1
|
Chen H, Li J, Huang Z, Fan X, Wang X, Chen X, Guo H, Liu H, Li S, Yu S, Li H, Huang X, Ma X, Deng X, Wang C, Liu Y. Dopaminergic system and neurons: Role in multiple neurological diseases. Neuropharmacology 2024; 260:110133. [PMID: 39197818 DOI: 10.1016/j.neuropharm.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The dopaminergic system is a complex and powerful neurotransmitter system in the brain. It plays an important regulatory role in motivation, reward, cognition, and motor control. In recent decades, research in the field of the dopaminergic system and neurons has increased exponentially and is gradually becoming a point of intervention in the study and understanding of a wide range of neurological diseases related to human health. Studies have shown that the dopaminergic system and neurons are involved in the development of many neurological diseases (including, but not limited to Parkinson's disease, schizophrenia, depression, attention deficit hyperactivity disorder, etc.) and that dopaminergic neurons either have too much stress or too weak function in the dopaminergic system can lead to disease. Therefore, targeting dopaminergic neurons is considered key to treating these diseases. This article provides a comprehensive review of the dopaminergic system and neurons in terms of brain region distribution, physiological function and subtypes of dopaminergic neurons, as well as the role of the dopaminergic system and neurons in a variety of diseases.
Collapse
Affiliation(s)
- Heng Chen
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jieshu Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhixing Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxiao Fan
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaofei Wang
- Beijing Normal University, Beijing, 100875, China
| | - Xing Chen
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haitao Guo
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hao Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuqi Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaojun Yu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honghong Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinyu Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuehua Ma
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xinqi Deng
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunguo Wang
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yonggang Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
2
|
Mata-Bermudez A, Trejo-Chávez R, Martínez-Vargas M, Pérez-Arredondo A, Martínez-Cardenas MDLÁ, Diaz-Ruiz A, Rios C, Navarro L. Dysregulation of the dopaminergic system secondary to traumatic brain injury: implications for mood and anxiety disorders. Front Neurosci 2024; 18:1447688. [PMID: 39176379 PMCID: PMC11338874 DOI: 10.3389/fnins.2024.1447688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Traumatic brain injury (TBI) represents a public health issue with a high mortality rate and severe neurological and psychiatric consequences. Mood and anxiety disorders are some of the most frequently reported. Primary and secondary damage can cause a loss of neurons and glial cells, leading to dysfunction of neuronal circuits, which can induce imbalances in many neurotransmitter systems. Monoaminergic systems, especially the dopaminergic system, are some of the most involved in the pathogenesis of neuropsychiatric and cognitive symptoms after TBI. In this work, we summarize the studies carried out in patients who have suffered TBI and describe alterations in the dopaminergic system, highlighting (1) dysfunction of the dopaminergic neuronal circuits caused by TBI, where modifications are shown in the dopamine transporter (DAT) and alterations in the expression of dopamine receptor 2 (D2R) in brain areas with dopaminergic innervation, thus establishing a hypodopaminergic state and (2) variations in the concentration of dopamine and its metabolites in biological fluids of post-TBI patients, such as elevated dopamine (DA) and alterations in homovanillic acid (HVA). On the other hand, we show a large number of reports of alterations in the dopaminergic system after a TBI in animal models, in which modifications in the levels of DA, DAT, and HVA have been reported, as well as alterations in the expression of tyrosine hydroxylase (TH). We also describe the biological pathways, neuronal circuits, and molecular mechanisms potentially involved in mood and anxiety disorders that occur after TBI and are associated with alterations of the dopaminergic system in clinical studies and animal models. We describe the changes that occur in the clinical picture of post-TBI patients, such as alterations in mood and anxiety associated with DAT activity in the striatum, the relationship between post-TBI major depressive disorders (MDD) with lower availability of the DA receptors D2R and D3R in the caudate and thalamus, as well as a decrease in the volume of the substantia nigra (SN) associated with anxiety symptoms. With these findings, we discuss the possible relationship between the disorders caused by alterations in the dopaminergic system in patients with TBI.
Collapse
Affiliation(s)
- Alfonso Mata-Bermudez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ricardo Trejo-Chávez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Doctorado en Ciencias Biomedicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marina Martínez-Vargas
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adán Pérez-Arredondo
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Camilo Rios
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
- Dirección de Investigación, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Ciudad de México, Mexico
| | - Luz Navarro
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
3
|
Jiang Y. A theory of the neural mechanisms underlying negative cognitive bias in major depression. Front Psychiatry 2024; 15:1348474. [PMID: 38532986 PMCID: PMC10963437 DOI: 10.3389/fpsyt.2024.1348474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The widely acknowledged cognitive theory of depression, developed by Aaron Beck, focused on biased information processing that emphasizes the negative aspects of affective and conceptual information. Current attempts to discover the neurological mechanism underlying such cognitive and affective bias have successfully identified various brain regions associated with severally biased functions such as emotion, attention, rumination, and inhibition control. However, the neurobiological mechanisms of how individuals in depression develop this selective processing toward negative is still under question. This paper introduces a neurological framework centered around the frontal-limbic circuit, specifically analyzing and synthesizing the activity and functional connectivity within the amygdala, hippocampus, and medial prefrontal cortex. Firstly, a possible explanation of how the positive feedback loop contributes to the persistent hyperactivity of the amygdala in depression at an automatic level is established. Building upon this, two hypotheses are presented: hypothesis 1 revolves around the bidirectional amygdalohippocampal projection facilitating the amplification of negative emotions and memories while concurrently contributing to the impediment of the retrieval of opposing information in the hippocampus attractor network. Hypothesis 2 highlights the involvement of the ventromedial prefrontal cortex in the establishment of a negative cognitive framework through the generalization of conceptual and emotional information in conjunction with the amygdala and hippocampus. The primary objective of this study is to improve and complement existing pathological models of depression, pushing the frontiers of current understanding in neuroscience of affective disorders, and eventually contributing to successful recovery from the debilitating affective disorders.
Collapse
Affiliation(s)
- Yuyue Jiang
- University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
4
|
Krystal JH, Kavalali ET, Monteggia LM. Ketamine and rapid antidepressant action: new treatments and novel synaptic signaling mechanisms. Neuropsychopharmacology 2024; 49:41-50. [PMID: 37488280 PMCID: PMC10700627 DOI: 10.1038/s41386-023-01629-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 07/26/2023]
Abstract
Ketamine is an open channel blocker of ionotropic glutamatergic N-Methyl-D-Aspartate (NMDA) receptors. The discovery of its rapid antidepressant effects in patients with depression and treatment-resistant depression fostered novel effective treatments for mood disorders. This discovery not only provided new insight into the neurobiology of mood disorders but also uncovered fundamental synaptic plasticity mechanisms that underlie its treatment. In this review, we discuss key clinical aspects of ketamine's effect as a rapidly acting antidepressant, synaptic and circuit mechanisms underlying its action, as well as how these novel perspectives in clinical practice and synapse biology form a road map for future studies aimed at more effective treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Guilloux JP, Nguyen TML, Gardier AM. [Ketamine: a neuropsychotropic drug with an innovative mechanism of action]. Biol Aujourdhui 2023; 217:133-144. [PMID: 38018940 DOI: 10.1051/jbio/2023026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Indexed: 11/30/2023]
Abstract
Ketamine, a non-competitive antagonist of the N-methyl-D-aspartate-glutamate receptor (R-NMDA), has a rapid (from 24 h post-dose) and prolonged (up to one week) antidepressant effect in treatment resistant depression and in rodent models of anxiety/depression. Arguments regarding its cellular and molecular mechanisms underlying its antidepressant activity mainly come from animal studies. However, debates still persist on the structural remodeling of frontocortical/hippocampal neurons and the role of excitatory/inhibitory neurotransmitters involved in its behavioral effect. Neurochemical and behavioral changes are maintained 24 h after administration of ketamine, well beyond its plasma elimination half-life. The glutamatergic pyramidal cells of the medial prefrontal cortex are primarily implicated in the therapeutic effects of ketamine. Advances in knowledge of the consequences of R-NMDA blockade allowed to specify the underlying mechanisms involving the activation of AMPA glutamate receptors, which triggers a cascade of intracellular events dependent on the mechanistic target of rapamycin, brain-derived neurotrophic factor, and synaptic protein synthesis facilitating synaptic plasticity (number of dendritic spines, synaptogenesis). This review focuses on abnormalities of neurotransmitter systems involved in major depressive disorders, their potential impact on neural circuitry and beneficial effects of ketamine. Recent preclinical data pave the way for future studies to better clarify the mechanism of action of fast-acting antidepressant drugs for the development of novel, more effective therapies.
Collapse
Affiliation(s)
- Jean-Philippe Guilloux
- Laboratoire de Neuropharmacologie, Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, Équipe MOODS, F-91400 Orsay, France
| | - Thi Mai Loan Nguyen
- Laboratoire de Neuropharmacologie, Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, Équipe MOODS, F-91400 Orsay, France
| | - Alain M Gardier
- Laboratoire de Neuropharmacologie, Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, Équipe MOODS, F-91400 Orsay, France
| |
Collapse
|
6
|
Flores-García M, Rizzo A, Garçon-Poca MZ, Fernández-Dueñas V, Bonaventura J. Converging circuits between pain and depression: the ventral tegmental area as a therapeutic hub. Front Pharmacol 2023; 14:1278023. [PMID: 37849731 PMCID: PMC10577189 DOI: 10.3389/fphar.2023.1278023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Chronic pain and depression are highly prevalent pathologies and cause a major socioeconomic burden to society. Chronic pain affects the emotional state of the individuals suffering from it, while depression worsens the prognosis of chronic pain patients and may diminish the effectiveness of pain treatments. There is a high comorbidity rate between both pathologies, which might share overlapping mechanisms. This review explores the evidence pinpointing a role for the ventral tegmental area (VTA) as a hub where both pain and emotional processing might converge. In addition, the feasibility of using the VTA as a possible therapeutic target is discussed. The role of the VTA, and the dopaminergic system in general, is highly studied in mood disorders, especially in deficits in reward-processing and motivation. Conversely, the VTA is less regarded where it concerns the study of central mechanisms of pain and its mood-associated consequences. Here, we first outline the brain circuits involving central processing of pain and mood disorders, focusing on the often-understudied role of the dopaminergic system and the VTA. Next, we highlight the state-of-the-art findings supporting the emergence of the VTA as a link where both pathways converge. Thus, we envision a promising part for the VTA as a putative target for innovative therapeutic approaches to treat chronic pain and its effects on mood. Finally, we emphasize the urge to develop and use animal models where both pain and depression-like symptoms are considered in conjunction.
Collapse
Affiliation(s)
- Montse Flores-García
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Catalonia, Spain
| | - Arianna Rizzo
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Catalonia, Spain
| | - Maria Zelai Garçon-Poca
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Catalonia, Spain
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Catalonia, Spain
| | - Jordi Bonaventura
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Catalonia, Spain
| |
Collapse
|
7
|
Boyle CC, Bower JE, Eisenberger NI, Irwin MR. Stress to inflammation and anhedonia: Mechanistic insights from preclinical and clinical models. Neurosci Biobehav Rev 2023; 152:105307. [PMID: 37419230 DOI: 10.1016/j.neubiorev.2023.105307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Anhedonia, as evidenced by impaired pleasurable response to reward, reduced reward motivation, and/or deficits in reward-related learning, is a common feature of depression. Such deficits in reward processing are also an important clinical target as a risk factor for depression onset. Unfortunately, reward-related deficits remain difficult to treat. To address this gap and inform the development of effective prevention and treatment strategies, it is critical to understand the mechanisms that drive impairments in reward function. Stress-induced inflammation is a plausible mechanism of reward deficits. The purpose of this paper is to review evidence for two components of this psychobiological pathway: 1) the effects of stress on reward function; and 2) the effects of inflammation on reward function. Within these two areas, we draw upon preclinical and clinical models, distinguish between acute and chronic effects of stress and inflammation, and address specific domains of reward dysregulation. By addressing these contextual factors, the review reveals a nuanced literature which might be targeted for additional scientific inquiry to inform the development of precise interventions.
