1
|
Fayon M, Hill K, Waldron M, Messore B, Riberi L, Svedberg M, Lammertyn E, Fustik S, Gramegna A, Stahl M, Kerpel-Fronius A, Balbi M, Ciet P, Chassagnon G, Ferrero C, Burgel PR, Sutharsan S, Opitz M, Andrinopoulou ER, Dournes G, Maher M, Duckers J, Tiddens H, Sermet I. Guidance for chest-CT in children and adults with cystic fibrosis: A European perspective. Respir Med 2025; 241:108076. [PMID: 40189162 DOI: 10.1016/j.rmed.2025.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
The European Cystic Fibrosis Society-Clinical Trials Network (ECFS-CTN) herein proposes guidance for the use of chest CT-scans for the regular monitoring of lung disease in CF. Statements were completed in a 3-step process: the questions were identified via an anonymous online survey, followed by a comprehensive literature search, and a final Delphi process. The guidance recommends the use of ultra-low dose CT scans (effective radiation dose, 0.08 mSv; equivalent to 2 to 4 chest X-rays), tracking of patients' cumulative radiation and effective communication strategies using "de-medicalized" information for shared decision making. Chest CT scans (with lung volume monitoring) are not recommended systematically in both children and adults. Ultimate responsibility for justifying a chest CT scan lies with the individual professionals directly involved, the final decision being influenced by indications, costs, expertise, available material, resources and/or the patient's values, as well as possible impact on treatment modalities.
Collapse
Affiliation(s)
- Michael Fayon
- CHU Bordeaux, Département de Pédiatrie, CIC-P INSERM 1401 & Université de Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, F-33000, Bordeaux, France.
| | - Kate Hill
- European Cystic Fibrosis Society, Karup, Denmark; Northern Ireland Clinical Research Facility, The Wellcome-Wolfson Institute of Experimental Medicine, Queen's University, Lisburn Road, Belfast, Northern Ireland, UK.
| | - Michael Waldron
- Cork Centre for Cystic Fibrosis, Cork University Hospital, University College Cork, Cork, Ireland; HRB Clinical Research Facility, University College Cork, Cork, Ireland; Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Barbara Messore
- AOU San Luigi Gonzaga, Adult CF Centre-Pulmonology Unit, Orbassano, Torino, Italy
| | - Luca Riberi
- AOU San Luigi Gonzaga, Adult CF Centre-Pulmonology Unit, Orbassano, Torino, Italy
| | - Marcus Svedberg
- Department of Pediatrics, Institute of Clinical Science at The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Pediatrics, Queen Silvia's Children Hospital, Gothenburg, Sweden
| | - Elise Lammertyn
- Cystic Fibrosis Europe, Brussels, Belgium and the Belgian CF Association, Brussels, Belgium
| | - Stojka Fustik
- Center for Cystic Fibrosis, University Children's Clinic, Skopje, North Macedonia
| | - Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Anna Kerpel-Fronius
- Department of Radiology, National Korányi Institute for Pulmonology, Budapest, Hungary
| | - Maurizio Balbi
- Radiology Unit, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Pierluigi Ciet
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus MC, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Guillaume Chassagnon
- Department of Radiology, Hôpital Cochin, AP-HP, Université Paris Cité, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Cinzia Ferrero
- AOU Città della Salute e della Scienza di Torino, Regina Margherita Children's Hospital - Pediatric Pulmonology/Pediatric CF Centre, Torino, Italy
| | - Pierre-Régis Burgel
- Department of Respiratory Medicine and National Cystic Fibrosis Reference Centre, Groupe Hospitalier Cochin-Hôtel Dieu, AP-HP, Université Paris Cité and Institut Cochin, Inserm U1016, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, University Hospital Essen - Ruhrlandklinik, Adult Cystic Fibrosis Center, University of Duisburg-Essen, Essen, Germany
| | - Marcel Opitz
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics, Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Gael Dournes
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Michael Maher
- Cork Centre for Cystic Fibrosis, Cork University Hospital, University College Cork, Cork, Ireland; HRB Clinical Research Facility, University College Cork, Cork, Ireland; Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Jamie Duckers
- All Wales Adult CF Centre, Cardiff and Vale University Health Board, Cardiff, UK
