1
|
Ostios-Garcia L, Pérez DM, Castelo B, Herradón NH, Zamora P, Feliu J, Espinosa E. Classification of anticancer drugs: an update with FDA- and EMA-approved drugs. Cancer Metastasis Rev 2024; 43:1561-1571. [PMID: 38965194 PMCID: PMC11554936 DOI: 10.1007/s10555-024-10188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/03/2024] [Indexed: 07/06/2024]
Abstract
Anticancer systemic therapy comprises a complex and growing group of drugs. Some of the new agents with novel mechanisms of action that have appeared are difficult to fit in the groups of classical chemotherapy, hormones, tyrosine-kinase inhibitors, and monoclonal antibodies. We propose a classification based on two levels of information: the site of action and the mechanism of action. Regarding the former, drugs can exert their action in the tumor cell, the tumor vasculature, the immune system, or the endocrine system. The mechanism of action refers to the molecular target.
Collapse
Affiliation(s)
| | | | - Beatriz Castelo
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain
| | | | - Pilar Zamora
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain
| | - Jaime Feliu
- Universidad Autónoma de Madrid, School of Medicine - Department of Medical Oncology, Hospital Universitario La Paz, Madrid - CIBERONC, Madrid, Spain
| | - Enrique Espinosa
- Universidad Autónoma de Madrid, School of Medicine - Department of Medical Oncology, Hospital Universitario La Paz, Madrid - CIBERONC, Madrid, Spain.
| |
Collapse
|
2
|
Siddiq MM, Johnson NP, Zorina Y, Yadaw AS, Toro CA, Hansen J, Rabinovich V, Gregorich SM, Xiong Y, Tolentino RE, Hannila SS, Kaplan E, Blitzer RD, Filbin MT, Cardozo CP, Passaglia CL, Iyengar R. A spatially specified systems pharmacology therapy for axonal recovery after injury. Front Pharmacol 2023; 14:1225759. [PMID: 37799971 PMCID: PMC10547904 DOI: 10.3389/fphar.2023.1225759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
There are no known drugs or drug combinations that promote substantial central nervous system axonal regeneration after injury. We used systems pharmacology approaches to model pathways underlying axonal growth and identify a four-drug combination that regulates multiple subcellular processes in the cell body and axons using the optic nerve crush model in rats. We intravitreally injected agonists HU-210 (cannabinoid receptor-1) and IL-6 (interleukin 6 receptor) to stimulate retinal ganglion cells for axonal growth. We applied, in gel foam at the site of nerve injury, Taxol to stabilize growing microtubules, and activated protein C to clear the debris field since computational models predicted that this drug combination regulating two subcellular processes at the growth cone produces synergistic growth. Physiologically, drug treatment restored or preserved pattern electroretinograms and some of the animals had detectable visual evoked potentials in the brain and behavioral optokinetic responses. Morphology experiments show that the four-drug combination protects axons or promotes axonal regrowth to the optic chiasm and beyond. We conclude that spatially targeted drug treatment is therapeutically relevant and can restore limited functional recovery.
Collapse
Affiliation(s)
- Mustafa M. Siddiq
- Department of Pharmacological Sciences, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicholas P. Johnson
- Department of Pharmacological Sciences, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Departments of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, New York, NY, United States
| | - Yana Zorina
- Department of Pharmacological Sciences, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Arjun Singh Yadaw
- Department of Pharmacological Sciences, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carlos A. Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, New York, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jens Hansen
- Department of Pharmacological Sciences, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vera Rabinovich
- Department of Pharmacological Sciences, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sarah M. Gregorich
- Departments of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
| | - Yuguang Xiong
- Department of Pharmacological Sciences, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rosa E. Tolentino
- Department of Pharmacological Sciences, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sari S. Hannila
- Department of Human Anatomy and Cell Science, Basic Medical Sciences Building, Winnipeg, NM, United States
| | - Ehud Kaplan
- Department of Pharmacological Sciences, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Philosophy of Science, Prague and the National Institute of Mental Health, Charles University, Prague, CZ, United States
| | - Robert D. Blitzer
- Department of Pharmacological Sciences, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marie T. Filbin
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, United States
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, New York, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christopher L. Passaglia
- Departments of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
PGC-1α participates in tumor chemoresistance by regulating glucose metabolism and mitochondrial function. Mol Cell Biochem 2023; 478:47-57. [PMID: 35713741 DOI: 10.1007/s11010-022-04477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/10/2022] [Indexed: 01/22/2023]
Abstract
Chemotherapy resistance is the main reason for the failure of cancer treatment. The mechanism of drug resistance is complex and diverse. In recent years, the role of glucose metabolism and mitochondrial function in cancer resistance has gathered considerable interest. The increase in metabolic plasticity of cancer cells' mitochondria and adaptive changes to the mitochondrial function are some of the mechanisms through which cancer cells resist chemotherapy. As a key molecule regulating the mitochondrial function and glucose metabolism, PGC-1α plays an indispensable role in cancer progression. However, the role of PGC-1α in chemotherapy resistance remains controversial. Here, we discuss the role of PGC-1α in glucose metabolism and mitochondrial function and present a comprehensive overview of PGC-1α in chemotherapy resistance.