Collapse
Affiliation(s)
- Chloe C Boyle
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA.
| | - Julienne E Bower
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA
| |
Collapse
|
8
|
Gómez-Archila LG, Palomino-Schätzlein M, Zapata-Builes W, Rugeles MT, Galeano E. Plasma metabolomics by nuclear magnetic resonance reveals biomarkers and metabolic pathways associated with the control of HIV-1 infection/progression. Front Mol Biosci 2023; 10:1204273. [PMID: 37457832 PMCID: PMC10339029 DOI: 10.3389/fmolb.2023.1204273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
How the human body reacts to the exposure of HIV-1 is an important research goal. Frequently, HIV exposure leads to infection, but some individuals show natural resistance to this infection; they are known as HIV-1-exposed but seronegative (HESN). Others, although infected but without antiretroviral therapy, control HIV-1 replication and progression to AIDS; they are named controllers, maintaining low viral levels and an adequate count of CD4+ T lymphocytes. Biological mechanisms explaining these phenomena are not precise. In this context, metabolomics emerges as a method to find metabolites in response to pathophysiological stimuli, which can help to establish mechanisms of natural resistance to HIV-1 infection and its progression. We conducted a cross-sectional study including 30 HESN, 14 HIV-1 progressors, 14 controllers and 30 healthy controls. Plasma samples (directly and deproteinized) were analyzed through Nuclear Magnetic Resonance (NMR) metabolomics to find biomarkers and altered metabolic pathways. The metabolic profile analysis of progressors, controllers and HESN demonstrated significant differences with healthy controls when a discriminant analysis (PLS-DA) was applied. In the discriminant models, 13 metabolites associated with HESN, 14 with progressors and 12 with controllers were identified, which presented statistically significant mean differences with healthy controls. In progressors, the metabolites were related to high energy expenditure (creatinine), mood disorders (tyrosine) and immune activation (lipoproteins), phenomena typical of the natural course of the infection. In controllers, they were related to an inflammation-modulating profile (glutamate and pyruvate) and a better adaptive immune system response (acetate) associated with resistance to progression. In the HESN group, with anti-inflammatory (lactate and phosphocholine) and virucidal (lactate) effects which constitute a protective profile in the sexual transmission of HIV. Concerning the significant metabolites of each group, we identified 24 genes involved in HIV-1 replication or virus proteins that were all altered in progressors but only partially in controllers and HESN. In summary, our results indicate that exposure to HIV-1 in HESN, as well as infection in progressors and controllers, affects the metabolism of individuals and that this affectation can be determined using NMR metabolomics.
Collapse
Affiliation(s)
- León Gabriel Gómez-Archila
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo de Investigación en Ciencias Farmacéuticas ICIF-CES, Facultad de Ciencias y Biotecnología, Universidad CES, Medellín, Colombia
| | | | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
9
|
Fan Y, Wang L, Jiang H, Fu Y, Ma Z, Wu X, Wang Y, Song Y, Fan F, Lv Y. Depression circuit adaptation in post-stroke depression. J Affect Disord 2023; 336:52-63. [PMID: 37201899 DOI: 10.1016/j.jad.2023.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Lesion locations of post-stroke depression (PSD) mapped to a depression circuit which centered by the left dorsolateral prefrontal cortex (DLPFC). However, it remains unknown whether the compensatory adaptations that may occur in this depression circuit due to the lesions in PSD. METHODS Rs-fMRI data were collected from 82 non-depressed stroke patients (Stroke), 39 PSD patients and 74 healthy controls (HC). We tested the existence of depression circuit, examined PSD-related alterations of DLPFC-seeded connectivity and their associations with depression severity, and analyzed the connectivity between each repetitive transcranial magnetic stimulation (rTMS) target and DLPFC to find the best treatment target for PSD. RESULTS We found that: 1) the left DLPFC showed significantly stronger connectivity to lesions of PSD than Stroke group; 2) in comparison to both Stroke and HC groups, PSD exhibited increased connectivity with DLPFC in bilateral lingual gyrus, contralesional superior frontal gyrus, precuneus, and middle frontal gyrus (MFG); 3) the connectivity between DLPFC and the contralesional lingual gyrus positively correlated with depression severity; 4) the rTMS target in center of MFG showed largest between-group difference in connectivity with DLPFC, and also reported the highest predicted clinical efficacy. LIMITATIONS Longitudinal studies are required to explore the alterations of depression circuit in PSD as the disease progress. CONCLUSION PSD underwent specific alterations in depression circuit, which may help to establish objective imaging markers for early diagnosis and interventions of the disease.
Collapse
Affiliation(s)
- Yanzi Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Luoyu Wang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haibo Jiang
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhui Fu
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Zhenqiang Ma
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiaoyan Wu
- Department of Image, Anshan Changda Hospital, Anshan, Liaoning 114005, China
| | - Yiying Wang
- Department of Ultrasonics, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China.
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China.
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Jastrzębska J, Frankowska M, Smaga I, Hubalewska-Mazgaj M, Suder A, Pieniążek R, Przegaliński E, Filip M. Evaluation of the 5-HT 2C receptor drugs RO 60-0175, WAY 161503 and mirtazepine in a preclinical model of comorbidity of depression and cocaine addiction. Pharmacol Rep 2023; 75:99-118. [PMID: 36374478 PMCID: PMC9889480 DOI: 10.1007/s43440-022-00428-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Epidemiological data indicate a high rate of comorbidity of depression and cocaine use disorder (CUD). The role of serotonin 2C (5-HT2C) receptors in the mechanisms responsible for the coexistence of depression and CUD was not investigated. METHODS We combined bilateral olfactory bulbectomy (OBX), an animal model of depression, with intravenous cocaine self-administration and extinction/reinstatement in male rats to investigate two 5-HT2C receptor agonists (Ro 60-0175 (RO) and WAY 161503 (WAY)) and the 5-HT2C-receptor preferring antagonist mirtazapine (MIR; an antidepressant), with the goal of determining whether these drugs alter cocaine-induced reinforcement and seeking behaviors. Additionally, neurochemical analyses were performed following cocaine self-administration and its abstinence period in the brain structures in OBX rats and SHAM-operated controls. RESULTS Acute administration of RO reduced, while WAY non-significantly attenuated cocaine reinforcement in both rat phenotypes. Moreover, RO or WAY protected against cocaine-seeking behavior after acute or after repeated drug administration during extinction training in OBX and SHAM rats. By contrast, acutely administered MIR did not alter cocaine reinforcement in both rat phenotypes, while it's acute (but not repeated) pretreatment reduced cocaine-seeking in OBX and SHAM rats. In neurochemical analyses, cocaine reinforcement increased 5-HT2C receptor levels in the ventral hippocampus; a preexisting depression-like phenotype enhanced this effect. The 10-daily cocaine abstinence reduced 5-HT2C receptor expression in the dorsolateral striatum, while the coexistence of depression and CUD enhanced local receptor expression. CONCLUSION The results support a key role of 5-HT2C receptors for treating CUD and comorbid depression and CUD. They may be backs the further research of pharmacological strategies with drug targeting receptors.
Collapse
Affiliation(s)
- Joanna Jastrzębska
- Maj Institute of Pharmacology, Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Małgorzata Frankowska
- Maj Institute of Pharmacology, Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Irena Smaga
- Maj Institute of Pharmacology, Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Magdalena Hubalewska-Mazgaj
- Maj Institute of Pharmacology, Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Agata Suder
- Maj Institute of Pharmacology, Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Renata Pieniążek
- Maj Institute of Pharmacology, Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Edmund Przegaliński
- Maj Institute of Pharmacology, Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology, Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
11
|
Tallarico M, Pisano M, Leo A, Russo E, Citraro R, De Sarro G. Antidepressant Drugs for Seizures and Epilepsy: Where do we Stand? Curr Neuropharmacol 2023; 21:1691-1713. [PMID: 35761500 PMCID: PMC10514547 DOI: 10.2174/1570159x20666220627160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
People with epilepsy (PWE) are more likely to develop depression and both these complex chronic diseases greatly affect health-related quality of life (QOL). This comorbidity contributes to the deterioration of the QOL further than increasing the severity of epilepsy worsening prognosis. Strong scientific evidence suggests the presence of shared pathogenic mechanisms. The correct identification and management of these factors are crucial in order to improve patients' QOL. This review article discusses recent original research on the most common pathogenic mechanisms of depression in PWE and highlights the effects of antidepressant drugs (ADs) against seizures in PWE and animal models of seizures and epilepsy. Newer ADs, such as selective serotonin reuptake inhibitors (SRRI) or serotonin-noradrenaline reuptake inhibitors (SNRI), particularly sertraline, citalopram, mirtazapine, reboxetine, paroxetine, fluoxetine, escitalopram, fluvoxamine, venlafaxine, duloxetine may lead to improvements in epilepsy severity whereas the use of older tricyclic antidepressant (TCAs) can increase the occurrence of seizures. Most of the data demonstrate the acute effects of ADs in animal models of epilepsy while there is a limited number of studies about the chronic antidepressant effects in epilepsy and epileptogenesis or on clinical efficacy. Much longer treatments are needed in order to validate the effectiveness of these new alternatives in the treatment and the development of epilepsy, while further clinical studies with appropriate protocols are warranted in order to understand the real potential contribution of these drugs in the management of PWE (besides their effects on mood).
Collapse
Affiliation(s)
- Martina Tallarico
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Pisano
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
12
|
Moreira LKS, Moreira CVL, Custódio CHX, Dias MLP, Rosa DA, Ferreira-Neto ML, Colombari E, Costa EA, Fajemiroye JO, Pedrino GR. Post-partum depression: From clinical understanding to preclinical assessments. Front Psychiatry 2023; 14:1173635. [PMID: 37143780 PMCID: PMC10151489 DOI: 10.3389/fpsyt.2023.1173635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Post-partum depression (PPD) with varying clinical manifestations affecting new parents remains underdiagnosed and poorly treated. This minireview revisits the pharmacotherapy, and relevant etiological basis, capable of advancing preclinical research frameworks. Maternal tasks accompanied by numerous behavioral readouts demand modeling different paradigms that reflect the complex and heterogenous nature of PPD. Hence, effective PPD-like characterization in animals towards the discovery of pharmacological intervention demands research that deepens our understanding of the roles of hormonal and non-hormonal components and mediators of this psychiatric disorder.