| | | | - Isabelle Sermet
- Service de Pneumologie et Allergologie Pédiatriques, Centre de Référence Maladies Rares, Hôpital Necker Enfants Malades, Paris, 75015, France; INSERM U1151, Institut Necker Enfants Malades, Université Paris Cité, Paris, 75743, France; European Reference Network-Lung, Frankfurt, Germany
| |
Collapse
|
2
|
Alexander EM, Miller HA, Egger ME, Smith ML, Yaddanapudi K, Linder MW. The Correlation between Plasma Circulating Tumor DNA and Radiographic Tumor Burden. J Mol Diagn 2024; 26:952-961. [PMID: 39181324 PMCID: PMC11524323 DOI: 10.1016/j.jmoldx.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
Conventional blood-based biomarkers and radiographic imaging are excellent for use in monitoring different aspects of malignant disease, but given their specific shortcomings, their integration with other, complementary markers such as plasma circulating tumor DNA (ctDNA) will be beneficial toward a precision medicine-driven future. Plasma ctDNA analysis utilizes the measurement of cancer-specific molecular alterations in a variety of bodily fluids released by dying tumor cells to monitor and profile response to therapy, and is being employed in several clinical scenarios. Plasma concentrations of ctDNA have been reported to correlate with tumor burden. However, the strength of this association is generally poor and highly variable, confounding the interpretation of longitudinal plasma ctDNA measurements in conjunction with routine radiographic assessments. Herein is discussed what is currently understood with respect to the fundamental characteristics of tumor growth that dictate plasma ctDNA concentrations, with a perspective on its interpretation in conjunction with radiographically determined tumor burden assessments.
Collapse
Affiliation(s)
- Evan M Alexander
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| | - Hunter A Miller
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| | - Michael E Egger
- Hiram C. Polk, Jr, MD, Department of Surgery, University of Louisville, Louisville, Kentucky; UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Melissa L Smith
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Kavitha Yaddanapudi
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Mark W Linder
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky; UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
3
|
Chen YH, Handly N, Chang DC, Chen YW. Racial difference in receiving computed tomography for head injury patients in emergency departments. Am J Emerg Med 2024; 83:54-58. [PMID: 38964277 DOI: 10.1016/j.ajem.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
STUDY OBJECTIVE Prior studies have suggested potential racial differences in receiving imaging tests in emergency departments (EDs), but the results remain inconclusive. In addition, most prior studies may only have limited racial groups for minority patients. This study aimed to investigate racial differences in head computed tomography (CT) administration rates in EDs among patients with head injuries. METHODS Patients with head injuries who visited EDs were examined. The primary outcome was patients receiving head CT during ED visits, and the primary exposure was patient race/ethnicity, including Asian, Hispanic, Non-Hispanic Black (Black), and Non-Hispanic White (White). Multivariable logistic regression analyses were performed using the National Hospital Ambulatory Medical Care Survey database, adjusting for patients and hospital characteristics. RESULTS Among 6130 patients, 51.9% received a head CT scan. Asian head injury patients were more likely to receive head CT than White patients (59.1% versus 54.0%, difference 5.1%, p < 0.001). This difference persisted in adjusted results (odds ratio, 1.52; 95% CI, 1.06-2.16, p = 0.022). In contrast, Black and Hispanic patients have no significant difference in receiving head CT than White patients after the adjustment. CONCLUSIONS Asian head injury patients were more likely to receive head CT than White patients. This difference may be attributed to the limited English proficiency among Asian individuals and the fact that there is a wide variety of different languages spoken by Asian patients. Future studies should examine rates of receiving other diagnostic imaging modalities among different racial groups and possible interventions to address this difference.