Collapse
|
4
|
Pagani M, Bavbek S, Alvarez‐Cuesta E, Berna Dursun A, Bonadonna P, Castells M, Cernadas J, Chiriac A, Sahar H, Madrigal‐Burgaleta R, Sanchez Sanchez S. Hypersensitivity reactions to chemotherapy: an EAACI Position Paper. Allergy 2022; 77:388-403. [PMID: 34587281 DOI: 10.1111/all.15113] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/30/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
Chemotherapeutic drugs have been widely used in the treatment of cancer disease for about 70 years. The development of new treatments has not hindered their use, and oncologists still prescribe them routinely, alone or in combination with other antineoplastic agents. However, all chemotherapeutic agents can induce hypersensitivity reactions (HSRs), with different incidences depending on the culprit drug. These reactions are the third leading cause of fatal drug-induced anaphylaxis in the United States. In Europe, deaths related to chemotherapy have also been reported. In particular, most reactions are caused by platinum compounds, taxanes, epipodophyllotoxins and asparaginase. Despite their prevalence and relevance, the ideal pathways for diagnosis, treatment and prevention of these reactions are still unclear, and practice remains considerably heterogeneous with vast differences from center to center. Thus, the European Network on Drug Allergy and Drug Allergy Interest Group of the European Academy of Allergy and Clinical Immunology organized a task force to provide data and recommendations regarding the allergological work-up in this field of drug hypersensitivity reactions. This position paper aims to provide consensus on the investigation of HSRs to chemotherapeutic drugs and give practical recommendations for clinicians that treat these patients, such as oncologists, allergologists and internists. Key sections cover risk factors, pathogenesis, symptoms, the role of skin tests, in vitro tests, indications and contraindications of drug provocation tests and desensitization of neoplastic patients with allergic reactions to chemotherapeutic drugs. Statements, recommendations and unmet needs were discussed and proposed at the end of each section.
Collapse
Affiliation(s)
- Mauro Pagani
- Department of Medicine Medicine Ward C. Poma Mantova HospitalASST Mantova Mantova Italy
| | - Sevim Bavbek
- Division of Immunology and Allergy Department of Chest Diseases Ankara University School of Medicine Ankara Turkey
| | | | - Adile Berna Dursun
- Department of Immunology and Allergic Diseases Recep Tayyip Erdoğan University Rize Turkey
| | | | - Mariana Castells
- Division of Rheumatology, Immunology and Allergy Department of Medicine Brigham and Women's HospitalHarvard Medical School Boston Massachusetts USA
| | - Josefina Cernadas
- Department of Allergy and Clinical Immunology Medical University, H. S. Joao Porto Portugal
| | - Anca Chiriac
- Division of Allergy Department of Pulmonology Hôpital Arnaud de VilleneuveUniversity Hospital of Montpellier Montpellier France
| | - Hamadi Sahar
- The Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts USA
| | - Ricardo Madrigal‐Burgaleta
- Allergy & Severe Asthma Service St Bartholomew's Hospital'sBarts Health NHS Trust London UK
- Drug Desensitisation Centre Catalan Institute of Oncology (ICO) Bellvitge University Hospital Barcelona Spain
| | - Soledad Sanchez Sanchez
- Division of Allergy & Clinical Immunology Department of Medicine University Hospital Complex of A Coruna A Coruna Spain
| |
Collapse
|
5
|
Increased Chlormethine-Induced DNA Double-Stranded Breaks in Malignant T Cells from Mycosis Fungoides Skin Lesions. JID INNOVATIONS 2022; 2:100069. [PMID: 34977846 PMCID: PMC8683611 DOI: 10.1016/j.xjidi.2021.100069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mycosis fungoides (MF) is a type of cutaneous T-cell lymphoma. Chlormethine (CL) is recommended as first-line therapy for MF, with a major purpose to kill tumor cells through DNA alkylation. To study the extent of treatment susceptibility and tumor specificity, we investigated the gene expression of different DNA repair pathways, DNA double-stranded breaks, and tumor cell proliferation of clonal TCR Vβ+ tumor cell populations in cutaneous T-cell lymphoma skin cells on direct exposure to CL. Healthy human T cells were less susceptible to CL exposure than two T-lymphoma cell lines, resulting in higher proportions of viable cells. Interestingly, in T cells from MF lesions, we observed a downregulation of several important DNA repair pathways, even complete silencing of RAD51AP1, FANC1, and BRCA2 involved in homologous recombination repair. In the presence of CL, the double-stranded DNA breaks in malignant MF skin T cells increased significantly as well as the expression of the apoptotic gene CASP3. These data point toward an important effect of targeting CL on MF skin tumor T cells, which support CL use as an early cutaneous lymphoma treatment and can be of synergistic use, especially beneficial in the setting of combination skin-directed therapies for cutaneous T-cell lymphoma.
Collapse
|
6
|
Abstract
Historically, metastatic breast cancer (MBC) was primarily treated with surgery and chemotherapy. To that end, a wide array of chemotherapy agents are currently available for the treatment of MBC. To date, there has been considerable progress in the understanding of the molecular underpinnings of breast cancer, which has led to the development of targeted agents. Despite this, eventually all patients with metastatic disease will receive single-agent or combination chemotherapy either to control spread or as a palliative measure. Currently, combinations of targeted agents and chemotherapy are under investigation, thereby indicating that chemotherapeutic agents will continue to be the backbone of future breast cancer therapy. However, there remains an unmet need to optimize the sequencing of chemotherapy agents based on individual patient characteristics and gene expression profiles in order to reduce toxicities and improve outcomes for patients.