Collapse
Affiliation(s)
| | | | | | - Matheus L. P. Dias
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Daniel A. Rosa
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Marcos L. Ferreira-Neto
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Elson A. Costa
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - James O. Fajemiroye
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
- Graduate Program in Pharmaceutical Sciences, Campus Arthur Wesley Archibald, Evangelical University of Goiás, Anápolis, Brazil
- *Correspondence: James O. Fajemiroye,
| | - Gustavo R. Pedrino
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| |
Collapse
|
13
|
Suker S, Mihov Y, Wolf A, Mueller SV, Hasler G. Behavioral Response to Catecholamine Depletion in Individuals With Schizophrenia and Healthy Volunteers. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad023. [PMID: 39145346 PMCID: PMC11207692 DOI: 10.1093/schizbullopen/sgad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Dysfunction of the dopamine system is the leading neurobiological hypothesis of schizophrenia. In this study, we tested this hypothesis in the context of aberrance salience theory of delusions using catecholamine depletion. We hypothesized that acute dopamine depletion improves both positive symptoms and salience attribution in individuals with schizophrenia. Study Design Catecholamine depletion was achieved by oral administration of alpha-methyl-para-tyrosine (AMPT) in 15 individuals with schizophrenia and 15 healthy volunteers. The study design consisted of a randomized, double-blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were the Scale for the Assessment of Positive Symptoms and the Salience Attribution Test. Study Results Catecholamine depletion transiently reduced specific psychotic symptoms in symptomatic individuals with schizophrenia, namely delusions and positive formal thought disorder (interaction treatment-by-timepoint, P = .013 and P = .010, respectively). We also found trends for catecholamine depletion to increase relevant bias and adaptive salience in participants with schizophrenia while decreasing them in healthy controls (interaction group-by-treatment, P = .060 and P = .089, respectively). Exploratory analyses revealed that in participants with schizophrenia, higher relevant bias at 3 hours after the end of AMPT treatment corresponded to lower delusional symptoms (Spearman's rho = -0.761, P = .001). Conclusions This study suggests that the relationship between dopamine hyperactivity and delusional symptoms in schizophrenia is mediated by impaired attribution of salience to reward-predicting stimuli.
Collapse
Affiliation(s)
- Samir Suker
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
| | - Yoan Mihov
- Unit of Psychiatry Research, University of Fribourg, Fribourg, Switzerland
| | - Andreas Wolf
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
| | | | - Gregor Hasler
- Unit of Psychiatry Research, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Maurya PK, Qavi A, Deswal S, Singh AK, Kulshreshtha D, Thacker AK. A Comparative Study of Regional Cerebral Blood Flow Asymmetry Index in Stroke Patients with or without Poststroke Depression Using 99m Tc-ECD Single-Photon Emission Computed Tomography. World J Nucl Med 2022; 21:222-230. [PMID: 36060079 PMCID: PMC9436511 DOI: 10.1055/s-0042-1751056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction Stroke is a major cause of death and disability around the globe. The development of depression following a stroke further increases the disability and impairs functional recovery. In recent decades, despite the advancement in structural and nuclear medicine imaging, the pathophysiologic basis of poststroke depression (PSD) is not well understood. Etiopathogenesis of PSD is multifactorial and afflictions of the frontal lobe, hippocampus, limbic region, and basal ganglia projections are implicated. Aim The aim of this study was to assess the regional cerebral blood flow (rCBF) using 99m Tc-ethyl cysteinate dimer single-photon emission computed tomography (SPECT) in patients with (PSD + ) or without PSD (PSD-). Materials and Methods To evaluate the hemispheric asymmetry, the percentage of asymmetry index (AI) was calculated for frontal, temporal, parietal, occipital, putamen, caudate, and thalamic regions of brain and compared between PSD+ and PSD-. The correlation between AIs over the different brain regions was also established in patients of PSD+ and PSD-. Our study cohort included 122 patients between 6 weeks and 1 year of stroke. Depression was present in 52 (42.6%) patients, assessed by hospital anxiety and depression scale (HADS) and general health questionnaire-28 items (GHQ-28) scale. The 28 patients with PSD+ and 18 PSD- gave consent for SPECT study. Results Our results are based on 46 patients who underwent SPECT study. In patients with PSD+ and PSD-, the HADS and GHQ-28 scores were 8.93 ± 2.77 vs. 3.94 ± 2.15 ( p = 0.001) and 40.96 ± 9.48 vs. 17.72 ± 5.38 ( p = 0.001), respectively. A significant difference in rCBF AI was found in the temporal lobe ( p = 0.03) between patients of PSD+ and PSD-. On logistic regression analysis, the odds ratio of rCBF AI for temporal lobe was 0.89 (95% confidence interval [CI]: 0.80-0.99; p = 0.04) and caudate nucleus was 0.85 (95% CI: 0.73-0.98; p = 0.03), which were statistically significant. PSD correlated with AI in temporal region ( r = -0.03; p = 0.03) but did not show significant correlation with other regions of brain between PSD+ and PSD-. Conclusion The presence of temporal lobe rCBF AI on SPECT is significantly associated with PSD. This may reflect the dysfunction of the limbic system and contribute to the occurrence of PSD.
Collapse
Affiliation(s)
- Pradeep Kumar Maurya
- Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Abdul Qavi
- Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Satyawati Deswal
- Department of Nuclear Medicine, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ajai Kumar Singh
- Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Dinkar Kulshreshtha
- Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Anup Kumar Thacker
- Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
15
|
Ghuman A, McEwen A, Tran KH, Mitchell N, Hanstock C, Seres P, Jhangri G, Burgess D, Baker G, Le Melledo JM. Prospective Investigation of Glutamate Levels and Percentage Gray Matter in the Medial Prefrontal Cortex in Females at Risk for Postpartum Depression. Curr Neuropharmacol 2022; 20:1988-2000. [PMID: 35236264 PMCID: PMC9886796 DOI: 10.2174/1570159x20666220302101115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The substantial female hormone fluctuations associated with pregnancy and postpartum have been linked to a greater risk of developing depressive symptoms, particularly in high-risk women (HRW), i.e. those with histories of mood sensitivity to female hormone fluctuations. We have shown that glutamate (Glu) levels in the medial prefrontal cortex (MPFC) decrease during perimenopause, a period of increased risk of developing a major depressive episode. Our team has also demonstrated that percentage gray matter (%GM), another neural correlate of maternal brain health, decreases in the MPFC during pregnancy. OBJECTIVE To investigate MPFC Glu levels and %GM from late pregnancy up to 7 weeks postpartum in HRW and healthy pregnant women (HPW). METHODS Single-voxel spectra were acquired from the MPFC of 41 HPW and 22 HRW using 3- Tesla in vivo proton magnetic resonance spectroscopy at five different time points. RESULTS We observed a statistically significant interaction between time and group for the metabolite Glu, with Glu levels being lower for HRW during pregnancy and early postpartum (p<0.05). MPFC %GM was initially lower during pregnancy and then significantly increased over time in both groups (p<0.01). CONCLUSION This investigation suggests that the vulnerability towards PPD is associated with unique fluctuations of MPFC Glu levels during pregnancy and early postpartum period. Our results also suggest that the decline in MPFC %GM associated with pregnancy seems to progressively recover over time. Further investigations are needed to determine the specific role that female hormones play on the physiological changes in %GM during pregnancy and postpartum.
Collapse
Affiliation(s)
- Arjun Ghuman
- Address correspondence to these authors at the Department of Psychiatry, Room 1E7.14, 8440 112 street Walter Mackenzie Center, Edmonton, Alberta, Canada, T6G 2B7; Tel: 780-407-6578; Fax: 780-407-6672; E-mail:
| | - Alyssa McEwen
- Address correspondence to these authors at the Department of Psychiatry, Room 1E7.14, 8440 112 street Walter Mackenzie Center, Edmonton, Alberta, Canada, T6G 2B7; Tel: 780-407-6578; Fax: 780-407-6672; E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kholghi G, Arjmandi-Rad S, Zarrindast MR, Vaseghi S. St. John's wort (Hypericum perforatum) and depression: what happens to the neurotransmitter systems? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:629-642. [PMID: 35294606 DOI: 10.1007/s00210-022-02229-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
St. John's wort (Hypericum perforatum) is a herbaceous plant containing many bioactive molecules including naphthodianthrones, phloroglucinol derivatives, flavonoids, bioflavonoids, proanthocyanidins, and chlorogenic acid. Evidence has shown the therapeutic effects of St. John's wort and especially its two major active components, hyperforin and hypericin, on different psychiatric and mood disorders such as posttraumatic stress disorder (PTSD), attention-deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), and anxiety disorders. St. John's wort also induces antidepressant effects. In this review study, we aimed to discuss the role of St. John's wort in modulating depression, with respect to the role of different neurotransmitter systems in the brain. We discussed changes in the neurotransmitter levels in depression, and following use of St. John's wort. It was concluded that changes in the function and level of neurotransmitters in depression are complex. Also, St. John's wort can induce inconsistent effects on neurotransmitter levels. We also found that glutamate and acetylcholine may be the most important neurotransmitters to study in future works, because the function of both neurotransmitters in depression is unclear. In addition, St. John's wort induces a dualistic modulation on the activity of cholinergic signaling, which can be an interesting topic for future studies.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|
17
|
Shayganfard M. Are Essential Trace Elements Effective in Modulation of Mental Disorders? Update and Perspectives. Biol Trace Elem Res 2022; 200:1032-1059. [PMID: 33904124 DOI: 10.1007/s12011-021-02733-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
The emergence of mental disorders is associated with several risk factors including genetic and environmental susceptibility. A group of nutrients serves an especially important role in a number of essential neurodevelopmental processes through brain areas promoting the high degree of brain metabolism during early life, although almost all nutrients are needed. These include macronutrients and micronutrients (e.g., iron, magnesium, zinc, copper, selenium). Numerous nutritional psychiatry trials have been performed to examine the correlation of many individual nutrients with mental health, such as essential trace elements. The increased accumulation or lack of such components will facilitate an alternative metabolic pathway that can lead to many diseases and conditions of neurodevelopment. Mental functions have biochemical bases, so the impairment of such neurochemical mechanisms due to lack of trace elements can have mental effects. In psychological conditions such as depression, anxiety, schizophrenia, and autism, scientific studies demonstrate the putative role of trace element deficiency. Therefore, given the critical roles played by essential trace elements in the neurodevelopment and mental health, the effect of these elements' intake on the modulation of psychological functioning is reviewed.
Collapse
Affiliation(s)
- Mehran Shayganfard
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
18
|
Lei Y, Belkacem AN, Wang X, Sha S, Wang C, Chen C. A convolutional neural network-based diagnostic method using resting-state electroencephalograph signals for major depressive and bipolar disorders. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Cheng B, Meng Y, Zuo Y, Guo Y, Wang X, Wang S, Zhang R, Deng W, Guo Y, Ning G. Functional connectivity patterns of the subgenual anterior cingulate cortex in first-episode refractory major depressive disorder. Brain Imaging Behav 2021; 15:2397-2405. [PMID: 33432537 DOI: 10.1007/s11682-020-00436-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 02/05/2023]
Abstract
Although accumulating evidence has been elucidating the neuronal basis of refractory/nonrefractory major depressive disorder (rMDD/nrMDD), the results are inconsistent, and little is known about the distinct neural mechanisms underlying rMDD. Here, we explored the convergent/divergent brain networks between first-episode MDD subtypes using the resting-state functional connectivity (RSFC) approach. In total, 33 healthy controls (HCs), 31 first-episode rMDD patients and 33 first-episode nrMDD patients were enrolled and underwent MRI scanning. The left subgenual anterior cingulate cortex (sgACC) was selected as the seed region, and RSFC was employed to evaluate associations between the seed and other regions in the whole brain. Both MDD subtypes exhibited convergent left sgACC-based neural networks, including increased RSFC with the dorsal prefrontal cortex (DPFC) and decreased RSFC with the bilateral orbitofrontal cortex (OFC) and right parahippocampus. rMDD patients exhibited increased left sgACC-OFC RSFC relative to nrMDD patients, and RSFC with the bilateral OFC in rMDD patients was negatively correlated with HAMD scores. These findings confirmed our speculation that convergent and divergent neural networks exist between rMDD and nrMDD. Cortical-limbic circuits, especially the prefrontal-limbic circuit, may serve as the convergent dysfunctional neural circuitry in MDD subtypes. As an important biomarker, a unique OFC-sgACC circuit abnormality was identified in rMDD patients, which might help elucidate the underlying mechanism regarding treatment responses in rMDD patients.
