAs as Novel Therapeutic Agents in the Clinical Management of Alzheimer's Disease. Front Neurosci 2016; 10:59. [PMID: 26941600 PMCID: PMC4766517 DOI: 10.3389/fnins.2016.00059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
Overview- One hundred and ten years since its first description Alzheimer's disease (AD) still retains its prominent status: (i) as the industrialized world's number one cause of age-related intellectual impairment and cognitive decline; (ii) as this country's most rapidly expanding socioeconomic and healthcare concern; and (iii) as an insidious, progressive and lethal neurological disorder of the human central nervous system (CNS) for which there is currently no adequate treatment or cure (Alzheimer, 1991; Alzheimer et al., 1991, 1995) [https://www.alz.org/facts/downloads/facts_figures_2015.pdf (2015)]. The concept of small non-coding RNAs (ncRNAs) as being involved in the etiopathogenesis of AD and age-related human neurodegenerative disease was first proposed about 25 years ago, however it was not until 2007 that specific microRNA (miRNA) abundance, speciation and localization to the hippocampal CA1 region (an anatomical area of the human CNS specifically targeted by the AD process) was shown to strongly associate with AD-type change when compared to age-matched controls (Lukiw et al., 1992; Lukiw, 2007; Schipper et al., 2007; Cogswell et al., 2008; Guerreiro et al., 2012). Currently about 400 reports address the potential link between disruptions in miRNA signaling and the development of various features associated with AD neuropathology (http://www.ncbi.nlm.nih.gov/pubmed/?term=micro+RNA+alzheimer's+disease). In this “Perspectives” paper we will highlight some of the most recent literature on anti-miRNA (AM; antagomir) therapeutic strategies and some very recent technological advances in the analysis and characterization of defective miRNA signaling pathways in AD compared to neurologically normal age-matched controls.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA; Department of Cell Biology and Anatomy, Louisiana State University Health Science CenterNew Orleans, LA, USA
| | | | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA; Department of Ophthalmology, LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA; Department Neurology, LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, USA
| |
Collapse
|