Collapse
Affiliation(s)
| | - Kelley Mayden
- Ballad Health Cancer Care-Bristol, Bristol, Tennessee
| |
Collapse
|
7
|
Chen H, Zhou Y, Han X, Shi Y. The changing landscape of anti-lymphoma drug clinical trials in mainland China in the past 15 years (2005-2020): A systematic review. LANCET REGIONAL HEALTH-WESTERN PACIFIC 2021; 8:100097. [PMID: 34327425 PMCID: PMC8315394 DOI: 10.1016/j.lanwpc.2021.100097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022]
Abstract
Background To depict a comprehensive changing landscape of anti-lymphoma drug clinical trials in mainland China from 2005 to 2020. Methods A systematic review was conducted on the China National Medical Products Administration Center for Drug Evaluation platform, the Chinese Clinical Trial Registry and ClinicalTrials.gov websites. Findings A total of 797 anti-lymphoma drug clinical trials registered from Jan 1st, 2005 to Aug 1st, 2020 were identified. The number of trials increased gradually over time, and a notable increase was observed in 2016, with the number growing from 29 in 2015 to 72 in 2016. Trials in phase I (26•1%) and phase II (26•6%) represented the majority, followed by phase III (12•5%) and phase IV (7•4%). Regarding sponsorship, industry-sponsored trials (53•2%) accounted for a slightly larger proportion than investigator-initiated trials (IITs) (46•8%). A dramatic growth for IITs was seen during 2017-2020, with the number increasing from 36 in 2017 to 96 in 2020. Additionally, the proportion of trials involving targeted agents (50•2%) accounted for the largest, followed by trials involving immunotherapy agents (41•0%), and cytotoxic agents (8•0%). Besides, a sustainable growth was observed in the number of leading anti-lymphoma drug clinical trial units in mainland China over the past 15 years. The majority of leading principal units (60•8%) were from Beijing, Shanghai, Guangdong and Jiangsu. Interpretation In the past 15 years, the research and development of drugs and clinical trials for lymphoma in mainland China has achieved much progression. Future efforts are needed for improving innovation and sustainability of pharmaceutical research and development. Funding China National Major Project for New Drug Innovation (2017ZX09304015); Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-1-001).
Collapse
Affiliation(s)
- Haizhu Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Yu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College. No.41 Damucang Hutong, Xicheng District, Beijing 100032, China
- Corresponding authors.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
- Corresponding authors.
| |
Collapse
|
8
|
Zhai X, El Hiani Y. Getting Lost in the Cell-Lysosomal Entrapment of Chemotherapeutics. Cancers (Basel) 2020; 12:E3669. [PMID: 33297435 PMCID: PMC7762281 DOI: 10.3390/cancers12123669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Despite extensive research, resistance to chemotherapy still poses a major obstacle in clinical oncology. An exciting strategy to circumvent chemoresistance involves the identification and subsequent disruption of cellular processes that are aberrantly altered in oncogenic states. Upon chemotherapeutic challenges, lysosomes are deemed to be essential mediators that enable cellular adaptation to stress conditions. Therefore, lysosomes potentially hold the key to disarming the fundamental mechanisms of chemoresistance. This review explores modes of action of classical chemotherapeutic agents, adaptive response of the lysosomes to cell stress, and presents physiological and pharmacological insights pertaining to drug compartmentalization, sequestration, and extracellular clearance through the lens of lysosomes.
Collapse
Affiliation(s)
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
9
|
Yan VC, Butterfield HE, Poral AH, Yan MJ, Yang KL, Pham CD, Muller FL. Why Great Mitotic Inhibitors Make Poor Cancer Drugs. Trends Cancer 2020; 6:924-941. [PMID: 32536592 PMCID: PMC7606322 DOI: 10.1016/j.trecan.2020.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Chemotherapy is central to oncology, perceived to operate only on prolific cancerous tissue. Yet, many non-neoplastic tissues are more prolific compared with typical tumors. Chemotherapies achieve sufficient therapeutic windows to exert antineoplastic activity because they are prodrugs that are bioactivated in cancer-specific environments. The advent of precision medicine has obscured this concept, favoring the development of high-potency kinase inhibitors. Inhibitors of essential mitotic kinases exemplify this paradigm shift, but intolerable on-target toxicities in more prolific normal tissues have led to repeated failures in the clinic. Proliferation rates alone cannot be used to achieve cancer specificity. Here, we discuss integrating the cancer specificity of prodrugs from classical chemotherapeutics and the potency of mitotic kinase inhibitors to generate a class of high-precision cancer therapeutics.
Collapse
Affiliation(s)
- Victoria C Yan
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | | | - Anton H Poral
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Matthew J Yan
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Kristine L Yang
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Cong-Dat Pham
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Florian L Muller
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
10
|
Liu K, Song J, Yan Y, Zou K, Che Y, Wang B, Li Z, Yu W, Guo W, Zou L, Deng W, Sun X. Melatonin increases the chemosensitivity of diffuse large B-cell lymphoma cells to epirubicin by inhibiting P-glycoprotein expression via the NF-κB pathway. Transl Oncol 2020; 14:100876. [PMID: 33007707 PMCID: PMC7527585 DOI: 10.1016/j.tranon.2020.100876] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background Epirubicin is a first-line chemotherapeutic drug for the clinical treatment of diffuse large B cell lymphoma (DLBCL), but the overexpression of multidrug resistance (MDR) transporter proteins, especially P-glycoprotein (P-gp), renders epirubicin ineffective. Some studies reveal the potential role of melatonin in chemotherapeutic synergy and MDR. Methods The cell viability and apoptosis were determined by CCK-8 assay and acridine orange/ethidium bromide (AO/EB) fluorescence staining assay. Immunofluorescence and immunohistochemical staining were used to detect the expression of P-gp in DLBCL cells and tissues. Rhodamine-123 accumulation assay was used to evaluate the pump function of P-gp. The possible mechanisms of melatonin sensitize DLBCL cells to epirubicin were explored by western blotting, cytochrome C release, and pulldown assay. Results Melatonin significantly enhanced the epirubicin-induced cell proliferation suppression, epirubicin-induced apoptosis, and reduced the IC50 value of epirubicin. Further, melatonin synergized with epirubicin to promote the activation of the mitochondria-mediated apoptosis pathway and increased the accumulation of epirubicin in DLBCL cells by inhibiting the expression and function of P-gp. Immunohistochemical staining studies revealed that P-gp expression was positively correlated with P65 expression. Epirubicin was subsequently discovered to upregulate the expression of P-gp by activating the NF-κB pathway in the DLBCL cells. Melatonin reduced the amount of P65 protein in the nucleus and abrogated the ability of P65 to bind to the ABCB1 promoter, decisively suppressing P-gp expression. Conclusions Our results demonstrated that melatonin inactivates the NF-κB pathway and downregulates the expression of P-gp, ultimately sensitizing DLBCL cells to the epirubicin that suppresses their growth.