Collapse
Affiliation(s)
- Yuan-Hsin Chen
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | - Neal Handly
- Department of Emergency Medicine, Contra Costa Regional Medical Center, Martinez, CA, United States of America; Department of Emergency Medicine, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - David C Chang
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | - Ya-Wen Chen
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
4
|
Heye T, Segeroth M, Franzeck F, Vosshenrich J. Turning radiology reports into epidemiological data to track seasonal pulmonary infections and the COVID-19 pandemic. Eur Radiol 2024; 34:3624-3634. [PMID: 37982834 PMCID: PMC11166749 DOI: 10.1007/s00330-023-10424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/18/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES To automatically label chest radiographs and chest CTs regarding the detection of pulmonary infection in the report text, to calculate the number needed to image (NNI) and to investigate if these labels correlate with regional epidemiological infection data. MATERIALS AND METHODS All chest imaging reports performed in the emergency room between 01/2012 and 06/2022 were included (64,046 radiographs; 27,705 CTs). Using a regular expression-based text search algorithm, reports were labeled positive/negative for pulmonary infection if described. Data for regional weekly influenza-like illness (ILI) consultations (10/2013-3/2022), COVID-19 cases, and hospitalization (2/2020-6/2022) were matched with report labels based on calendar date. Positive rate for pulmonary infection detection, NNI, and the correlation with influenza/COVID-19 data were calculated. RESULTS Between 1/2012 and 2/2020, a 10.8-16.8% per year positive rate for detecting pulmonary infections on chest radiographs was found (NNI 6.0-9.3). A clear and significant seasonal change in mean monthly detection counts (102.3 winter; 61.5 summer; p < .001) correlated moderately with regional ILI consultations (weekly data r = 0.45; p < .001). For 2020-2021, monthly pulmonary infection counts detected by chest CT increased to 64-234 (23.0-26.7% per year positive rate, NNI 3.7-4.3) compared with 14-94 (22.4-26.7% positive rate, NNI 3.7-4.4) for 2012-2019. Regional COVID-19 epidemic waves correlated moderately with the positive pulmonary infection CT curve for 2020-2022 (weekly new cases: r = 0.53; hospitalizations: r = 0.65; p < .001). CONCLUSION Text mining of radiology reports allows to automatically extract diagnoses. It provides a metric to calculate the number needed to image and to track the trend of diagnoses in real time, i.e., seasonality and epidemic course of pulmonary infections. CLINICAL RELEVANCE Digitally labeling radiology reports represent previously neglected data and may assist in automated disease tracking, in the assessment of physicians' clinical reasoning for ordering radiology examinations and serve as actionable data for hospital workflow optimization. KEY POINTS • Radiology reports, commonly not machine readable, can be automatically labeled with the contained diagnoses using a regular-expression based text search algorithm. • Chest radiograph reports positive for pulmonary infection moderately correlated with regional influenza-like illness consultations (weekly data; r = 0.45; p < .001) and chest CT reports with the course of the regional COVID-19 pandemic (new cases: r = 0.53; hospitalizations: r = 0.65; p < 0.001). • Rendering radiology reports into data labels provides a metric for automated disease tracking, the assessment of ordering physicians clinical reasoning and can serve as actionable data for workflow optimization.
Collapse
Affiliation(s)
- Tobias Heye
- Department of Radiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Martin Segeroth
- Department of Radiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Fabian Franzeck
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Jan Vosshenrich
- Department of Radiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| |
Collapse
|
5
|
Pozzessere C, von Garnier C, Beigelman-Aubry C. Radiation Exposure to Low-Dose Computed Tomography for Lung Cancer Screening: Should We Be Concerned? Tomography 2023; 9:166-177. [PMID: 36828367 PMCID: PMC9964027 DOI: 10.3390/tomography9010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Lung cancer screening (LCS) programs through low-dose Computed Tomography (LDCT) are being implemented in several countries worldwide. Radiation exposure of healthy individuals due to prolonged CT screening rounds and, eventually, the additional examinations required in case of suspicious findings may represent a concern, thus eventually reducing the participation in an LCS program. Therefore, the present review aims to assess the potential radiation risk from LDCT in this setting, providing estimates of cumulative dose and radiation-related risk in LCS in order to improve awareness for an informed and complete attendance to the program. After summarizing the results of the international trials on LCS to introduce the benefits coming from the implementation of a dedicated program, the screening-related and participant-related factors determining the radiation risk will be introduced and their burden assessed. Finally, future directions for a personalized screening program as well as technical improvements to reduce the delivered dose will be presented.
Collapse
Affiliation(s)
- Chiara Pozzessere
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), 1011 Lausanne, Switzerland
- Correspondence:
| | - Christophe von Garnier
- Faculty of Biology and Medicine, University of Lausanne (UNIL), 1011 Lausanne, Switzerland
- Division of Pulmonology, Department of Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Catherine Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| |
Collapse
|