1
|
Katonova A, Andel R, Jurasova V, Veverova K, Angelucci F, Matoska V, Hort J. Associations of KLOTHO-VS heterozygosity and α-Klotho protein with cerebrospinal fluid Alzheimer's disease biomarkers. J Alzheimers Dis 2025; 105:159-171. [PMID: 40112321 DOI: 10.1177/13872877251326199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BackgroundKLOTHO-VS heterozygosity (KL-VSHET) and soluble α-Klotho (sαKl) protein interfere with Alzheimer's disease (AD) pathophysiology, but the specific relationships remain unclear. This study explored these associations across the AD continuum, focusing on core AD biomarkers and markers of neurodegeneration, neuroinflammation, and synaptic dysfunction.ObjectiveWe investigated whether 1) KL-VSHET is associated with lower AD biomarker burden (Aβ42, Aβ42/40 ratio, P-tau181, T-tau) and neurodegeneration (NfL); 2) sαKl relates to AD biomarkers, neurodegeneration (NfL), neuroinflammation (GFAP), and synaptic dysfunction (Ng); 3) associations vary by APOE ε4 status and clinical subgroup.MethodsParticipants (n = 223) were categorized as cognitively healthy (n = 38), aMCI-AD (n = 94), and AD dementia (n = 91). KLOTHO genotyping was available for 128 participants; 138 had cerebrospinal fluid (CSF) and serum sαKl measurements; and 42 had both. Multiple linear regression evaluated associations between KL-VSHET, sαKl levels, and biomarkers, stratified by APOE ε4 status and clinical subgroup.ResultsOverall, the associations between KL-VSHET and higher CSF Aβ42 and Aβ42/40 ratio were non-significant (ps ≥ 0.059) except when restricted to APOE ε4 carriers only (β = 0.11, p = 0.008 and β = 0.16, p = 0.033, respectively). Within clinical subgroups, KL-VSHET was positively associated with Aβ42/40 ratio only in aMCI-AD (β = 0.23, p = 0.034). No significant associations were observed between KL-VSHET and tau biomarkers or NfL. For sαKl, associations with biomarkers were non-significant except for a negative association of serum sαKl with P-tau181 in aMCI-AD (β = -0.25, p = 0.036) and a positive association with Aβ42/40 ratio in APOE ε4 non-carriers (β = 0.24 p = 0.047).ConclusionsKL-VSHET may help protect against amyloid pathology, particularly in the presence of APOE ε4, and regardless of APOE status in aMCI-AD.
Collapse
Affiliation(s)
- Alzbeta Katonova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Ross Andel
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Vanesa Jurasova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Katerina Veverova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Francesco Angelucci
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Vaclav Matoska
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
2
|
Zhang F, Han X, Mu Q, Zailani H, Liu WC, Do QL, Wu Y, Wu N, Kang Y, Su L, Liu Y, Su KP, Wang F. Elevated cerebrospinal fluid biomarkers of neuroinflammation and neuronal damage in essential hypertension with secondary insomnia: Implications for Alzheimer's disease risk. Brain Behav Immun 2025; 125:158-167. [PMID: 39733863 DOI: 10.1016/j.bbi.2024.12.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024] Open
Abstract
Essential hypertension (EH) with secondary insomnia is associated with increased risks of neuroinflammation, neuronal damage, and Alzheimer's disease (AD). However, its relationship with specific cerebrospinal fluid (CSF) biomarkers of neuronal damage and neuroinflammation remains unclear. This case-control study compared CSF biomarker levels across three groups: healthy controls (HC, n = 64), hypertension-controlled (HTN-C, n = 54), and hypertension-uncontrolled (HTN-U, n = 107) groups, all EH participants experiencing secondary insomnia. CSF samples from knee replacement patients were analyzed for key biomarkers, and sleep quality was assessed via the Pittsburgh Sleep Quality Index (PSQI). Our findings showed that the HTN-U group had significantly higher CSF levels of proinflammatory cytokines IL-6, TNF-α, and IL-17 than the HC and HTN-C groups (all p < 0.01). These cytokines correlated positively with secondary insomnia measures, with IL-6 (r = 0.285, p = 0.003), IL-17 (r = 0.324, p = 0.001), and TNF-α (r = 0.274, p = 0.005) linked to PSQI scores. In the HTN-U group, elevated IL-6, TNF-α, and IL-17 levels were also positively associated with neurofilament light (NF-L) and negatively with β-amyloid 42 (Aβ42), both key AD markers (all p < 0.05). Additionally, secondary insomnia was negatively correlated with Aβ42 (r = -0.225, p = 0.021) and positively with NF-L (r = 0.261, p = 0.007). Higher CSF palmitic acid (PA) levels observed in the HTN-U group were linked to poorer sleep quality (r = 0.208, p = 0.033). In conclusion, EH with secondary insomnia is associated with CSF biomarkers of neuronal damage, neuroinflammation, and neurodegeneration, suggesting a potential increase in AD risk among this population.