Collapse
Affiliation(s)
- Kaili Liu
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Jincheng Song
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Yue Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Kun Zou
- The First Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Yuxuan Che
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Beichen Wang
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Zongjuan Li
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Wendan Yu
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China.
| | - Wei Guo
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China.
| | - Lijuan Zou
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Xiuhua Sun
- The Second Affiliated Hospital & Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China.
| |
Collapse
|
11
|
Liu H, Wang S, Zhou S, Meng Q, Ma X, Song X, Wang L, Jiang W. Drug Resistance-Related Competing Interactions of lncRNA and mRNA across 19 Cancer Types. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:442-451. [PMID: 31048183 PMCID: PMC6488743 DOI: 10.1016/j.omtn.2019.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 12/13/2022]
Abstract
Drug resistance is a common cause of treatment failure in cancer therapy, and molecular mechanisms need further exploration. Competing endogenous RNAs (ceRNAs) can influence drug response by participating in various biological processes, including regulation of cell cycle, signal transduction, and so on. In this study, we systematically explored resistance from the perspective of ceRNA modules. First, we constructed a general ceRNA network, involving 83 long non-coding RNAs (lncRNAs) and 379 mRNAs. Next, we identified the drug resistance-related modules for 138 drugs and 19 cancer types, totaling 758 drug-cancer conditions. Function analysis showed that resistance-related biological processes were enriched in these modules, such as regulation of cell proliferation, DNA damage repair, and so on. Pan-drug and pan-cancer analyses revealed some common and specific modules across multiple drugs or cancers. In addition, we also found that drug pairs with common modules have similar structure, indicating high risk for multidrug resistance (MDR). Finally, we speculated that ceRNA pair GAS5-RPL8 could regulate drug resistance because low expression of GAS5 would enhance microRNA (miRNA)-mediated inhibition of RPL8. In total, we investigated the drug resistance by using ceRNA modules and proposed that ceRNA modules may be new markers for drug resistance that indicated a possible novel mechanism.
Collapse
Affiliation(s)
- Haizhou Liu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shuyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shunheng Zhou
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Qianqian Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xueyan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaofeng Song
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Lihong Wang
- Department of Pathophysiology, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Wei Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| |
Collapse
|
12
|
Štenglová Netíková IR, Petruželka L, Šťastný M, Štengl V. Safe decontamination of cytostatics from the nitrogen mustards family. Part one: cyclophosphamide and ifosfamide. Int J Nanomedicine 2018; 13:7971-7985. [PMID: 30538471 PMCID: PMC6263216 DOI: 10.2147/ijn.s159328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Macrocrystalline oxides of alkaline earth metals (Mg and Ca) or light metals (Al and Ti) can respond to standard warfare agents such as sulfur mustard, soman, or agent VX. In this paper, we compared the decontamination ability of sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) for nitrogen mustards (cyclophosphamide [CP] and ifosfamide [IFOS]) with a new procedure using a destructive sorbent based on nanocrystalline and nanodispersive titanium dioxide (TiO2) as a new efficient and cheap material for complete decontamination of surfaces. Methods Titanium (IV) dioxide nanoparticles were prepared by the homogeneous hydrolysis of titanium(IV) oxysulfate (TiOSO4) with urea. The as-prepared TiO2 nanoparticles were used for the fast and safe decontamination of cytostatics from the nitrogen mustard family (CP and IFOS) in water. The adsorption-degradation process of cytostatics in the presence of TiO2 was compared with decontamination agents (0.01 M solution of sodium hydroxide and 5% solution of sodium hypochlorite). The mechanism of the decontamination process and the degradation efficiency were determined by high-performance liquid chromatography with mass spectrometry. Results It was demonstrated that a 0.01 M solution of sodium hydroxide (NaOH) decomposes CP to 3-((amino(bis(2-chloroethyl)amino)phosphoryl)oxy)propanoic acid and sodium hypochlorite formed two reaction products, namely, IFOS and 4-hydroxy-cyclophosphamide. IFOS is cytotoxic, and 4-hydroxy-cyclophosphamide is a known metabolite of CP after its partial metabolism by CYP/CYP450. IFOS degrades in the pres¬ence of NaOH to toxic IFOS mustard. Titanium(IV) dioxide nanoparticles adsorbed on its surface CP after 5 minutes and on IFOS after 10 minutes. The adsorption-degradation process of CP in water and in the presence of TiO2 led to 4-hydroxy-cyclophosphamide and IFOS, respectively, which decayed to oxidation product 4-hydroxy-ifosfamide. Conclusion Nanodispersive TiO2 is an effective degradation agent for decontamination of surfaces from cytostatics in medical facilities.
Collapse
Affiliation(s)
- Irena R Štenglová Netíková
- Department of Oncology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic,
| | - Luboš Petruželka
- Department of Material Chemistry, Institute of Inorganic Chemistry ASCR v.v.i., Řež, Czech Republic.,Faculty of Environment, J.E. Purkyně University in Ústí nad Labem, Ústí nad labem, Czech Republic
| | - Martin Šťastný
- Department of Oncology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic, .,Department of Material Chemistry, Institute of Inorganic Chemistry ASCR v.v.i., Řež, Czech Republic
| | - Václav Štengl
- Department of Oncology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic,
| |
Collapse
|
13
|
Ades F, Tryfonidis K, Zardavas D. The past and future of breast cancer treatment-from the papyrus to individualised treatment approaches. Ecancermedicalscience 2017; 11:746. [PMID: 28690677 PMCID: PMC5481194 DOI: 10.3332/ecancer.2017.746] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the oldest diseases ever described, since ancient Egypt there have always been attempts to treat and cure this illness. The growing body of knowledge about breast cancer biology and improvements in surgical and medical treatments has been built over time with contributions from many talented and enthusiastic physicians and researchers. Medical advances have changed the approach from a previously incurable condition, into a surgical disease. Further improvements in cancer biology have allowed the development of systemic treatments, hormonal therapies, and targeted drugs. The description of the molecular intrinsic subtypes of breast cancer clarified the understanding of breast cancer as a group of heterogeneous diseases, associated with different clinical outcomes, and therapeutic opportunities. This paper reviews how breast cancer treatment has improved since the earliest descriptions, in ancient times, and how future approaches, such as gene signatures, molecular profiling, and liquid biopsies, aim to further develop individualised treatments and improve treatment outcomes.