Collapse
Affiliation(s)
- Bochao Cheng
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Chengdu, Sichuan province, People's Republic of China, 610041
| | - Yajing Meng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Zuo
- Maternity clinic, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Chengdu, Sichuan province, People's Republic of China, 610041
| | - Xiuli Wang
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, University of Electronic Science and Technology of China, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ran Zhang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Deng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Chengdu, Sichuan province, People's Republic of China, 610041.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Gang Ning
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Chengdu, Sichuan province, People's Republic of China, 610041.
| |
Collapse
|
20
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Chong L, Han L, Liu R, Ma G, Ren H. Association of Lymphocyte-to-Monocyte Ratio with Poststroke Depression in Patients with Acute Ischemic Stroke. Med Sci Monit 2021; 27:e930076. [PMID: 34021110 PMCID: PMC8152443 DOI: 10.12659/msm.930076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Poststroke depression (PSD) is a common neuropsychiatric disorder after stroke. The neuroinflammatory response exerts a vital effect in the development of PSD. Lymphocyte-to-monocyte ratio (LMR), a systemic inflammation biomarker, is associated with poor prognosis of acute ischemic stroke (AIS). The purpose of this study was to determine the association between LMR and PSD at 3 months. Material/Methods AIS patients (507) were included in this study. Patients were categorized into 3 tertiles and each tertile contains 169 patients: tertile1 (>4.85), tertile 2 (2.96 to 4.85), and tertile 3 (<2.96), based on LMR values and the numbers of patients. PSD was diagnosed with a 17-item Hamilton Depression Scale score of 8 or higher. Results Patients (141; 27.8%) were diagnosed with PSD at 3-month follow-up. Patients in the PSD group presented with more severe stroke and lower LMR values (P<0.001). Decreased LMRs were independently associated with occurrence of PSD (middle tertile: odds ratio [OR] 1.823, P=0.037; lowest tertile: OR 3.024, P<0.001). A significant association of a lower LMR value with PSD severity was found (middle tertile: OR 1.883, P=0.031; lowest tertile: OR 2.633, P=0.001). The receiver operating characteristic curve indicates that the optimal threshold of LMR as a predictor for PSD was 3.14, which yielded a sensitivity of 72.4% and a specificity of 68.1%. Conclusions Decreased LMR is independently associated with PSD and increased PSD severity.
Collapse
Affiliation(s)
- Lining Chong
- Department of Neurology, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Lin Han
- Department of Neurology, Hengshui Hospital of Traditional Chinese Medicine, Hengshui, Hebei, China (mainland)
| | - Ruqian Liu
- Department of Neurology, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Guomei Ma
- Department of Neurology, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Hao Ren
- Department of Neurology, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| |
Collapse
|
22
|
Goldstein Ferber S, Weller A, Yadid G, Friedman A. Discovering the Lost Reward: Critical Locations for Endocannabinoid Modulation of the Cortico-Striatal Loop That Are Implicated in Major Depression. Int J Mol Sci 2021; 22:1867. [PMID: 33668515 PMCID: PMC7918043 DOI: 10.3390/ijms22041867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Depression, the most prevalent psychiatric disorder in the Western world, is characterized by increased negative affect (i.e., depressed mood, cost value increase) and reduced positive affect (i.e., anhedonia, reward value decrease), fatigue, loss of appetite, and reduced psychomotor activity except for cases of agitative depression. Some forms, such as post-partum depression, have a high risk for suicidal attempts. Recent studies in humans and in animal models relate major depression occurrence and reoccurrence to alterations in dopaminergic activity, in addition to other neurotransmitter systems. Imaging studies detected decreased activity in the brain reward circuits in major depression. Therefore, the location of dopamine receptors in these circuits is relevant for understanding major depression. Interestingly, in cortico-striatal-dopaminergic pathways within the reward and cost circuits, the expression of dopamine and its contribution to reward are modulated by endocannabinoid receptors. These receptors are enriched in the striosomal compartment of striatum that selectively projects to dopaminergic neurons of substantia nigra compacta and is vulnerable to stress. This review aims to show the crosstalk between endocannabinoid and dopamine receptors and their vulnerability to stress in the reward circuits, especially in corticostriatal regions. The implications for novel treatments of major depression are discussed.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Department of Psychology and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (S.G.F.); (A.W.)
| | - Aron Weller
- Department of Psychology and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (S.G.F.); (A.W.)
| | - Gal Yadid
- The Mina and Everard Goodman Faculty of Life Sciences and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Alexander Friedman
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
23
|
Delcourte S, Etievant A, Haddjeri N. Role of central serotonin and noradrenaline interactions in the antidepressants' action: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 259:7-81. [PMID: 33541681 DOI: 10.1016/bs.pbr.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of antidepressant drugs, in the last 6 decades, has been associated with theories based on a deficiency of serotonin (5-HT) and/or noradrenaline (NA) systems. Although the pathophysiology of major depression (MD) is not fully understood, numerous investigations have suggested that treatments with various classes of antidepressant drugs may lead to an enhanced 5-HT and/or adapted NA neurotransmissions. In this review, particular morpho-physiological aspects of these systems are first considered. Second, principal features of central 5-HT/NA interactions are examined. In this regard, the effects of the acute and sustained antidepressant administrations on these systems are discussed. Finally, future directions including novel therapeutic strategies are proposed.
Collapse
Affiliation(s)
- Sarah Delcourte
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Adeline Etievant
- Integrative and Clinical Neurosciences EA481, University of Bourgogne Franche-Comté, Besançon, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
24
|
Nawreen N, Cotella EM, Morano R, Mahbod P, Dalal KS, Fitzgerald M, Martelle S, Packard BA, Franco-Villanueva A, Moloney RD, Herman JP. Chemogenetic Inhibition of Infralimbic Prefrontal Cortex GABAergic Parvalbumin Interneurons Attenuates the Impact of Chronic Stress in Male Mice. eNeuro 2020; 7:ENEURO.0423-19.2020. [PMID: 33055196 PMCID: PMC7598911 DOI: 10.1523/eneuro.0423-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 08/24/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Hypofunction of the prefrontal cortex (PFC) contributes to stress-related neuropsychiatric illnesses. Mechanisms leading to prefrontal hypoactivity remain to be determined. Prior evidence suggests that chronic stress leads to an increase in activity of parvalbumin (PV) expressing GABAergic interneurons (INs) in the PFC. The purpose of the study was to determine whether reducing PV IN activity in the Infralimbic (IL) PFC would prevent stress-related phenotypes. We used a chemogenetic approach to inhibit IL PFC PV INs during stress. Mice were first tested in the tail suspension test (TST) to determine the impact of PV IN inhibition on behavioral responses to acute stress. The long-term impact of PV IN inhibition during a modified chronic variable stress (CVS) was tested in the forced swim test (FST). Acute PV IN inhibition reduced active (struggling) and increased passive coping behaviors (immobility) in the TST. In contrast, inhibition of PV INs during CVS increased active and reduced passive coping behaviors in the FST. Moreover, chronic inhibition of PV INs attenuated CVS-induced changes in Fos expression in the prelimbic cortex (PrL), basolateral amygdala (BLA), and ventrolateral periaqueductal gray (vlPAG) and also attenuated adrenal hypertrophy and body weight loss associated with chronic stress. Our results suggest differential roles of PV INs in acute versus chronic stress, indicative of distinct biological mechanisms underlying acute versus chronic stress responses. Our results also indicate a role for PV INs in driving chronic stress adaptation and support literature evidence suggesting cortical GABAergic INs as a therapeutic target in stress-related illnesses.
Collapse
Affiliation(s)
- Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45237-0506
- Veterans Affairs Medical Center, Cincinnati, OH 45221-0506
| | - Evelin M Cotella
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
- Veterans Affairs Medical Center, Cincinnati, OH 45221-0506
| | - Rachel Morano
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
| | - Parinaz Mahbod
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
| | - Khushali S Dalal
- College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45237-0506
| | - Maureen Fitzgerald
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
| | - Susan Martelle
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
| | - Benjamin A Packard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
- Veterans Affairs Medical Center, Cincinnati, OH 45221-0506
| | - Ana Franco-Villanueva
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
| | - Rachel D Moloney
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
- Veterans Affairs Medical Center, Cincinnati, OH 45221-0506
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45237-0506
- Veterans Affairs Medical Center, Cincinnati, OH 45221-0506
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45237-0506
| |
Collapse
|
25
|
Amonoo HL, Fenech A, Greer JA, Temel JS, Huffman JC, El-Jawahri A. Does Desire to Pursue Pleasurable Activities Matter? The Impact of Pretransplantation Anhedonia on Quality of Life and Fatigue in Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2020; 26:1477-1481. [DOI: 10.1016/j.bbmt.2020.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/28/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
|
26
|
Shao X, Zhu G. Associations Among Monoamine Neurotransmitter Pathways, Personality Traits, and Major Depressive Disorder. Front Psychiatry 2020; 11:381. [PMID: 32477180 PMCID: PMC7237722 DOI: 10.3389/fpsyt.2020.00381] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is a complex psychiatric disease requiring multidisciplinary approaches to identify specific risk factors and establish more efficacious treatment strategies. Although the etiology and pathophysiology of MDD are not clear until these days, it is acknowledged that they are almost certainly multifactorial and comprehensive. Monoamine neurotransmitter system dysfunction and specific personality traits are independent risk factors for depression and suicide. These factors also demonstrate complex interactions that influence MDD pathogenesis and symptom expression. In this review, we assess these relationships with the aim of providing a reference for the development of precision medicine.
Collapse
Affiliation(s)
- Xiaojun Shao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behav Brain Res 2019; 379:112367. [PMID: 31739001 DOI: 10.1016/j.bbr.2019.112367] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Depression, the most prevalent psychiatric disorder, is characterized by increased negative affect (i.e. depressed mood) and reduced positive affect (i.e. anhedonia). Stress is a risk factor for depression in humans, and animal models of chronic stress are typically used to study neurobehavioral alterations relevant to depression. Common behavioral outcomes in rodent models of chronic stress include anhedonia, social dysfunction and behavioral despair. For example, chronically stressed rodents exhibit reduced reward preference, as measured by a loss of preference for sucrose solutions and time spent interacting with a novel conspecific, while also exhibiting less time struggling against inescapable stressors (e.g. forced swim, tail suspension). In both humans and rodents, anhedonia is associated with dysfunction of the dopamine (DA) system. Unlike traditional antidepressants, which are limited by inadequate efficacy and delayed therapeutic response, acute ketamine administration rapidly alleviates depressive symptoms in humans and reverses stress-induced changes in animal models. These effects are partially mediated via actions on the DA system. This review summarizes the clinical effects of ketamine, the neurobiological underpinnings of depression with a focus on DA dysfunction, as well as antidepressant effects of ketamine on depression-related endophenotypes (i.e. anhedonia, despair) and ventral tegmental area (VTA) activity in rodent models of repeated stress. Moreover, we discuss evidence regarding sex differences in ketamine's antidepressant effects, wherein females appear to be more sensitive to lower dose ketamine, as well as novel findings suggesting that ketamine has prophylactic effects with regard to protection against the neurobehavioral impact of future stressors.
