401
|
Chen X, Yue Z, Winberg PC, Dinoro JN, Hayes P, Beirne S, Wallace GG. Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. Biomater Sci 2019; 7:3497-3509. [PMID: 31290861 DOI: 10.1039/c9bm00480g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An array of biological properties is demonstrated in the category of extracts broadly known as ulvans, including antibacterial, anti-inflammatory and anti-coagulant activities. However, the development of this category in biomedical applications is limited due to high structural variability across species and a lack of consistent and scalable sources. In addition, the modification and formulation of these molecules is still in its infancy with regard to progressing to product development. Here, a sulfated and rhamnose-rich, xylorhamno-uronic acid (XRU) extract from the cell wall of a controlled source of cultivated Australian ulvacean macroalgae resembles mammalian connective glycosaminoglycans. It is therefore a strong candidate for applications in wound healing and tissue regeneration. This study targets the development of polysaccharide modification for fabrication of 3D scaffolds for skin cell (fibroblast) culture. The XRU extract is methacrylated and UV-crosslinked to produce hydrogels with tuneable mechanical properties. The hydrogels demonstrate high cell viability and support cell proliferation over 14 days, which are far more functional than comparable alginate gels. Importantly, an XRU-based bioink is developed for extrusion printing 3D constructs both with and without cell encapsulation. These results highlight the close to product potential of this rhamnose-rich XRU extract as a promising biomaterial toward wound healing. Future studies should be focused on in-depth in vitro characterizations to examine the role of the material in dermal extracellular matrix (ECM) secretion of 3D printed structures, and in vivo characterizations to assess its capacity in supporting wound healing.
Collapse
Affiliation(s)
- Xifang Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Pia C Winberg
- Venus Shell Systems Pty Ltd, Mundamia, NSW 2540, Australia and School of Medicine, Science, Medicine & Health, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Jeremy N Dinoro
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Patricia Hayes
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Stephen Beirne
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
402
|
Paduraru A, Ghitulica C, Trusca R, Surdu VA, Neacsu IA, Holban AM, Birca AC, Iordache F, Vasile BS. Antimicrobial Wound Dressings as Potential Materials for Skin Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1859. [PMID: 31181760 PMCID: PMC6600943 DOI: 10.3390/ma12111859] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/14/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022]
Abstract
The most important properties of performant wound dressings are biocompatibility, the ability to retain large amount of exudate and to avoid complications related with persistent infection which could lead to delayed wound healing. This research aimed to obtain and characterize a new type of antimicrobial dressings, based on zinc oxide/sodium alginate/polyvinyl alcohol (PVA). Zinc oxide nanostructures, obtained with different morphology and grain size by hydrothermal and polyol methods, are used as antimicrobial agents along with sodium alginate, which is used to improve the biocompatibility of the dressing. The nanofiber dressing was obtained through the electrospinning method. Characterization techniques such as X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to determine the structural and morphological properties of the obtained powders and composite fibers. Their antimicrobial activity was tested against Gram negative Escherichia coli (E. coli), Gram positive Staphylococcus aureus (S. aureus) bacteria and Candida albicans (C. albicans) yeast strains. The in vitro biocompatibility of the obtained composites was tested on human diploid cells. The obtained results suggest that the composite fibers based on zinc oxide and alginate are suitable for antimicrobial protection, are not toxic and may be useful for skin tissue regeneration if applied as a dressing.
Collapse
Affiliation(s)
- Andrei Paduraru
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 Bucharest, Romania.
| | - Cristina Ghitulica
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 Bucharest, Romania.
| | - Roxana Trusca
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 Bucharest, Romania.
- National Centre for Micro and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania.
| | - Vasile Adrian Surdu
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 Bucharest, Romania.
- National Centre for Micro and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania.
| | - Ionela Andreea Neacsu
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 Bucharest, Romania.
- National Centre for Micro and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania.
- National Research Center for Food Safety, Politehnica University of Bucharest, 060042 Bucharest, Romania.
| | - Alina Maria Holban
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 Bucharest, Romania.
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Alexandra Catalina Birca
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 Bucharest, Romania.
- National Centre for Micro and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania.
| | - Florin Iordache
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 Bucharest, Romania.
- Faculty of Veterinary Medicine, University of Agronomic Science and Veterinary Medicine, 011464 Bucharest, Romania.
| | - Bogdan Stefan Vasile
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 Bucharest, Romania.