Collapse
Affiliation(s)
- Felipe Ades
- Hospital Albert Einstein, Avenida Albert Einstein, 627 - Morumbi, São Paulo - SP, 05652-900 Brazil
| | - Konstantinos Tryfonidis
- European Organisation for Research and Treatment of Cancer, Avenue E. Mounier 83/11, 1200 Brussels, Belgium
| | - Dimitrios Zardavas
- Breast International Group (BIG), Boulevard de Waterloo 76, Brussels 1000, Belgium
| |
Collapse
|
14
|
Marchal S, El Hor A, Millard M, Gillon V, Bezdetnaya L. Anticancer Drug Delivery: An Update on Clinically Applied Nanotherapeutics. Drugs 2016; 75:1601-11. [PMID: 26323338 DOI: 10.1007/s40265-015-0453-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development of chemotherapy using conventional anticancer drugs has been hindered due to several drawbacks related to their poor water solubility and poor pharmacokinetics, leading to severe adverse side effects and multidrug resistance in patients. Nanocarriers were developed to palliate these problems by improving drug delivery, opening the era of nanomedicine in oncology. Liposomes have been by far the most used nanovectors for drug delivery, with liposomal doxorubicin receiving US FDA approval as early as 1995. Antibody drug conjugates and promising drug delivery systems based on a natural polymer, such as albumin, or a synthetic polymer, are currently undergoing advanced clinical trials or have received approval for clinical applications. However, despite attractive results being obtained in preclinical studies, many well-designed nanodrugs fell short of expectations when tested in patients, evidencing the gap between nanoparticle design and their clinical translation. The aim of this review is to evaluate the extent of nanotherapeutics used in oncology by providing an insight into the most successful concepts. The reasons that prevent nanodrugs from expanding to clinic are discussed, and the efforts that must be taken to take full advantage of the great potential of nanomedicine are highlighted.
Collapse
Affiliation(s)
- Sophie Marchal
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France. .,CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France. .,Research Department, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy, France.
| | - Amélie El Hor
- Research Department, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy, France.,Faculté de Pharmacie, Université de Lorraine, 30 rue Lionnois, 54000, Nancy, France
| | - Marie Millard
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France.,CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France
| | - Véronique Gillon
- Research Department, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy, France
| | - Lina Bezdetnaya
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France.,CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France.,Research Department, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy, France
| |
Collapse
|
15
|
Mekdad SS, AlSayed AD. Towards safety of oral anti-cancer agents, the need to educate our pharmacists. Saudi Pharm J 2015; 25:136-140. [PMID: 28223874 PMCID: PMC5310136 DOI: 10.1016/j.jsps.2015.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction: The global prevalence of cancer is rising. Use of oral anticancer medications has expanded exponentially. Knowledge about these medications as well as safe handling guidelines has not kept abreast with the rapidity these medications are applied in clinical practice. They pose serious hazards on all personal involved in handling these medications as well as on patients and their caregivers. We addressed the gaps in knowledge and safe handling of oral anticancer agents among pharmacists in institutional based cancer care. Materials and Methods: We used a 41 item questionnaire to explore three domains, pharmacists' knowledge, safe handling practice and confidence and self-improving strategies towards these agents among pharmacists in multicentre specialized cancer care. Results: Participants included 120 pharmacists dedicated to handle and dispense oral anticancer agents. About 20% of Pharmacists have adequate knowledge about oral anticancer agents. Less than 50% apply safe handling principles adequately. Only a quarter are confident in educating cancer patients and their caregivers about Oral Anti-Cancer Agents. Conclusions: Pharmacists' knowledge about Oral Anticancer agents needs to be improved. Safe handling and dispensing practice of these medications should be optimized. Pharmacists' confidence towards educating patients and their caregiver needs to be addressed. Enhancing safety of oral anticancer agents should be a priority. Involving all key players, research and quality improving projects are needed to improve all aspects of the safety of oral anticancer agents.
Collapse
Affiliation(s)
- Sanaa Saeed Mekdad
- Senior and Clinical Pharmacist, Department of Pharmacy, King Fahad Medical City, AlDhabab Street, Riyadh 11525, Saudi Arabia
| | - Adher Dhaya AlSayed
- King Faisal Hospital and Research Center, Oncology Center, Riyadh 11211, Saudi Arabia
| |
Collapse
|
16
|
Amer MH. Gene therapy for cancer: present status and future perspective. MOLECULAR AND CELLULAR THERAPIES 2014; 2:27. [PMID: 26056594 PMCID: PMC4452068 DOI: 10.1186/2052-8426-2-27] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
Abstract
Advancements in human genomics over the last two decades have shown that cancer is mediated by somatic aberration in the host genome. This discovery has incited enthusiasm among cancer researchers; many now use therapeutic approaches in genetic manipulation to improve cancer regression and find a potential cure for the disease. Such gene therapy includes transferring genetic material into a host cell through viral (or bacterial) and non-viral vectors, immunomodulation of tumor cells or the host immune system, and manipulation of the tumor microenvironment, to reduce tumor vasculature or to increase tumor antigenicity for better recognition by the host immune system. Overall, modest success has been achieved with relatively minimal side effects. Previous approaches to cancer treatment, such as retrovirus integration into the host genome with the risk of mutagenesis and second malignancies, immunogenicity against the virus and/or tumor, and resistance to treatment with disease relapse, have markedly decreased with the new generation of viral and non-viral vectors. Several tumor-specific antibodies and genetically modified immune cells and vaccines have been developed, yet few are presently commercially available, while many others are still ongoing in clinical trials. It is anticipated that gene therapy will play an important role in future cancer therapy as part of a multimodality treatment, in combination with, or following other forms of cancer therapy, such as surgery, radiation and chemotherapy. The type and mode of gene therapy will be determined based on an individual's genomic constituents, as well as his or her tumor specifics, genetics, and host immune status, to design a multimodality treatment that is unique to each individual's specific needs.