Collapse
|
28
|
Pizzagalli DA, Berretta S, Wooten D, Goer F, Pilobello KT, Kumar P, Murray L, Beltzer M, Boyer-Boiteau A, Alpert N, El Fakhri G, Mechawar N, Vitaliano G, Turecki G, Normandin M. Assessment of Striatal Dopamine Transporter Binding in Individuals With Major Depressive Disorder: In Vivo Positron Emission Tomography and Postmortem Evidence. JAMA Psychiatry 2019; 76:854-861. [PMID: 31042280 PMCID: PMC6495358 DOI: 10.1001/jamapsychiatry.2019.0801] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Major depressive disorder (MDD) might involve dopamine (DA) reductions. The DA transporter (DAT) regulates DA clearance and neurotransmission and is sensitive to DA levels, with preclinical studies (including those involving inescapable stressors) showing that DAT density decreases when DA signaling is reduced. Despite preclinical data, evidence of reduced DAT in MDD is inconclusive. OBJECTIVE Using a highly selective DAT positron emission tomography (PET) tracer ([11C] altropane), DAT availability was probed in individuals with MDD who were not taking medication. Levels of DAT expression were also evaluated in postmortem tissues from donors with MDD who died by suicide. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional PET study was conducted at McLean Hospital (Belmont, Massachusetts) and Massachusetts General Hospital (Boston) and enrolled consecutive individuals with MDD who were not taking medication and demographically matched healthy controls between January 2012 and March 2014. Brain tissues were obtained from the Douglas-Bell Canada Brain Bank. For the PET component, 25 individuals with current MDD who were not taking medication and 23 healthy controls recruited from McLean Hospital were included (all provided usable data). For the postmortem component, 15 individuals with depression and 14 healthy controls were considered. INTERVENTION PET scan. MAIN OUTCOMES AND MEASURES Striatal and midbrain DAT binding potential was assessed. For the postmortem component, tyrosine hydroxylase and DAT levels were evaluated using Western blots. RESULTS Compared with 23 healthy controls (13 women [56.5%]; mean [SD] age, 26.49 [7.26] years), 25 individuals with MDD (19 women [76.0%]; mean [SD] age, 26.52 [5.92] years) showed significantly lower in vivo DAT availability in the bilateral putamen and ventral tegmental area (Cohen d range, -0.62 to -0.71), and both reductions were exacerbated with increasing numbers of depressive episodes. Unlike healthy controls, the MDD group failed to show an age-associated reduction in striatal DAT availability, with young individuals with MDD being indistinguishable from older healthy controls. Moreover, DAT availability in the ventral tegmental area was lowest in individuals with MDD who reported feeling trapped in stressful circumstances. Lower DAT levels (and tyrosine hydroxylase) in the putamen of MDD compared with healthy controls were replicated in postmortem analyses (Cohen d range, -0.92 to -1.15). CONCLUSIONS AND RELEVANCE Major depressive disorder, particularly with recurring episodes, is characterized by decreased striatal DAT expression, which might reflect a compensatory downregulation due to low DA signaling within mesolimbic pathways.
Collapse
Affiliation(s)
- Diego A. Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,McLean Hospital, Belmont, Massachusetts
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,McLean Hospital, Belmont, Massachusetts
| | - Dustin Wooten
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | | | | | - Poornima Kumar
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,McLean Hospital, Belmont, Massachusetts
| | | | | | | | - Nathanial Alpert
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Georges El Fakhri
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gordana Vitaliano
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,McLean Hospital, Belmont, Massachusetts
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Marc Normandin
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Moriguchi S, Wilson AA, Miler L, Rusjan PM, Vasdev N, Kish SJ, Rajkowska G, Wang J, Bagby M, Mizrahi R, Varughese B, Houle S, Meyer JH. Monoamine Oxidase B Total Distribution Volume in the Prefrontal Cortex of Major Depressive Disorder: An [11C]SL25.1188 Positron Emission Tomography Study. JAMA Psychiatry 2019; 76:634-641. [PMID: 30840042 PMCID: PMC6551845 DOI: 10.1001/jamapsychiatry.2019.0044] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE Monoamine oxidase B (MAO-B) is an important, high-density enzyme in the brain that generates oxidative stress by hydrogen peroxide production, alters mitochondrial function, and metabolizes nonserotonergic monoamines. Recent advances in positron emission tomography radioligand development for MAO-B in humans enable highly quantitative measurement of MAO-B distribution volume (MAO-B VT), an index of MAO-B density. To date, this is the first investigation of MAO-B in the brain of major depressive disorder that evaluates regions beyond the raphe and amygdala. OBJECTIVE To investigate whether MAO-B VT is elevated in the prefrontal cortex in major depressive episodes (MDEs) of major depressive disorder. DESIGN, SETTING, AND PARTICIPANTS This case-control study was performed at a tertiary care psychiatric hospital from April 1, 2014, to August 30, 2018. Twenty patients with MDEs without current psychiatric comorbidities and 20 age-matched controls underwent carbon 11-labeled [11C]SL25.1188 positron emission tomography scanning to measure MAO-B VT. All participants were drug and medication free, nonsmoking, and otherwise healthy. MAIN OUTCOMES AND MEASURES The MAO-B VT in the prefrontal cortex (PFC). The second main outcome was to evaluate the association between MAO-B VT in the PFC and duration of major depressive disorder illness. RESULTS Twenty patients with MDEs (mean [SD] age, 34.2 [13.2] years; 11 women) and 20 healthy controls (mean [SD] age, 33.7 [13.1] years; 10 women) were recruited. Patients with MDEs had significantly greater MAO-B VT in the PFC (mean, 26%; analysis of variance, F1,38 = 19.6, P < .001). In individuals with MDEs, duration of illness covaried positively with MAO-B VT in the PFC (analysis of covariance, F1,18 = 15.2, P = .001), as well as most other cortex regions and the thalamus. CONCLUSIONS AND RELEVANCE Fifty percent (10 of 20) of patients with MDEs had MAO-B VT values in the PFC exceeding those of healthy controls. Greater MAO-B VT is an index of MAO-B overexpression, which may contribute to pathologies of mitochondrial dysfunction, elevated synthesis of neurotoxic products, and increased metabolism of nonserotonergic monoamines. Hence, this study identifies a common pathological marker associated with downstream consequences poorly targeted by the common selective serotonin reuptake inhibitor treatments. It is also recommended that the highly selective MAO-B inhibitor medications that are compatible for use with other antidepressants and have low risk for hypertensive crisis should be developed or repurposed as adjunctive treatment for MDEs.
Collapse
Affiliation(s)
- Sho Moriguchi
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Laura Miler
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Neil Vasdev
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J. Kish
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson
| | - Junming Wang
- Department of Pathology, University of Mississippi Medical Center, Jackson
| | - Michael Bagby
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ben Varughese
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey H. Meyer
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Bowyer CB, Joyner KJ, Yancey JR, Venables NC, Hajcak G, Patrick CJ. Toward a neurobehavioral trait conceptualization of depression proneness. Psychophysiology 2019; 56:e13367. [DOI: 10.1111/psyp.13367] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 01/22/2019] [Accepted: 02/21/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Colin B. Bowyer
- Department of Psychology Florida State University Tallahassee Florida
| | - Keanan J. Joyner
- Department of Psychology Florida State University Tallahassee Florida
| | - James R. Yancey
- Department of Psychology Florida State University Tallahassee Florida
| | - Noah C. Venables
- Department of Psychiatry University of Minnesota Minneapolis Minnesota
| | - Greg Hajcak
- Department of Psychology Florida State University Tallahassee Florida
| | | |
Collapse
|
31
|
Varinthra P, Liu IY. Molecular basis for the association between depression and circadian rhythm. Tzu Chi Med J 2019; 31:67-72. [PMID: 31007484 PMCID: PMC6450147 DOI: 10.4103/tcmj.tcmj_181_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Depression is a life-threatening psychiatric disorder and a major public health concern worldwide with an incidence of 5% and a lifetime prevalence of 15%-20%. It is related with the social disability, decreased quality of life, and a high incidence of suicide. Along with increased depressive cases, health care cost in treating patients suffering from depression has also surged. Previous evidence have reported that depressed patients often exhibit altered circadian rhythms. Circadian rhythm involves physical, mental, and behavioral changes in a daily cycle, and is controlled by the suprachiasmatic nucleus of the hypothalamus in responding to light and darkness in an environment. Circadian rhythm disturbance in depressive patients causes early morning waking, sleep disturbances, diurnal mood variation, changes of the mean core temperature, endocrine release, and metabolic functions. Many medical interventions have been used to treat depression; however, several adverse effects are noted. This article reviews the types, causes of depression, mechanism of circadian rhythm, and the relationship between circadian rhythm disturbance with depression. Pharmaceutical and alternative interventions used to treat depressed patients are also discussed.
Collapse
Affiliation(s)
- Peeraporn Varinthra
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ingrid Y. Liu
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
32
|
Moreno-Ortega M, Prudic J, Rowny S, Patel GH, Kangarlu A, Lee S, Grinband J, Palomo T, Perera T, Glasser MF, Javitt DC. Resting state functional connectivity predictors of treatment response to electroconvulsive therapy in depression. Sci Rep 2019; 9:5071. [PMID: 30911075 PMCID: PMC6433903 DOI: 10.1038/s41598-019-41175-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
There is increasing focus on use of resting-state functional connectivity (RSFC) analyses to subtype depression and to predict treatment response. To date, identification of RSFC patterns associated with response to electroconvulsive therapy (ECT) remain limited, and focused on interactions between dorsal prefrontal and regions of the limbic or default-mode networks. Deficits in visual processing are reported in depression, however, RSFC with or within the visual network have not been explored in recent models of depression. Here, we support prior studies showing in a sample of 18 patients with depression that connectivity between dorsal prefrontal and regions of the limbic and default-mode networks serves as a significant predictor. In addition, however, we demonstrate that including visual connectivity measures greatly increases predictive power of the RSFC algorithm (>80% accuracy of remission). These exploratory results encourage further investigation into visual dysfunction in depression, and use of RSFC algorithms incorporating the visual network in prediction of response to both ECT and transcranial magnetic stimulation (TMS), offering a new framework for the development of RSFC-guided TMS interventions in depression.