- National Centre for Micro and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania.
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
403
|
Tong Z, Yang J, Lin L, Wang R, Cheng B, Chen Y, Tang L, Chen J, Ma X. In situ synthesis of poly (γ- glutamic acid)/alginate/AgNP composite microspheres with antibacterial and hemostatic properties. Carbohydr Polym 2019; 221:21-28. [PMID: 31227161 DOI: 10.1016/j.carbpol.2019.05.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/23/2022]
Abstract
In the present work, a poly(γ-glutamic acid)/alginate/silver nanoparticle (PGA/Alg/AgNP) composite microsphere with excellent antibacterial and hemostatic properties was prepared by the in situ UV reduction and emulsion internal gelation method, and its potential application for antibacterial hemostatic dressing was explored. Well dispersed AgNPs were in situ synthesized by a UV reduction method with alginate as stabilizer and reductant. The AgNPs showed excellent antibacterial activities against both gram-negative and gram-positive bacteria. Additionally, the AgNPs prepared by the in-situ UV reduction exhibited better biocompatibility and antibacterial effects than those prepared by the conventional chemical reduction method. PGA/Alg/AgNP composite microspheres were then prepared with the AgNPs by an emulsion internal gelation method. Such microspheres were found to be a porous and hollow network with pH-sensitive swelling properties and excellent hemostatic performance, indicating its application potentials as an advanced antibacterial hemostatic material.
Collapse
Affiliation(s)
- Zongrui Tong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Lizhi Lin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ruiqi Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bin Cheng
- Department of Clinical Laboratory, Pudong New Area People's Hospital, Shanghai 201200, PR China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Liansheng Tang
- Shandong Institute of Pharmaceutical Industry, Shandong Provincial Key Laboratory of Chemical Drugs, Jinan 250101, PR China
| | - Jianying Chen
- Shandong Institute of Pharmaceutical Industry, Shandong Provincial Key Laboratory of Chemical Drugs, Jinan 250101, PR China
| | - Xilan Ma
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
404
|
Chen C, Liu Y, Sun L, Chen G, Wu X, Ren J, Zhao Y. Antibacterial Porous Microcarriers with a Pathological State Responsive Switch for Wound Healing. ACS APPLIED BIO MATERIALS 2019; 2:2155-2161. [PMID: 35030654 DOI: 10.1021/acsabm.9b00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guopu Chen
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yuanjin Zhao
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
405
|
Shojaeiarani J, Bajwa D, Shirzadifar A. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels. Carbohydr Polym 2019; 216:247-259. [PMID: 31047064 DOI: 10.1016/j.carbpol.2019.04.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/10/2019] [Accepted: 04/07/2019] [Indexed: 11/29/2022]
Abstract
Hydrogels are hydrophilic cross-linked polymer networks formed via the simple reaction of one or more monomers with the ability to retain a significant extent of water. Owing to an increased demand for environmentally friendly, biodegradable, and biocompatible products, cellulose nanocrystals (CNCs) with high hydrophilicity have emerged as a promising sustainable material for the formation of hydrogels. The cytocompatibility, swellability, and non-toxicity make CNC hydrogels of great interest in biomedical, biosensing, and wastewater treatment applications. There has been a considerable progress in the research of CNC hydrogels, as the number of scientific publications has exponentially increased (>600%) in the last five years. In this paper, recent progress in CNC hydrogels with particular emphasis on design, materials, and fabrication techniques to control hydrogel architecture, and advanced applications are discussed.
Collapse
Affiliation(s)
- Jamileh Shojaeiarani
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, 58102, United States.
| | - Dilpreet Bajwa
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, 58102, United States.
| | - Alimohammad Shirzadifar
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, United States.