Collapse
Affiliation(s)
- Feng Zhang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Xiaoli Han
- Clinical Nutrition Department, Friendship Hospital of Urumqi, Urumqi 830049, China
| | - Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| | - Halliru Zailani
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Wen-Chun Liu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Quang Le Do
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Nan Wu
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar 161006, China
| | - Yimin Kang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot 010110, China
| | - Lidong Su
- Medical Neurobiology Lab, Inner Mongolia Medical University, Baotou 014010, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China.
| |
Collapse
|
3
|
Shibata K, Chen C, Tai XY, Manohar SG, Husain M. Impact of APOE, Klotho, and sex on cognitive decline with aging. Proc Natl Acad Sci U S A 2025; 122:e2416042122. [PMID: 39903109 PMCID: PMC11831164 DOI: 10.1073/pnas.2416042122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/28/2024] [Indexed: 02/06/2025] Open
Abstract
The effects of apolipoprotein E (APOE) and Klotho genes, both implicated in aging, on human cognition as a function of sex and age are yet to be definitively established. Here, we showed in the largest cohort studied to date (N = 320,861) that APOE homozygous ε4 carriers had a greater decline in cognition with aging compared to ε3 carriers (ε3/ε4 and ε3/ε3) as well as smaller hippocampi and amygdala (N = 29,510). Critically, sex and age differentially affected the decline in cognition. Younger (40 to 50 y) female homozygous ε4 carriers showed a cognitive advantage over female ε3 carriers, but this advantage was not present in males. By contrast, Klotho-VS heterozygosity did not affect cognition or brain volume, regardless of APOE genotype, sex, or age. These cognitive trajectories with aging demonstrate clear sex-dependent antagonistic pleiotropy effects of APOE ε4, but no effects of Klotho genotype on cognition and brain volume.
Collapse
Affiliation(s)
- Kengo Shibata
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Cheng Chen
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
| | - Xin You Tai
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, OxfordOX3 9DU, United Kingdom
| | - Sanjay G. Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, OxfordOX3 9DU, United Kingdom
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, OxfordOX3 9DU, United Kingdom
| |
Collapse
|
4
|
Majumdar V, Chakroborty P, Arasappa R, Murugesh K, Hegde S, Jose A, Manjunath NK, Dharmappa A. Associations Between Klotho Levels, KL-VS Heterozygosity and Cognition in Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2025; 6:sgae030. [PMID: 40083947 PMCID: PMC11904889 DOI: 10.1093/schizbullopen/sgae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Background and Hypothesis The relationship between Klotho and cognitive dysfunction in schizophrenia has been scarcely explored, with a few paradoxical findings. Hence, we aimed to enhance our understanding by testing associations between the functional KL-VS gene variant and circulating protein levels. Research Design This case-control study included 239 healthy controls and 241 patients with schizophrenia, who were comprehensively characterized by neurocognitive tests and further subtyped into cognitive clusters; cognitively deficient (CD) and cognitively spared (CS), using K-means cluster analysis. Linear regression models were run to assess the main and iinteraction effects of the KL-VS heterozygosity (KL-VSHet+)/KL levels with confounding variables (disease status and age) on cognitive scores. Results There was no main effect of KL-VSHet+ on the cognitive domains, but the CD cluster exhibited strong negative interactions between disease status and Klotho for executive function at the gene level, KL-VSHet+ × disease status, β = -.61, P = .043, with comparatively higher effect observed for KL levels, KL levels × disease status, β = -.91, P = .028. There was an opposing positive interaction for response inhibition, KL-VSHet+ × disease status, limited again to the CD cluster, β = .35, P = .046, with a higher effect at protein levels, KL levels × disease status, β = .72, <.004, though without CD cluster effect. Conclusions Overall, these dissociable patterns of association across cognitive domains indicate the need to exert caution over accepting any generalised direction of effect of Klotho at gene or protein level on cognition in schizophrenia.