Collapse
Affiliation(s)
- M Moreno-Ortega
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute/Columbia University Medical Center, New York, NY, USA. .,Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | - J Prudic
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute/Columbia University Medical Center, New York, NY, USA
| | - S Rowny
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute/Columbia University Medical Center, New York, NY, USA
| | - G H Patel
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute/Columbia University Medical Center, New York, NY, USA
| | - A Kangarlu
- Department of Psychiatry, Radiology and Biomedical Engineering, Columbia University, New York, NY, USA
| | - S Lee
- Department of Psychiatry and Biostatistics, New York State Psychiatric Institute/Columbia University, New York, NY, USA
| | - J Grinband
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute/Columbia University Medical Center, New York, NY, USA
| | - T Palomo
- Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Psychiatry, Complutense University, Madrid, Spain
| | - T Perera
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute/Columbia University Medical Center, New York, NY, USA
| | - M F Glasser
- Departments of Radiology and Neuroscience, Washington University Medical School, St. Louis, MO, USA
| | - D C Javitt
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute/Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
33
|
Dowlati Y, de Jesus DR, Selby P, Fan I, Meyer JH. Depressed mood induction in early cigarette withdrawal is unaffected by acute monoamine precursor supplementation. Neuropsychiatr Dis Treat 2019; 15:311-321. [PMID: 30774343 PMCID: PMC6352866 DOI: 10.2147/ndt.s172334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cigarette smoking is the leading preventable cause of death; however, quitting is difficult and early relapse is common. Dysphoric mood during early cigarette withdrawal is associated with relapse, and with the exception of bupropion and nortriptyline, few interventions have been developed to prevent this. During early cigarette withdrawal there is an elevation in the levels of monoamine oxidase-A (MAO-A), which removes monoamines excessively and induces oxidative stress and is implicated in creating sad mood. Hence, we conducted a randomized, placebo-controlled, double-blind crossover trial of a dietary supplement designed to counter the effects of elevated MAO-A levels on vulnerability to depressed mood. METHODS Twenty-one otherwise healthy cigarette smokers completed the protocol, receiving either active dietary supplement followed by washout and placebo or the same in reverse order. The dietary supplement was composed of monoamine precursors (2 g tryptophan, 10 g tyrosine) and blueberry antioxidants (blueberry juice with blueberry extract). Vulnerability to depressed mood was measured by the change in scores of depressed mood on the visual analog scale (VAS) following the sad mood induction paradigm (MIP). RESULTS There was a significant increase in VAS depressed mood scores after the sad MIP during supplement and placebo, but no difference between active and placebo conditions. There was also a significant increase in urge-to-smoke scores after sad MIP during supplement and placebo but no difference between active and placebo conditions. Reliability of the increase in VAS after MIP was very good. CONCLUSION The dietary supplement had negligible effect on depressed mood, but sad MIP is a very reliable method that can be applied in future studies to assess other interventions for preventing dysphoric mood during early cigarette withdrawal.
Collapse
Affiliation(s)
- Yekta Dowlati
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada, .,Department of Psychiatry, University of Toronto, ON, Canada,
| | - Danilo R de Jesus
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada, .,Department of Psychiatry, University of Toronto, ON, Canada,
| | - Peter Selby
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada, .,Department of Psychiatry, University of Toronto, ON, Canada, .,Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Ian Fan
- Department of Psychiatry, University of Toronto, ON, Canada, .,Mood Disorders Association of British Columbia, Vancouver, BC, Canada
| | - Jeffrey H Meyer
- CAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada, .,Department of Psychiatry, University of Toronto, ON, Canada,
| |
Collapse
|
34
|
Abstract
Approximately one third of depressed patients fail to respond to currently available antidepressant therapies. Therefore, new conceptual frameworks are needed to identify pathophysiologic pathways and neurobiological targets for the development of novel treatment strategies. In this regard, recent evidence suggests that inflammation may contribute to symptoms relevant to a number of psychiatric disorders and particularly depression. Numerous studies (including meta-analyses) have found elevated peripheral and central inflammatory cytokines and acute phase proteins in depression. Chronic exposure to increased inflammation is thought to drive changes in neurotransmitters and neurocircuits that lead to depressive symptoms and that may also interfere with or circumvent the efficacy of antidepressants. Indeed, patients with high inflammation have been shown to exhibit poor response to conventional antidepressant therapies. Recent developments in our ability to understand and measure the effects of inflammation on the brain in patients have opened new doors for the testing of novel treatment strategies that target the immune system or its consequences on neurotransmitter systems. Such recent developments in the field of behavioral immunology and their translational implications for the treatment of depression are discussed herein.
Collapse
|
35
|
Felger JC. Imaging the Role of Inflammation in Mood and Anxiety-related Disorders. Curr Neuropharmacol 2018; 16:533-558. [PMID: 29173175 PMCID: PMC5997866 DOI: 10.2174/1570159x15666171123201142] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/23/2017] [Accepted: 11/21/2017] [Indexed: 02/08/2023] Open
Abstract
Background Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have reported evidence that inflammation and release of inflammatory cytokines affect circuitry relevant to both reward and threat sensitivity to contribute to behavioral change. Of relevance to mood and anxiety-related disorders, biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of patients with major depressive disorder (MDD), bipolar disorder, anxiety disorders and post-traumatic stress disorder (PTSD). Methods This review summarized clinical and translational work demonstrating the impact of peripheral inflammation on brain regions and neurotransmitter systems relevant to both reward and threat sensitivity, with a focus on neuroimaging studies involving administration of inflammatory stimuli. Recent translation of these findings to further understand the role of inflammation in mood and anxiety-related disorders is also discussed. Results Inflammation was consistently found to affect basal ganglia and cortical reward and motor circuits to drive reduced motivation and motor activity, as well as anxiety-related brain regions including amygdala, insula and anterior cingulate cortex, which may result from cytokine effects on monoamines and glutamate. Similar relationships between inflammation and altered neurocircuitry have been observed in MDD patients with increased peripheral inflammatory markers, and such work is on the horizon for anxiety disorders and PTSD. Conclusion Neuroimaging effects of inflammation on reward and threat circuitry may be used as biomarkers of inflammation for future development of novel therapeutic strategies to better treat mood and anxiety-related disorders in patients with high inflammation.
Collapse
Affiliation(s)
- Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
36
|
Tritschler L, Gaillard R, Gardier AM, David DJ, Guilloux JP. [Consequences of the monoaminergic systems cross-talk in the antidepressant activity]. Encephale 2018; 44:264-273. [PMID: 29801770 DOI: 10.1016/j.encep.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed antidepressant treatment for treat major depressive disorders. Despite their effectiveness, only 30% of SSRI-treated patients reach remission of depressive symptoms. SSRIs by inhibiting the serotonin transporter present some limits with residual symptoms. Increasing not only serotonin but also norepinephrine and dopamine levels in limbic areas seems to improve remission. Anatomical relationships across serotoninergic, dopaminergic and noradrenergic systems suggest tight reciprocal regulations among them. This review attempts to present, from acute to chronic administration the consequences of SSRI administration on monoaminergic neurotransmission. The serotonin neurons located in the raphe nucleus (RN) are connected to the locus coeruleus (locus coeruleus), the key structure of norepinephrine synthesis, through GABAergic-inhibiting interneurons. Activation of the 5-HT2A receptors expressed on GABAergic interneurons following SERT-inhibition induces an increase in serotonin leading to inhibitory effect on NE release. Similarly, the serotonin neurons exert negative regulation on dopaminergic neurons from the ventral tegmental area (VTA) through a GABAergic interneuron. These interneurons express the 5-HT2C and 5-HT3 receptors inducing an inhibitory effect of 5-HT on DA release. Positive reciprocal connections are also observed through direct projections from the locus coeruleus to the RN and from the VTA to the RN through α1 and D2 receptors respectively, both stimulating the serotoninergic activity. Acute SSRI treatment induces only a slight increase in 5-HT levels in limbic areas due to the activation of presynaptic 5-HT1A and 5-HT1B autoreceptors counteracting the effects of the transporter blockade. No change in NE levels and a small decrease in the dopaminergic neurotransmission is also observed. These weak changes in monoamine in the limbic areas after acute SSRI treatment seems to be one of key point involved in the onset of action. Following desensitization of the 5-HT1A and 5-HT1B autoreceptors, chronic SSRI treatment induces a large increase in the 5-HT neurotransmission. Changes in 5-HT levels at the limbic areas results in a decrease in NE transmission and an increase in DA transmission through an increase in the post-synaptic D2 receptors sensitivity and not from a change in DA levels, which is mainly due to a desensitization of the 5-HT2A receptor. The observed decrease of NE neurotransmission could explain some limits of the SSRI therapy and the interest to activate NE system for producing more robust effects. On the other hand, the D2 sensitization, especially in the nucleus accumbens, stimulates the motivation behavior as well as remission of anhedonia considering the major role of DA release in this structure. Finally, we need to take into account the key role of each monoaminergic neurotransmission to reach remission. Targeting only one system will limit the therapeutic effectiveness. Clinical evidences, including the STAR*D studies, confirmed this by an increase of the remission rate following the mobilization of several monoaminergic transmissions. However, these combinations cannot constitute first line of treatment considering the observed increase of side effects. Such an approach should be adapted to each patient in regard to its particular symptoms as well as clinical history. The next generation of antidepressant therapy will need to take into consideration the interconnections and the interrelation between the monoaminergic systems.
Collapse
Affiliation(s)
- L Tritschler
- CESP, Inserm UMRS1178, faculté de pharmacie, université Paris-Saclay, université Paris-Sud, 92296 Chatenay-Malabry, France
| | - R Gaillard
- Inserm UMR 894, centre de psychiatrie & neurosciences, CNRS GDR 3557, institut de psychiatrie, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; Service hospitalo-universitaire, centre hospitalier Sainte-Anne, 75015 Paris, France
| | - A M Gardier
- CESP, Inserm UMRS1178, faculté de pharmacie, université Paris-Saclay, université Paris-Sud, 92296 Chatenay-Malabry, France
| | - D J David
- CESP, Inserm UMRS1178, faculté de pharmacie, université Paris-Saclay, université Paris-Sud, 92296 Chatenay-Malabry, France.
| | - J-P Guilloux
- CESP, Inserm UMRS1178, faculté de pharmacie, université Paris-Saclay, université Paris-Sud, 92296 Chatenay-Malabry, France.
| |
Collapse
|
37
|
Callaghan CK, Rouine J, O'Mara SM. Potential roles for opioid receptors in motivation and major depressive disorder. PROGRESS IN BRAIN RESEARCH 2018; 239:89-119. [DOI: 10.1016/bs.pbr.2018.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Villareal MO, Ikeya A, Sasaki K, Arfa AB, Neffati M, Isoda H. Anti-stress and neuronal cell differentiation induction effects of Rosmarinus officinalis L. essential oil. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:549. [PMID: 29273038 PMCID: PMC5741888 DOI: 10.1186/s12906-017-2060-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/13/2017] [Indexed: 01/18/2023]
Abstract
Background Mood disorder accounts for 13 % of global disease burden. And while therapeutic agents are available, usually orally administered, most have unwanted side effects, and thus making the inhalation of essential oils (EOs) an attractive alternative therapy. Rosmarinus officinalis EO (ROEO), Mediterranean ROEO reported to improve cognition, mood, and memory, the effect on stress of which has not yet been determined. Here, the anti-stress effect of ROEO on stress was evaluated in vivo and in vitro. Methods Six-week-old male ICR mice were made to inhale ROEO and subjected to tail suspension test (TST). To determine the neuronal differentiation effect of ROEO in vitro, induction of ROEO-treated PC12 cells differentiation was observed. Intracellular acetylcholine and choline, as well as the Gap43 gene expression levels were also determined. Results Inhalation of ROEO significantly decreased the immobility time of ICR mice and serum corticosterone level, accompanied by increased brain dopamine level. Determination of the underlying mechanism in vitro revealed a PC12 differentiation-induction effect through the modulation of intracellular acetylcholine, choline, and Gap43 gene expression levels. ROEO activates the stress response system through the NGF pathway and the hypothalamus-pituitary-adrenal axis, promoting dopamine production and secretion. The effect of ROEO may be attributed to its bioactive components, specifically to α-pinene, one of its major compounds that has anxiolytic property. Conclusions The results of this study suggest that ROEO inhalation has therapeutic potential against stress-related psychiatric disorders.