| |
Collapse
|
406
|
Natallya FR, Herwanto N, Prakoeswa C, Indramaya DM, Rantam FA. Effective Healing of Leprosy Chronic Plantar Ulcers by Application of Human Amniotic Membrane Stem Cell Secretome Gel. Indian J Dermatol 2019; 64:250. [PMID: 31148869 PMCID: PMC6537685 DOI: 10.4103/ijd.ijd_6_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Chronic plantar ulcers are common problems for leprosy patients with numb feet due to their prolonged healing time. Chronic plantar ulcers affect the quality of life of patients and can lead to more serious complications, such as disability and deformity, if not handled appropriately. Wound-care products in the market, however, give unsatisfactory results. One factor in the delayed healing of chronic plantar ulcers due to leprosy is the lack of growth factors and cytokines in the wound due to reduced blood supply. We speculated that application of human amniotic membrane stem cell (hAMSC) secretome, which contains growth factors and cytokines, could improve wound healing. Aim: To evaluate the effect of topical application of a hAMSC secretome gel on wound healing of chronic plantar ulcers due to leprosy. Materials and Methods: We recruited 11 patients after leprosy treatment with chronic plantar ulcers due to leprosy. hAMSC secretome gel was applied topically to ulcers every 3 days for up to 2 months. Ulcer size and possible side effects or complications from gel application were evaluated weekly. Results: The ulcers of 8 of 11 patients (72.7%) completely healed, the ulcers of 2 patients (18.2%) partially healed, and the ulcers of 1 patient (9.1%) persisted. No ulcers became worse. Conclusion: hAMSC secretome was found to be an efficacious and well-tolerated alternative therapy for chronic plantar ulcers due to leprosy.
Collapse
Affiliation(s)
- F R Natallya
- Clinical Department, Faculty of Medicine, Universitas Surabaya (UBAYA), Surabaya, Indonesia
| | - N Herwanto
- Department of Dermato-Venereology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Teaching Hospital, Surabaya, Indonesia
| | - Crs Prakoeswa
- Department of Dermato-Venereology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Teaching Hospital, Surabaya, Indonesia
| | - D M Indramaya
- Department of Dermato-Venereology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Teaching Hospital, Surabaya, Indonesia
| | - F A Rantam
- Department of Dermato-Venereology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Teaching Hospital, Surabaya, Indonesia.,Virology and Immunology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
407
|
|
408
|
Li J, Cai C, Yang C, Li J, Sun T, Yu G. Recent Advances in Pharmaceutical Potential of Brown Algal Polysaccharides and their Derivatives. Curr Pharm Des 2019; 25:1290-1311. [PMID: 31237200 DOI: 10.2174/1381612825666190618143952] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Marine plants, animals and microorganisms display steady growth in the ocean and are abundant carbohydrate resources. Specifically, natural polysaccharides obtained from brown algae have been drawing increasing attention owing to their great potential in pharmaceutical applications. This review describes the structural and biological features of brown algal polysaccharides, including alginates, fucoidans, and laminarins, and it highlights recently developed approaches used to obtain the oligo- and polysaccharides with defined structures. Functional modification of these polysaccharides promotes their advanced applications in biomedical materials for controlled release and targeted drug delivery, etc. Moreover, brown algal polysaccharides and their derivatives possess numerous biological activities with anticancer, anticoagulant, wound healing, and antiviral properties. In addition, we also discuss carbohydrate- based substrates from brown algae, which are currently in clinical and preclinical studies, as well as the marine drugs that are already on the market. The present review summarizes the recent development in carbohydratebased products from brown algae, with promising findings that could rapidly facilitate the future discovery of novel marine drugs.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
409
|
Kumar S, Marrero-Berrios I, Kabat M, Berthiaume F. Recent Advances in the Use of Algal Polysaccharides for Skin Wound Healing. Curr Pharm Des 2019; 25:1236-1248. [PMID: 31109271 PMCID: PMC7746437 DOI: 10.2174/1381612825666190521120051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic skin wounds and pressure ulcers represent major health care problems in diabetic individuals, as well as patients who suffered a spinal cord injury. Current treatment methods are only partially effective and such wounds exhibit a high recurrence rate. Open wounds are at high risk of invasive wound infections, which can lead to amputation and further disability. An interdisciplinary approach is needed to develop new and more effective therapies. METHODS The purpose of this work is to review recent studies focusing on the use of algal polysaccharides in commercially available as well as experimental wound dressings. Studies that discuss wound dressings based on algal polysaccharides, some of which also contain growth factors and even living cells, were identified and included in this review. RESULTS AND CONCLUSION Algal polysaccharides possess mechanical and physical properties, along with excellent biocompatibility and biodegradability that make them suitable for a variety of applications as wound dressings. Furthermore, algal polysaccharides have been used for a dual purpose, namely as wound covering, but also as a vehicle for drug delivery to the wound site.