Collapse
Affiliation(s)
- Magid H Amer
- Department of Medicine, St Rita’s Medical Center, 825 West Market Street, Suite #203, Lima, OH 45805 USA
| |
Collapse
|
17
|
Feld J, Barta SK, Schinke C, Braunschweig I, Zhou Y, Verma AK. Linked-in: design and efficacy of antibody drug conjugates in oncology. Oncotarget 2013; 4:397-412. [PMID: 23651630 PMCID: PMC3717303 DOI: 10.18632/oncotarget.924] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The use of antibody drug conjugates (ADCs) as targeted chemotherapies has successfully entered clinical practice and holds great promise. ADCs consist of an antibody and toxin-drug combined together via a chemical linker. While the antibody and drug are of vital importance in the direct elimination of cancer cells, more advanced linker technology was instrumental in the delivery of more potent drugs with fewer side effects. Here, we discuss the preclinical experience as well as clinical trials, with a specific emphasis on the clinical outcomes and side effects, in addition to linker strategies for five different ADCs, in order to describe different approaches in the development of this new class of anticancer agents. Brentuximab vedotin is approved for use in Hodgkin’s lymphoma and Trastuzumab emtansine is approved for breast cancer. Combotox, Inotuzumab Ozogamicin, and Moxetumomab Pasudotox are in various stages of clinical development and are showing significant efficacy in lymphoid malignancies. These ADCs illustrate the promise and future potential of targeted therapy for presently incurable malignancies.
Collapse
Affiliation(s)
- Jonathan Feld
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
18
|
Wennier ST, Liu J, McFadden G. Bugs and drugs: oncolytic virotherapy in combination with chemotherapy. Curr Pharm Biotechnol 2013; 13:1817-33. [PMID: 21740354 DOI: 10.2174/138920112800958850] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/18/2010] [Indexed: 12/16/2022]
Abstract
Single agent therapies are rarely successful in treating cancer, particularly at metastatic or end stages, and survival rates with monotherapies alone are generally poor. The combination of multiple therapies to treat cancer has already driven significant improvements in the standard of care treatments for many types of cancers. The first combination treatments exploited for cancer therapy involved the use of several cytotoxic chemotherapy agents. Later, with the development of more targeted agents, the use of novel, less toxic drugs, in combination with the more classic cytotoxic drugs has proven advantageous for certain cancer types. Recently, the combination of oncolytic virotherapy with chemotherapy has shown that the use of these two therapies with very distinct anti-tumor mechanisms may also lead to synergistic interactions that ultimately result in increased therapeutic effects not achievable by either therapy alone. The mechanisms of synergy between oncolytic viruses (OVs) and chemotherapeutic agents are just starting to be elucidated. It is evident, however, that the success of these OV-drug combinations depends greatly on the particular OV, the drug(s) selected, and the cancer type targeted. This review summarizes the different OV-drug combinations investigated to date, including the use of second generation armed OVs, which have been studied with the specific purpose of generating synergistic interactions with particular chemotherapy agents. The known mechanisms of synergy between these OV-drug combinations are also summarized. The importance of further investigating these mechanisms of synergy will be critical in order to maximize the therapeutic efficacy of OV-drug combination therapies in the future.
Collapse
Affiliation(s)
- Sonia Tusell Wennier
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, P.O. Box 100266 Gainesville, FL 32610, USA
| | | | | |
Collapse
|
19
|
Understanding resistance to combination chemotherapy. Drug Resist Updat 2012; 15:249-57. [PMID: 23164555 DOI: 10.1016/j.drup.2012.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/01/2012] [Accepted: 10/16/2012] [Indexed: 12/30/2022]
Abstract
The current clinical application of combination chemotherapy is guided by a historically successful set of practices that were developed by basic and clinical researchers 50-60 years ago. Thus, in order to understand how emerging approaches to drug development might aid the creation of new therapeutic combinations, it is critical to understand the defining principles underlying classic combination therapy and the original experimental rationales behind them. One such principle is that the use of combination therapies with independent mechanisms of action can minimize the evolution of drug resistance. Another is that in order to kill sufficient cancer cells to cure a patient, multiple drugs must be delivered at their maximum tolerated dose - a condition that allows for enhanced cancer cell killing with manageable toxicity. In light of these models, we aim to explore recent genomic evidence underlying the mechanisms of resistance to the combination regimens constructed on these principles. Interestingly, we find that emerging genomic evidence contradicts some of the rationales of early practitioners in developing commonly used drug regimens. However, we also find that the addition of recent targeted therapies has yet to change the current principles underlying the construction of anti-cancer combinatorial regimens, nor have they made substantial inroads into the treatment of most cancers. We suggest that emerging systems/network biology approaches have an immense opportunity to impact the rational development of successful drug regimens. Specifically, by examining drug combinations in multivariate ways, next generation combination therapies can be constructed with a clear understanding of how mechanisms of resistance to multi-drug regimens differ from single agent resistance.