Collapse
Affiliation(s)
- Vijaya Majumdar
- Molecular Bioscience and Gerosceince lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka 560105, India
| | - Prosenjeet Chakroborty
- Molecular Bioscience and Gerosceince lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka 560105, India
| | - Rashmi Arasappa
- Department of Psychiatry, National Institute of Mental Health and NeuroSciences, Bangalore, Karnataka 560029, India
| | - K Murugesh
- Molecular Bioscience and Gerosceince lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka 560105, India
| | - Shanthala Hegde
- Department of Clinical Psychology, National Institute of Mental Health and NeuroSciences, Bangalore, Karnataka 560029, India
| | - Amrutha Jose
- Biostatistics, ICMR-National Institute of Immunohematology, Mumbai, Maharashtra 400012, India
| | - N K Manjunath
- Molecular Bioscience and Gerosceince lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka 560105, India
| | - Arpitha Dharmappa
- Molecular Bioscience and Gerosceince lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka 560105, India
| |
Collapse
|
5
|
Xing D, Zhang W, Liu Y, Huang H, Xie J. Genes related to microglia polarization and immune infiltration in Alzheimer's Disease. Mamm Genome 2024; 35:749-763. [PMID: 39390284 DOI: 10.1007/s00335-024-10073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
Alzheimer's Disease (AD) remains a significant challenge due to its complex etiology and socio-economic burden. In this study, we investigated the roles of macrophage polarization-related hub genes in AD pathology, focusing on their impact on immune infiltration and gene regulation in distinct brain regions. Using Gene Expression Omnibus (GEO) datasets GSE110226 (choroid plexus) and GSE1297 (hippocampal CA1), we identified key genes-EDN1, HHLA2, KL, TREM2, and WWTR1-associated with AD mechanisms and immune responses. Based on these findings, we developed a diagnostic model demonstrating favorable calibration and clinical applicability. Furthermore, we explored molecular interactions within mRNA-transcription factor and mRNA-miRNA regulatory networks, providing deeper insights into AD progression and identifying potential therapeutic targets. The novel identification of WWTR1 and HHLA2 as biomarkers expands the diagnostic toolkit for AD, offering new perspectives on the disease's underlying immune dynamics. However, external dataset validation and further in vitro and in vivo studies are required to confirm these results and their clinical relevance.
Collapse
Affiliation(s)
- Dianxia Xing
- Department of Geriatrics, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China.