Collapse
Affiliation(s)
| | | | - Maciej Kabat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
410
|
Venault A, Bai YW, Dizon GV, Chou HYE, Chiang HC, Lo CT, Zheng J, Aimar P, Chang Y. Healing kinetics of diabetic wounds controlled with charge-biased hydrogel dressings. J Mater Chem B 2019; 7:7184-7194. [DOI: 10.1039/c9tb01662g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study investigates the properties and use as wound-dressings of hydrogels made of anionic 3-sulfopropyl methacrylate (SA) and cationic [2-(methacryloyloxy)ethyl]trimethylammonium (TMA) to form poly(SA-co-TMA) gels with varying charge bias.
Collapse
Affiliation(s)
- Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering
- Chung Yuan Christian University
- Chungli
- Taiwan
| | - Yu-Wen Bai
- R&D Center for Membrane Technology and Department of Chemical Engineering
- Chung Yuan Christian University
- Chungli
- Taiwan
| | - Gian Vincent Dizon
- R&D Center for Membrane Technology and Department of Chemical Engineering
- Chung Yuan Christian University
- Chungli
- Taiwan
| | - Han-Yi Elizabeth Chou
- Graduate Institute of Oral Biology
- College of Medicine
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Heng-Chieh Chiang
- Division of Urology
- Department of Surgery
- Changhua Christian Hospital
- Changhua 500
- Taiwan
| | - Chen-Tsyr Lo
- R&D Center for Membrane Technology and Department of Chemical Engineering
- Chung Yuan Christian University
- Chungli
- Taiwan
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering
- The University of Akron
- Akron
- USA
| | - Pierre Aimar
- Laboratoire de Génie Chimique
- Université de Toulouse
- CNRS
- INPT
- UPS
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering
- Chung Yuan Christian University
- Chungli
- Taiwan
| |
Collapse
|
411
|
Preparation Method of Porous Dressing Materials Based on Butyric-Acetic Chitin Co-Polyesters. MATERIALS 2018; 11:ma11122359. [PMID: 30477125 PMCID: PMC6317001 DOI: 10.3390/ma11122359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
Abstract
A method for obtaining highly porous materials in the form of film, based on the butyric-acetic chitin co-polyesters, containing 90% of butyryl and 10% of acetyl groups, was developed. The highly porous films, with thickness up to 0.11 mm, were obtained by two methods: (a) pouring 5% BAC 90/10 solution in ethanol on the layer of solid salts (porophor agent) which after solidification was eluted with water; (b) application of the suspension of porophor agent in BAC 90/10 solution in the solvent mixture with density similar to bulk porophor agent. In the final stage, the materials were obtained with porosity up to 95⁻99% and tensile strength 5 cN, which can be used as an active layer of medical dressings. The optimised procedure was used in the production of porous medical dressings (Medisorb) on an industrial scale. In the industrial method, NaCl was used as a porophor agent in the solid form and as a 3% solution in polymer. The final materials were characterised by porosity and other functional parameters at the level recommended for medical dressings. Medisorb series materials do not show in vitro cytotoxic activity.
Collapse
|
412
|
Biopolymers: Applications in wound healing and skin tissue engineering. Mol Biol Rep 2018; 45:2857-2867. [PMID: 30094529 DOI: 10.1007/s11033-018-4296-3] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
Wound is a growing healthcare challenge affecting several million worldwide. Lifestyle disorders such as diabetes increases the risk of wound complications. Effective management of wound is often difficult due to the complexity in the healing process. Addition to the conventional wound care practices, the bioactive polymers are gaining increased importance in wound care. Biopolymers are naturally occurring biomolecules synthesized by microbes, plants and animals with highest degree of biocompatibility. The bioactive properties such as antimicrobial, immune-modulatory, cell proliferative and angiogenic of the polymers create a microenvironment favorable for the healing process. The versatile properties of the biopolymers such as cellulose, alginate, hyaluronic acid, collagen, chitosan etc have been exploited in the current wound care market. With the technological advances in material science, regenerative medicine, nanotechnology, and bioengineering; the functional and structural characteristics of biopolymers can be improved to suit the current wound care demands such as tissue repair, restoration of lost tissue integrity and scarless healing. In this review we highlight on the sources, mechanism of action and bioengineering approaches adapted for commercial exploitation.
Collapse
|