Collapse
|
20
|
Blair RH, Trichler DL, Gaille DP. Mathematical and statistical modeling in cancer systems biology. Front Physiol 2012; 3:227. [PMID: 22754537 PMCID: PMC3385354 DOI: 10.3389/fphys.2012.00227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/05/2012] [Indexed: 11/13/2022] Open
Abstract
Cancer is a major health problem with high mortality rates. In the post-genome era, investigators have access to massive amounts of rapidly accumulating high-throughput data in publicly available databases, some of which are exclusively devoted to housing Cancer data. However, data interpretation efforts have not kept pace with data collection, and gained knowledge is not necessarily translating into better diagnoses and treatments. A fundamental problem is to integrate and interpret data to further our understanding in Cancer Systems Biology. Viewing cancer as a network provides insights into the complex mechanisms underlying the disease. Mathematical and statistical models provide an avenue for cancer network modeling. In this article, we review two widely used modeling paradigms: deterministic metabolic models and statistical graphical models. The strength of these approaches lies in their flexibility and predictive power. Once a model has been validated, it can be used to make predictions and generate hypotheses. We describe a number of diverse applications to Cancer Biology, including, the system-wide effects of drug-treatments, disease prognosis, tumor classification, forecasting treatment outcomes, and survival predictions.
Collapse
Affiliation(s)
- Rachael Hageman Blair
- Department of Biostatistics, State University of New York at BuffaloBuffalo, NY, USA
| | - David L. Trichler
- Department of Biostatistics, State University of New York at BuffaloBuffalo, NY, USA
- Department of Biostatistics, University of TorontoToronto, ON, Canada
| | - Daniel P. Gaille
- Department of Biostatistics, State University of New York at BuffaloBuffalo, NY, USA
| |
Collapse
|
21
|
Affiliation(s)
- Vincent T. DeVita
- Yale Comprehensive Cancer Center and Smilow Cancer Hospital at Yale–New Haven, Yale University School of Medicine, and Yale University School of Public Health — all in New Haven, CT (V.T.D.); the National Cancer Institute, National Institutes of Health, and the Uniformed Services University of the Health Sciences School of Medicine — all in Bethesda, MD (S.A.R.); and George Washington University School of Medicine, Washington, DC (S.A.R.). Address reprint requests to Dr. DeVita at the Yale Comprehensive Cancer Center and Smilow Cancer Hospital at Yale–New Haven, 333 Cedar St., PO Box 208028, New Haven, CT 06520-8028, or at
| | - Steven A. Rosenberg
- Yale Comprehensive Cancer Center and Smilow Cancer Hospital at Yale–New Haven, Yale University School of Medicine, and Yale University School of Public Health — all in New Haven, CT (V.T.D.); the National Cancer Institute, National Institutes of Health, and the Uniformed Services University of the Health Sciences School of Medicine — all in Bethesda, MD (S.A.R.); and George Washington University School of Medicine, Washington, DC (S.A.R.). Address reprint requests to Dr. DeVita at the Yale Comprehensive Cancer Center and Smilow Cancer Hospital at Yale–New Haven, 333 Cedar St., PO Box 208028, New Haven, CT 06520-8028, or at
| |
Collapse
|
22
|
Huang X, Nguyen AT, Li Z, Emelyanov A, Parinov S, Gong Z. One step forward: the use of transgenic zebrafish tumor model in drug screens. ACTA ACUST UNITED AC 2011; 93:173-81. [PMID: 21671356 DOI: 10.1002/bdrc.20208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The zebrafish (Danio rerio) has been an experimental model in the developmental biology and toxicology since the 1950s. In recent years, with the aid of transgenic technology, it has also gained an increasing popularity to model human diseases, including various cancers. As a feasible vertebrate model for large-scale chemical screens, the zebrafish has also given us a new option for the search of potential anticancer drugs. It is hopeful that in the near future with automation and analytical tools, drug development processes will be significantly shortened for quick and effective identification of candidate drugs.
Collapse
Affiliation(s)
- Xiaoqian Huang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
23
|
Khaheshi I, Keshavarz S, Imani Fooladi AA, Ebrahimi M, Yazdani S, Panahi Y, Shohrati M, Nourani MR. Loss of expression of TGF-βs and their receptors in chronic skin lesions induced by sulfur mustard as compared with chronic contact dermatitis patients. BMC DERMATOLOGY 2011; 11:2. [PMID: 21235789 PMCID: PMC3031210 DOI: 10.1186/1471-5945-11-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 01/14/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Sulfur mustard (SM) is a blister-forming agent that has been used as a chemical weapon. Sulfur mustard can cause damage in various organs, especially the skin, respiratory system, and eyes. Generally, the multiple complications of mustard gas result from its alkalizing potency; it reacts with cellular components like DNA, RNA, proteins, and lipid membranes.TGF-β is a multi-functional cytokine with multiple biological effects ranging from cell differentiation and growth inhibition to extracellular matrix stimulation, immunosuppression, and immunomodulation. TGF-β has 3 isoforms (TGF-β 1, 2, 3) and its signaling is mediated by its receptors: R1, R2 and intracellular Smads molecules.TGF-β has been shown to have anti-inflammatory effects. TGF-βs and their receptors also have an important role in modulation of skin inflammation, proliferation of epidermal cells, and wound healing, and they have been implicated in different types of skin inflammatory disorders. METHODS Seventeen exposed SM individuals (48.47 ± 9.3 years), 17 chronic dermatitis patients (46.52 ± 14.6 years), and 5 normal controls (44.00 ± 14.6 years) were enrolled in this study.Evaluation of TGF-βs and their receptors expressions was performed by semiquantitative RT-PCR. Only TGF1 was analyzed immunohistochemically. RESULTS Our results showed significant decreases in the expression percentages of TGF-β 1, 2 and R1, R2 in chemical victims in comparison with chronic dermatitis and normal subjects and significant decreases in the intensity of R1 and R2 expressions in chemical victims in comparison with chronic dermatitis and normal controls. (P value < 0.05) CONCLUSIONS TGF-βs and their receptors appear to have a noticeable role in chronic inflammatory skin lesions caused by sulfur mustard.