| | - Wenjin Zhang
- Central Laboratory of Chongqing University Three Gorges Hospital, Chongqing, 404100, China
| | - Yan Liu
- Department of Geriatrics, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Hong Huang
- Department of Geriatrics, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Junjie Xie
- Department of Geriatrics, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| |
Collapse
|
6
|
Cook N, Driscoll I, Gaitán JM, Glittenberg M, Betthauser TJ, Carlsson CM, Johnson SC, Asthana S, Zetterberg H, Blennow K, Kollmorgen G, Quijano-Rubio C, Dubal DB, Okonkwo OC. Amyloid-β positivity is less prevalent in cognitively unimpaired KLOTHO KL-VS heterozygotes. J Alzheimers Dis 2024; 102:480-490. [PMID: 39529379 PMCID: PMC12025201 DOI: 10.1177/13872877241289785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Klotho, encoded by the KLOTHO gene, is an anti-aging and neuroprotective protein. KLOTHO KL-VS heterozygosity (KL-VSHET) is hypothesized to be protective against the accumulation of Alzheimer's disease (AD) neuropathological hallmarks (amyloid-β (Aβ) and tau). OBJECTIVE We examine whether being positive for Aβ (A+) or tau (T+), or A/T joint status [positive for Aβ (A + T-), tau (A-T+), both (A + T+) or neither (A-T-)] vary by KL-VS and whether serum klotho protein levels vary based on A+, T+, or A/T status in a cohort enriched for AD risk. METHODS The sample consisted of 704 cognitively unimpaired, late middle-aged, and older adults; MeanAge(SD) = 64.9(8.3). Serum klotho was available for a sub-sample of 396 participants; MeanAge(SD) = 66.8(7.4). Covariate-adjusted logistic regression examined whether A + or T+, and multinomial regression examined whether A/T status, vary by KL-VS genotype. Covariate-adjusted linear regression examined whether serum klotho levels differ based on A+, T+, or A/T status. RESULTS A+ prevalence was lower in KL-VSHET (p = 0.05), with no differences in T + prevalence (p = 0.52). KL-VSHET also had marginally lower odds of being A + T- (p = 0.07). Serum klotho levels did not differ based on A+, T+, or A/T status (all ps ≥ 0.40). CONCLUSIONS KL-VSHET is associated with lower odds of being positive for Aβ, regardless of whether one is also positive for tau. Conversely, the likelihood of being tau positive did not differ based on KL-VS genotype. Our findings add to the growing KLOTHO literature and suggests the need for further research focused on understanding the mechanisms underlying KL-VS-related putative resilience to AD.
Collapse
Affiliation(s)
- Noah Cook
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ira Driscoll
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
| | - Julian M. Gaitán
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Matthew Glittenberg
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Tobey J. Betthauser
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M. Carlsson
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
| | - Sterling C. Johnson
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
| | - Sanjay Asthana
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ozioma C. Okonkwo
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
| |
Collapse
|
7
|
Prud’homme GJ, Wang Q. Anti-Inflammatory Role of the Klotho Protein and Relevance to Aging. Cells 2024; 13:1413. [PMID: 39272986 PMCID: PMC11394293 DOI: 10.3390/cells13171413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The α-Klotho protein (hereafter Klotho) is an obligate coreceptor for fibroblast growth factor 23 (FGF23). It is produced in the kidneys, brain and other sites. Klotho insufficiency causes hyperphosphatemia and other anomalies. Importantly, it is associated with chronic pathologies (often age-related) that have an inflammatory component. This includes atherosclerosis, diabetes and Alzheimer's disease. Its mode of action in these diseases is not well understood, but it inhibits or regulates multiple major pathways. Klotho has a membrane form and a soluble form (s-Klotho). Cytosolic Klotho is postulated but not well characterized. s-Klotho has endocrine properties that are incompletely elucidated. It binds to the FGF receptor 1c (FGFR1c) that is widely expressed (including endothelial cells). It also attaches to soluble FGF23, and FGF23/Klotho binds to FGFRs. Thus, s-Klotho might be a roaming FGF23 coreceptor, but it has other functions. Notably, Klotho (cell-bound or soluble) counteracts inflammation and appears to mitigate related aging (inflammaging). It inhibits NF-κB and the NLRP3 inflammasome. This inflammasome requires priming by NF-κB and produces active IL-1β, membrane pores and cell death (pyroptosis). In accord, Klotho countered inflammation and cell injury induced by toxins, damage-associated molecular patterns (DAMPs), cytokines, and reactive oxygen species (ROS). s-Klotho also blocks the TGF-β receptor and Wnt ligands, which lessens fibrotic disease. Low Klotho is associated with loss of muscle mass (sarcopenia), as occurs in aging and chronic diseases. s-Klotho counters the inhibitory effects of myostatin and TGF-β on muscle, reduces inflammation, and improves muscle repair following injury. The inhibition of TGF-β and other factors may also be protective in diabetic retinopathy and age-related macular degeneration (AMD). This review examines Klotho functions especially as related to inflammation and potential applications.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 220 Walmer Rd, Toronto, ON M5R 3R7, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai 200030, China
- Shanghai Innogen Pharmaceutical Co., Ltd., Shanghai 201318, China
| |
Collapse
|
8
|
Liang Y, Zhu Y, Zhang M, Zhang Y, Jiang S, Wang X, Yu F, Ma J, Huang Y. Association between plasma trans fatty acids and serum α-klotho levels in adults in the United States of America: an analysis of the NHANES 2009-2010 datasets. Lipids Health Dis 2024; 23:241. [PMID: 39118087 PMCID: PMC11308666 DOI: 10.1186/s12944-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND This study aimed to explore the potential associations between trans fatty acid (TFA) and α-klotho levels. METHODS Datasets from the 2009-2010 National Health and Nutrition Examination Survey (NHANES) were analysed for this study. Multivariable linear regression and restricted cubic spline (RCS) analyses were performed to examine the relationships between plasma TFA and serum α-klotho levels. RESULTS A total of 1,205 participants were included, with a geometric mean (GM) of 803.60 (95% CI: 787.45, 820.00) pg/mL for serum α-klotho levels. RCS analysis revealed L-shaped relationships between TFA and α-klotho levels. The inflection points for palmitelaidic acid (PA), vaccinic acid (VA), elaidic acid (EA), and total TFA levels were 4.55, 20.50, 18.70, and 46.40 µmol/L, respectively. Before reaching the inflection point, serum α-klotho levels were negatively correlated with plasma PA, VA, EA and total TFA levels, with β values (95% CI) of -0.15 (-0.24, -0.06), -0.16 (-0.23, -0.09), -0.14 (-0.22, -0.05) and - 0.19 (-0.27, -0.11), respectively. Linolelaidic acid (LA) levels exhibited an inverse and linear association with α-klotho levels ( Pnonlinearity=0.167, Poverall<0.001). L-shaped relationships between TFA and α-klotho levels were also observed in the subgroups of participants who were aged < 65 years, were male, did not exercise, were ex-smokers, and were overweight/obese. CONCLUSIONS L-shaped correlations between plasma PA, VA, EA, and total TFA levels and serum α-klotho levels were observed among adults in the United States.
Collapse
Affiliation(s)
- Yali Liang
- Department of Occupational and Environmental Health, School of Public Health, Wannan Medical College, Wuhu, China
| | - Yu Zhu
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Min Zhang
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Yuxiao Zhang
- School of Public Health, Wannan Medical College, Wuhu, China
| | | | - Xinzhi Wang
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Fan Yu
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Jie Ma
- Department of Occupational and Environmental Health, School of Public Health, Wannan Medical College, Wuhu, China.
| | - Yue'e Huang
- Department of Occupational and Environmental Health, School of Public Health, Wannan Medical College, Wuhu, China.