Collapse
|
39
|
Zsido RG, Villringer A, Sacher J. Using positron emission tomography to investigate hormone-mediated neurochemical changes across the female lifespan: implications for depression. Int Rev Psychiatry 2017; 29:580-596. [PMID: 29199875 DOI: 10.1080/09540261.2017.1397607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ovarian hormones, particularly oestrogen and progesterone, undergo major fluctuations across the female lifespan. These hormone transition periods, such as the transition from pregnancy to postpartum, as well as the transition into menopause (perimenopause), are also known to be times of elevated susceptibility to depression. This study reviews how these transition periods likely influence neurochemical changes in the brain that result in disease vulnerability. While there are known associations between oestrogen/progesterone and different monoaminergic systems, the interactions and their potential implications for mood disorders are relatively unknown. Positron Emission Tomography (PET) allows for the in-vivo quantification of such neurochemical changes, and, thus, can provide valuable insight into how both subtle and dramatic shifts in hormones contribute to the elevated rates of depression during pre-menstrual, post-partum, and perimenopausal periods in a woman's life. As one better understands how to address the challenges of PET studies involving highly vulnerable populations, such as women who have recently given birth, one will gain the insight necessary to design and individualize treatment and therapy. Understanding the precise time-line in younger women when dramatic fluctuations in the hormonal milieu may contribute to brain changes may present a powerful opportunity to intervene before a vulnerable state develops into a diseased state in later life.
Collapse
Affiliation(s)
- Rachel G Zsido
- a Emotion NeuroimaGinG(EGG)-Lab , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany.,b Department of Neurology , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany
| | - Arno Villringer
- b Department of Neurology , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany.,c Clinic for Cognitive Neurology , University of Leipzig , Leipzig , Germany
| | - Julia Sacher
- a Emotion NeuroimaGinG(EGG)-Lab , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany.,b Department of Neurology , Max Planck Institute for Cognitive and Brain Sciences , Leipzig , Germany.,c Clinic for Cognitive Neurology , University of Leipzig , Leipzig , Germany
| |
Collapse
|
40
|
Neural substrates of trait impulsivity, anhedonia, and irritability: Mechanisms of heterotypic comorbidity between externalizing disorders and unipolar depression. Dev Psychopathol 2017; 28:1177-1208. [PMID: 27739396 DOI: 10.1017/s0954579416000754] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Trait impulsivity, which is often defined as a strong preference for immediate over delayed rewards and results in behaviors that are socially inappropriate, maladaptive, and short-sighted, is a predisposing vulnerability to all externalizing spectrum disorders. In contrast, anhedonia is characterized by chronically low motivation and reduced capacity to experience pleasure, and is common to depressive disorders. Although externalizing and depressive disorders have virtually nonoverlapping diagnostic criteria in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders, heterotypic comorbidity between them is common. Here, we review common neural substrates of trait impulsivity, anhedonia, and irritability, which include both low tonic mesolimbic dopamine activity and low phasic mesolimbic dopamine responding to incentives during reward anticipation and associative learning. We also consider how other neural networks, including bottom-up emotion generation systems and top-down emotion regulation systems, interact with mesolimbic dysfunction to result in alternative manifestations of psychiatric illness. Finally, we present a model that emphasizes a translational, transdiagnostic approach to understanding externalizing/depression comorbidity. This model should refine ways in which internalizing and externalizing disorders are studied, classified, and treated.
Collapse
|
41
|
Neural response to catecholamine depletion in remitted bulimia nervosa: Relation to depression and relapse. Eur Neuropsychopharmacol 2017; 27:633-646. [PMID: 28502528 DOI: 10.1016/j.euroneuro.2017.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/05/2023]
Abstract
Bulimia nervosa has been associated with a dysregulated catecholamine system. Nevertheless, the influence of this dysregulation on bulimic symptoms, on neural activity, and on the course of the illness is not clear yet. An instructive paradigm for directly investigating the relationship between catecholaminergic functioning and bulimia nervosa has involved the behavioral and neural responses to experimental catecholamine depletion. The purpose of this study was to examine the neural substrate of catecholaminergic dysfunction in bulimia nervosa and its relationship to relapse. In a randomized, double-blind and crossover study design, catecholamine depletion was achieved by using the oral administration of alpha-methyl-paratyrosine (AMPT) over 24 h in 18 remitted bulimic (rBN) and 22 healthy (HC) female participants. Cerebral blood flow (CBF) was measured using a pseudo continuous arterial spin labeling (pCASL) sequence. In a follow-up telephone interview, bulimic relapse was assessed. Following AMPT, rBN participants revealed an increased vigor reduction and CBF decreases in the pallidum and posterior midcingulate cortex (pMCC) relative to HC participants showing no CBF changes in these regions. These results indicated that the pallidum and the pMCC are the functional neural correlates of the dysregulated catecholamine system in bulimia nervosa. Bulimic relapse was associated with increased depressive symptoms and CBF reduction in the hippocampus/parahippocampal gyrus following catecholamine depletion. AMPT-induced increased CBF in this region predicted staying in remission. These findings demonstrated the importance of depressive symptoms and the stress system in the course of bulimia nervosa.
Collapse
|
42
|
Kong XM, Xu SX, Sun Y, Wang KY, Wang C, Zhang J, Xia JX, Zhang L, Tan BJ, Xie XH. Electroconvulsive therapy changes the regional resting state function measured by regional homogeneity (ReHo) and amplitude of low frequency fluctuations (ALFF) in elderly major depressive disorder patients: An exploratory study. Psychiatry Res Neuroimaging 2017; 264:13-21. [PMID: 28412557 DOI: 10.1016/j.pscychresns.2017.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
Electroconvulsive therapy (ECT) is the most effective and rapid treatment for severe major depressive disorder (MDD) in elderly patients. The mechanism of ECT is unclear, and studies on ECT in elderly MDD patients by resting-state functional magnetic resonance imaging are rare. Thirteen elderly MDD patients were scanned before and after ECT using a 3.0T MRI scanner. Regional homogeneity (ReHo) and amplitude of low-frequency fluctuations (ALFF) were processed to compare resting-state function before and after treatment. Depression and anxiety symptoms of all patients abated after ECT. Decreased ReHo values in the bilateral superior frontal gyrus (SFG) were observed after ECT, and the values of right SFG significantly correlated with an altered Hamilton depression rating scale score. Increased ALFF values in the left middle frontal gyrus, right middle frontal gyrus, orbital part, and decreased ALFF values in the left midcingulate area, left precentral gyrus, right SFG/middle frontal gyrus after ECT were also observed. These results support the hypothesis that ECT may affect the regional resting state brain function in geriatric MDD patients.
Collapse
Affiliation(s)
- Xiao-Ming Kong
- Department of psychiatry, Anhui Mental Health Center, Hefei, China
| | - Shu-Xian Xu
- Department of psychiatry, Huizhou 2nd Municipal Hospital, Huizhou, China; Department of psychiatry, Anhui Medical University, Hefei, China
| | - Yan Sun
- Department of endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke-Yong Wang
- Department of psychiatry, Anhui Mental Health Center, Hefei, China.
| | - Chen Wang
- Department of psychiatry, Anhui Mental Health Center, Hefei, China; Department of psychiatry, Anhui Medical University, Hefei, China
| | - Ji Zhang
- Department of magnetic resonance imaging, Hefei 2nd Municipal Hospital, Hefei, China
| | - Jin-Xiang Xia
- Department of magnetic resonance imaging, Hefei 2nd Municipal Hospital, Hefei, China
| | - Li Zhang
- Department of psychiatry, Anhui Mental Health Center, Hefei, China
| | - Bo-Jian Tan
- Department of psychiatry, Huizhou 2nd Municipal Hospital, Huizhou, China
| | - Xin-Hui Xie
- Department of psychiatry, Anhui Mental Health Center, Hefei, China; Department of psychiatry, Huizhou 2nd Municipal Hospital, Huizhou, China; Department of psychiatry, Anhui Medical University, Hefei, China.
| |
Collapse
|
43
|
Settell ML, Testini P, Cho S, Lee JH, Blaha CD, Jo HJ, Lee KH, Min HK. Functional Circuitry Effect of Ventral Tegmental Area Deep Brain Stimulation: Imaging and Neurochemical Evidence of Mesocortical and Mesolimbic Pathway Modulation. Front Neurosci 2017; 11:104. [PMID: 28316564 PMCID: PMC5334355 DOI: 10.3389/fnins.2017.00104] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background: The ventral tegmental area (VTA), containing mesolimbic and mesocortical dopaminergic neurons, is implicated in processes involving reward, addiction, reinforcement, and learning, which are associated with a variety of neuropsychiatric disorders. Electrical stimulation of the VTA or the medial forebrain bundle and its projection target the nucleus accumbens (NAc) is reported to improve depressive symptoms in patients affected by severe, treatment-resistant major depressive disorder (MDD) and depressive-like symptoms in animal models of depression. Here we sought to determine the neuromodulatory effects of VTA deep brain stimulation (DBS) in a normal large animal model (swine) by combining neurochemical measurements with functional magnetic resonance imaging (fMRI). Methods: Animals (n = 8 swine) were implanted with a unilateral DBS electrode targeting the VTA. During stimulation (130 Hz frequency, 0.25 ms pulse width, and 3 V amplitude), fMRI was performed. Following fMRI, fast-scan cyclic voltammetry in combination with carbon fiber microelectrodes was performed to quantify VTA-DBS-evoked dopamine release in the ipsilateral NAc. In a subset of swine, the blood oxygen level-dependent (BOLD) percent change evoked by stimulation was performed at increasing voltages (1, 2, and 3 V). Results: A significant increase in VTA-DBS-evoked BOLD signal was found in the following regions: the ipsilateral dorsolateral prefrontal cortex, anterior and posterior cingulate, insula, premotor cortex, primary somatosensory cortex, and striatum. A decrease in the BOLD signal was also observed in the contralateral parahippocampal cortex, dorsolateral and anterior prefrontal cortex, insula, inferior temporal gyrus, and primary somatosensory cortex (Bonferroni-corrected < 0.001). During neurochemical measurements, stimulation time-locked changes in dopamine release were recorded in the NAc, confirming that mesolimbic dopaminergic neurons were stimulated by DBS. In the parametric study, BOLD signal changes were positively correlated with stimulation amplitude. Conclusions: In this study, the modulation of the neural circuitry associated with VTA-DBS was characterized in a large animal. Our findings suggest that VTA-DBS could affect the activity of neural systems and brain regions implicated in reward, mood regulation, and in the pathophysiology of MDD. In addition, we showed that a combination of fMRI and electrochemically-based neurochemical detection platform is an effective investigative tool for elucidating the circuitry involved in VTA-DBS.
Collapse
Affiliation(s)
- Megan L. Settell
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
- Mayo Graduate School, Mayo ClinicRochester, MN, USA
| | - Paola Testini
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
- Department of Surgery, Mayo ClinicRochester, MN, USA
| | - Shinho Cho
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
| | - Jannifer H. Lee
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
| | | | - Hang J. Jo
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo ClinicRochester, MN, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo ClinicRochester, MN, USA
- Department of Radiology, Mayo ClinicRochester, MN, USA
| |
Collapse
|
44
|
Abstract
This review poses the question: Does disruption to cognitive brain networks in epilepsy contribute to the problem of comorbid depression? Initial evidence suggests that the network disease that gives rise to seizures has a predilection for the same cognition-related networks that regulate mood, with comorbidity reflective of more extensive disease. Framing both epilepsy and its psychiatric comorbidities in terms of dysfunction in overlapping (cognitive) networks raises the possibility that depression can be a primary feature of the disease in some cases and facilitates an epilepsy classification system where behavioral features of the disorder are embedded in a neurobiological mechanism.