Collapse
MESH Headings
- Adult
- Aged
- Burns, Chemical/complications
- Burns, Chemical/etiology
- Burns, Chemical/genetics
- Burns, Chemical/metabolism
- Chemical Warfare
- Chemical Warfare Agents/adverse effects
- Chemical Warfare Agents/pharmacology
- Chronic Disease
- Dermatitis, Allergic Contact/complications
- Dermatitis, Allergic Contact/genetics
- Dermatitis, Allergic Contact/metabolism
- Epidermis/drug effects
- Epidermis/metabolism
- Gene Expression/drug effects
- Humans
- Inflammation/genetics
- Iran
- Irritants/adverse effects
- Irritants/pharmacology
- Male
- Middle Aged
- Military Personnel
- Mustard Gas/adverse effects
- Mustard Gas/pharmacology
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Pruritus/etiology
- Pruritus/genetics
- Pruritus/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/deficiency
- Receptors, Transforming Growth Factor beta/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta2/deficiency
- Transforming Growth Factor beta2/genetics
Collapse
Affiliation(s)
- Isa Khaheshi
- Genomics Division, Chemical Injury Research Center (CIRC) Baqiyatallah University of Medical Sciences, Tehran-Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran-Iran
| | - Saeed Keshavarz
- Genomics Division, Chemical Injury Research Center (CIRC) Baqiyatallah University of Medical Sciences, Tehran-Iran
| | - Abbas Ali Imani Fooladi
- Research Center of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran-Iran
| | - Majid Ebrahimi
- Genomics Division, Chemical Injury Research Center (CIRC) Baqiyatallah University of Medical Sciences, Tehran-Iran
| | - Samaneh Yazdani
- Genomics Division, Chemical Injury Research Center (CIRC) Baqiyatallah University of Medical Sciences, Tehran-Iran
| | - Yunes Panahi
- Genomics Division, Chemical Injury Research Center (CIRC) Baqiyatallah University of Medical Sciences, Tehran-Iran
| | - Majid Shohrati
- Genomics Division, Chemical Injury Research Center (CIRC) Baqiyatallah University of Medical Sciences, Tehran-Iran
| | - Mohammad Reza Nourani
- Genomics Division, Chemical Injury Research Center (CIRC) Baqiyatallah University of Medical Sciences, Tehran-Iran
| |
Collapse
|
24
|
Lord CJ, Ashworth A. Biology-driven cancer drug development: back to the future. BMC Biol 2010; 8:38. [PMID: 20385032 PMCID: PMC2864096 DOI: 10.1186/1741-7007-8-38] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 01/01/2023] Open
Abstract
Most of the significant recent advances in cancer treatment have been based on the great strides that have been made in our understanding of the underlying biology of the disease. Nevertheless, the exploitation of biological insight in the oncology clinic has been haphazard and we believe that this needs to be enhanced and optimized if patients are to receive maximum benefit. Here, we discuss how research has driven cancer drug development in the past and describe how recent advances in biology, technology, our conceptual understanding of cell networks and removal of some roadblocks may facilitate therapeutic advances in the (hopefully) near future.
Collapse
Affiliation(s)
- Christopher J Lord
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London, SW3 6JB, UK
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London, SW3 6JB, UK
| |
Collapse
|
25
|
Abstract
The advent of chemotherapy for early-stage breast cancer has ushered in a new age of management for the condition. This article charts the evolution of chemotherapy for breast cancer, and highlights the current need for carefully planned, fully implemented local protocols to support the delivery of modern regimens.
Collapse
|
26
|
Debiak M, Kehe K, Bürkle A. Role of poly(ADP-ribose) polymerase in sulfur mustard toxicity. Toxicology 2009; 263:20-5. [DOI: 10.1016/j.tox.2008.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 06/06/2008] [Accepted: 06/09/2008] [Indexed: 01/27/2023]
|
27
|
Barbault A, Costa FP, Bottger B, Munden RF, Bomholt F, Kuster N, Pasche B. Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:51. [PMID: 19366446 PMCID: PMC2672058 DOI: 10.1186/1756-9966-28-51] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/14/2009] [Indexed: 12/04/2022]
Abstract
Purpose Because in vitro studies suggest that low levels of electromagnetic fields may modify cancer cell growth, we hypothesized that systemic delivery of a combination of tumor-specific frequencies may have a therapeutic effect. We undertook this study to identify tumor-specific frequencies and test the feasibility of administering such frequencies to patients with advanced cancer. Patients and methods We examined patients with various types of cancer using a noninvasive biofeedback method to identify tumor-specific frequencies. We offered compassionate treatment to some patients with advanced cancer and limited therapeutic options. Results We examined a total of 163 patients with a diagnosis of cancer and identified a total of 1524 frequencies ranging from 0.1 Hz to 114 kHz. Most frequencies (57–92%) were specific for a single tumor type. Compassionate treatment with tumor-specific frequencies was offered to 28 patients. Three patients experienced grade 1 fatigue during or immediately after treatment. There were no NCI grade 2, 3 or 4 toxicities. Thirteen patients were evaluable for response. One patient with hormone-refractory breast cancer metastatic to the adrenal gland and bones had a complete response lasting 11 months. One patient with hormone-refractory breast cancer metastatic to liver and bones had a partial response lasting 13.5 months. Four patients had stable disease lasting for +34.1 months (thyroid cancer metastatic to lung), 5.1 months (non-small cell lung cancer), 4.1 months (pancreatic cancer metastatic to liver) and 4.0 months (leiomyosarcoma metastatic to liver). Conclusion Cancer-related frequencies appear to be tumor-specific and treatment with tumor-specific frequencies is feasible, well tolerated and may have biological efficacy in patients with advanced cancer. Trial registration clinicaltrials.gov identifier NCT00805337
Collapse
|
28
|
Colevas AD. Organ preservation-induction chemotherapy. Cancer Treat Res 2003; 114:213-34. [PMID: 12619543 DOI: 10.1007/0-306-48060-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|