Collapse
|
45
|
Felger JC, Treadway MT. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacology 2017; 42:216-241. [PMID: 27480574 PMCID: PMC5143486 DOI: 10.1038/npp.2016.143] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 01/18/2023]
Abstract
Motivational and motor deficits are common in patients with depression and other psychiatric disorders, and are related to symptoms of anhedonia and motor retardation. These deficits in motivation and motor function are associated with alterations in corticostriatal neurocircuitry, which may reflect abnormalities in mesolimbic and mesostriatal dopamine (DA). One pathophysiologic pathway that may drive changes in DAergic corticostriatal circuitry is inflammation. Biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of psychiatric patients. A variety of inflammatory stimuli have been found to preferentially target basal ganglia function to lead to impaired motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal neural responses to reward anticipation, decreased DA and DA metabolites in cerebrospinal fluid, and decreased availability, and release of striatal DA, all of which correlated with symptoms of reduced motivation and/or motor retardation. Importantly, inflammation-associated symptoms are often difficult to treat, and evidence suggests that inflammation may decrease DA synthesis and availability, thus circumventing the efficacy of standard pharmacotherapies. This review will highlight the impact of administration of inflammatory stimuli on the brain in relation to motivation and motor function. Recent data demonstrating similar relationships between increased inflammation and altered DAergic corticostriatal circuitry and behavior in patients with major depressive disorder will also be presented. Finally, we will discuss the mechanisms by which inflammation affects DA neurotransmission and relevance to novel therapeutic strategies to treat reduced motivation and motor symptoms in patients with high inflammation.
Collapse
Affiliation(s)
- Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Michael T Treadway
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
46
|
Oakes P, Loukas M, Oskouian RJ, Tubbs RS. The neuroanatomy of depression: A review. Clin Anat 2016; 30:44-49. [PMID: 27576673 DOI: 10.1002/ca.22781] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 11/06/2022]
Abstract
Depression is the most common psychiatric disorder, the number one cause of disability and affects up to 15% of the population. The aim of this review is to present a brief synopsis of the various biochemical imbalances thought to contribute to depression, aspects of anatomy possibly implicated in depression, and treatments related to targeting these specific locales. Multiple neurotransmitters and parts of the brain are involved with the disorder of depression. Although an exact etiology for depression has not been found in most cases, various treatments, medicinal, psychiatric and surgical, exist for this disabling disease. An improved knowledge of anatomical sites involved in patients with depression will help in future treatment modalities. Clin. Anat. 30:44-49, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
|
47
|
Isolating biomarkers for symptomatic states: considering symptom-substrate chronometry. Mol Psychiatry 2016; 21:1180-7. [PMID: 27240533 PMCID: PMC5114713 DOI: 10.1038/mp.2016.83] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
A long-standing goal of psychopathology research is to develop objective markers of symptomatic states, yet progress has been far slower than expected. Although prior reviews have attributed this state of affairs to diagnostic heterogeneity, symptom comorbidity and phenotypic complexity, little attention has been paid to the implications of intra-individual symptom dynamics and inter-relatedness for biomarker study designs. In this critical review, we consider the impact of short-term symptom fluctuations on widely used study designs that regress the 'average level' of a given symptom against biological data collected at a single time point, and summarize findings from ambulatory assessment studies suggesting that such designs may be sub-optimal to detect symptom-substrate relationships. Although such designs have a crucial role in advancing our understanding of biological substrates related to more stable, longer-term changes (for example, gray matter thinning during a depressive episode), they may be less optimal for the detection of symptoms that exhibit high frequency fluctuations, are susceptible to common reporting biases, or may be heavily influenced by the presence of other symptoms. We propose that a greater emphasis on intra-individual symptom chronometry may be useful for identifying subgroups of patients with common, proximal pathological indicators. Taken together, these three recent developments in the areas of symptom conceptualization and measurement raise important considerations for future studies attempting to identify reliable biomarkers in psychiatry.
Collapse
|
48
|
Argyelan M, Lencz T, Kaliora S, Sarpal DK, Weissman N, Kingsley PB, Malhotra AK, Petrides G. Subgenual cingulate cortical activity predicts the efficacy of electroconvulsive therapy. Transl Psychiatry 2016; 6:e789. [PMID: 27115120 PMCID: PMC4872412 DOI: 10.1038/tp.2016.54] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/25/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022] Open
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment for depression, yet its mechanism of action is unknown. Our goal was to investigate the neurobiological underpinnings of ECT response using longitudinally collected resting-state functional magnetic resonance imaging (rs-fMRI) in 16 patients with treatment-resistant depression and 10 healthy controls. Patients received bifrontal ECT 3 times a week under general anesthesia. We acquired rs-fMRI at three time points: at baseline, after the 1st ECT administration and after the course of the ECT treatment; depression was assessed with the Hamilton Depression Rating Scale (HAM-D). The primary measure derived from rs-fMRI was fractional amplitude of low frequency fluctuation (fALFF), which provides an unbiased voxel-wise estimation of brain activity. We also conducted seed-based functional connectivity analysis based on our primary findings. We compared treatment-related changes in HAM-D scores with pre- and post-treatment fALFF and connectivity measures. Subcallosal cingulate cortex (SCC) demonstrated higher BOLD signal fluctuations (fALFF) at baseline in depressed patients, and SCC fALFF decreased over the course of treatment. The baseline level of fALFF of SCC predicted response to ECT. In addition, connectivity of SCC with bilateral hippocampus, bilateral temporal pole, and ventromedial prefrontal cortex was significantly reduced over the course of treatment. These results suggest that the antidepressant effect of ECT may be mediated by downregulation of SCC activity and connectivity. SCC function may serve as an important biomarker of target engagement in the development of novel therapies for depression that is resistant to treatment with standard medications.
Collapse
Affiliation(s)
- M Argyelan
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, 75-59 263rd Street, Glen Oaks, NY 11004, USA. E-mail:
| | - T Lencz
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - S Kaliora
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - D K Sarpal
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - N Weissman
- Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - P B Kingsley
- Department of Radiology, North Shore University Hospital, Northwell Health, Manhasset, NY, USA
| | - A K Malhotra
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - G Petrides
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| |
Collapse
|
49
|
Metoki N, Sugawara N, Hagii J, Saito S, Shiroto H, Tomita T, Yasujima M, Okumura K, Yasui-Furukori N. Relationship between the lesion location of acute ischemic stroke and early depressive symptoms in Japanese patients. Ann Gen Psychiatry 2016; 15:12. [PMID: 27042194 PMCID: PMC4818403 DOI: 10.1186/s12991-016-0099-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Approximately one-third of stroke survivors suffer from post-stroke depression (PSD) in the acute or chronic stages. The presence of PSD in the acute stage after stroke is reportedly associated with poor patient prognosis; therefore, early recognition and treatment of PSD may alleviate these consequences. The aim of the current study was to examine the relationship between the lesion location and the presence of early depressive symptoms after acute ischemic stroke in Japanese patients. METHODS Our study included 421 patients who suffered from acute ischemic stroke. On the day of admission, the lesion location was determined using magnetic resonance imaging (MRI). Stroke severity was measured on the seventh day of hospitalization withat the National Institutes of Health Stroke Scale (NIHSS). On the tenth day of hospitalization, depressive symptoms were measured and functional assessments were performed with the Japan Stroke Scale (Depression Scale) (JSS-D) and functional independence measure (FIM), respectively. RESULTS A total of 71 subjects (16.9 %) were diagnosed with depression. According to the multiple logistic regression analysis, the infarcts located at frontal and temporal lobes were found to be a significant independent risk factor of early depressive symptoms in the acute stage of stroke. CONCLUSIONS Patients suffering from acute ischemic stroke, particularly in the frontal and temporal lobes, should be carefully assessed to detect and treat early depressive symptoms; such treatment may improve patient outcomes.
Collapse
Affiliation(s)
- Norifumi Metoki
- />Hirosaki Stroke and Rehabilitation Center, Hirosaki, Japan
| | - Norio Sugawara
- />Department of Neuropsychiatry, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562 Aomori Japan
| | - Joji Hagii
- />Hirosaki Stroke and Rehabilitation Center, Hirosaki, Japan
| | - Shin Saito
- />Hirosaki Stroke and Rehabilitation Center, Hirosaki, Japan
| | - Hiroshi Shiroto
- />Hirosaki Stroke and Rehabilitation Center, Hirosaki, Japan
| | - Tetsu Tomita
- />Department of Neuropsychiatry, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562 Aomori Japan
| | - Minoru Yasujima
- />Hirosaki Stroke and Rehabilitation Center, Hirosaki, Japan
| | - Ken Okumura
- />Department of Cardiology, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Norio Yasui-Furukori
- />Department of Neuropsychiatry, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562 Aomori Japan
| |
Collapse
|
50
|
Carneiro LSF, Fonseca AM, Serrão P, Mota MP, Vasconcelos-Raposo J, Vieira-Coelho MA. Impact of physical exercise on catechol-O-methyltransferase activity in depressive patients: A preliminary communication. J Affect Disord 2016; 193:117-22. [PMID: 26773917 DOI: 10.1016/j.jad.2015.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/04/2015] [Accepted: 12/27/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Catechol-O-methyltransferase (COMT) is a catabolic enzyme involved in the degradation of bioactive molecules including the neurotransmitters epinephrine, norepinephrine, and dopamine. Higher COMT activity in depressive patients in comparison to non-depressed individuals has been reported. The effect of aerobic exercise on depressive patients has been studied and a number of researchers and clinicians believe it to be effective in the treatment of depression and to be involved in several molecular underlying mechanisms. However, the effect of physical exercise on this enzyme activity is unknown, and it remains to be elucidated if chronic exercise changes COMT activity. This randomized control trial evaluates the effects of chronic exercise on peripheral COMT (S-COMT) activity in women with depressive disorder. METHODS Fourteen women (aged: 51.4±10.5 years) diagnosed with depression (according to International Classification of Diseases-10) were randomized to one of two groups: pharmacotherapy plus physical exercise (n=7) or only pharmacotherapy (n=7). The aerobic exercise program was supervised, lasting between 45-50min/session, three times/week for 16 weeks. Erythrocyte soluble COMT were assessed prior to and after the exercise program. RESULTS Exercise group when compared to a control group presented a significant decrease (p=0.02, r=-0.535) in S-COMT activity between baseline and post-intervention. LIMITATIONS These data are preliminary outcomes from a small sample and should be replicated. CONCLUSIONS Chronic exercise therapy combined with pharmacotherapy leads to significant decrease in S-COMT activity. Our results provide evidence that exercise interferes with S-COMT activity, a molecular mechanism involved in depression.
Collapse
Affiliation(s)
- Lara S F Carneiro
- Centre of Research, Sports Sciences, Health and Human Development, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| | - António Manuel Fonseca
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Porto, University of Porto, Porto, Portugal
| | - Paula Serrão
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria Paula Mota
- Centre of Research, Sports Sciences, Health and Human Development, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - José Vasconcelos-Raposo
- Department of Education and Psychology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Maria Augusta Vieira-Coelho
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal; Psychiatry and Mental Health Clinic, Centro Hospitalar São João, Porto, Portugal
| |
Collapse
|