| |
Collapse
|
9
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
10
|
Zhou J, Fan Z, Bi Y, Li D, Chen X, Hou K, Ji S. The significance of serum Klotho to hearing loss: a potential protector under noise pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104464-104476. [PMID: 37700133 DOI: 10.1007/s11356-023-29788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
The issue of hearing protection in the presence of noise pollution is of great importance in the fields of environmental science and clinical medicine. Currently, the clinical significance of Klotho in relation to hearing has not been revealed. The aim of this study was to examine the correlation between serum Klotho levels and Pure Tone Average (PTA) hearing thresholds among individuals in the U.S.. The analysis involved a sample of 1,781 individuals aged 20 to 69, obtained from the 2007-2012 National Health and Nutrition Examination Survey. Various methods were utilized for the analysis, including univariate and multivariate linear regression, stratified analysis, smooth curve fitting, a two-segment linear regression model, and log-likelihood ratio analysis. The results of the univariate analysis indicated that serum Klotho concentration, age, education level, hypertension, diabetes, and smoking all exhibited a significant influence on PTAs. After adjusting for potential confounding factors, it was observed that a decrease in serum Klotho was significantly associated with PTA thresholds at low frequency (β = -0.002; 95% CI: -0.003, -0.001; P = 0.004), speech frequency (β = -0.002; 95% CI: -0.003, -0.001; P = 0.007), and high frequency (β = -0.002; 95% CI: -0.003, -0.001; P = 0.045). Specifically, for every 1 pg/ml decrease in serum Klotho concentration, the PTAs increased by 0.002 dB. Moreover, age and gender-specific analyses revealed significant associations. For individuals aged 59-69, a significant association was found between serum Klotho concentration and high-frequency PTA (β = -4.153; 95% CI: -7.948, -0.358; P = 0.032). Additionally, among females, significant associations were observed between serum Klotho concentration and speech-frequency PTA (β = -1.648, 95% CI: -3.197, -0.099; P = 0.037) as well as high-frequency PTA (β = -3.046; 95% CI: -5.319, -0.772; P = 0.009). Finally, the results of smooth curve fitting and threshold effect analyses indicated a potential negative linear correlation between serum Klotho concentration and PTA thresholds. In conclusion, a lower level of serum Klotho was found to be associated with increased hearing thresholds, particularly among the elderly population. This finding has significant implications for the prevention and treatment of hearing damage.
Collapse
Affiliation(s)
- Jingcheng Zhou
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, 100083, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100083, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, 100083, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100083, China
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China
| | - Zheqi Fan
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China
| | - Yiming Bi
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China
| | - Dingchang Li
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China
| | - Xuemin Chen
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, 100083, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100083, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, 100083, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100083, China
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China
| | - Kun Hou
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, 100083, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100083, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, 100083, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100083, China
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China
| | - Shuaifei Ji
- Chinese PLA General Hospital and PLA Medical College, Beijing, 100083, China.
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100083, China.
| |
Collapse
|
11
|
Castner SA, Gupta S, Wang D, Moreno AJ, Park C, Chen C, Poon Y, Groen A, Greenberg K, David N, Boone T, Baxter MG, Williams GV, Dubal DB. Longevity factor klotho enhances cognition in aged nonhuman primates. NATURE AGING 2023; 3:931-937. [PMID: 37400721 PMCID: PMC10432271 DOI: 10.1038/s43587-023-00441-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
Cognitive dysfunction in aging is a major biomedical challenge. Whether treatment with klotho, a longevity factor, could enhance cognition in human-relevant models such as in nonhuman primates is unknown and represents a major knowledge gap in the path to therapeutics. We validated the rhesus form of the klotho protein in mice showing it increased synaptic plasticity and cognition. We then found that a single administration of low-dose, but not high-dose, klotho enhanced memory in aged nonhuman primates. Systemic low-dose klotho treatment may prove therapeutic in aging humans.
Collapse
Affiliation(s)
- Stacy A Castner
- Department of Psychiatry and VA Connecticut Healthcare System, Yale School of Medicine, West Haven, CT, USA
| | - Shweta Gupta
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Arturo J Moreno
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Cana Park
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Chen Chen
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Yan Poon
- Unity Biotechnology, Brisbane, CA, USA
| | | | | | | | - Tom Boone
- Tom Boone Consulting, Newbury Park, CA, USA
| | - Mark G Baxter
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Graham V Williams
- Department of Psychiatry and VA Connecticut Healthcare System, Yale School of Medicine, West Haven, CT, USA
| | - Dena B Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
12
|
Tozer L. Anti-ageing protein injection boosts monkeys' memories. Nature 2023; 619:234. [PMID: 37402904 DOI: 10.1038/d41586-023-02214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
|
13
|
Han ZZ, Fleet A, Larrieu D. Can accelerated ageing models inform us on age-related tauopathies? Aging Cell 2023; 22:e13830. [PMID: 37013265 PMCID: PMC10186612 DOI: 10.1111/acel.13830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Ageing is the greatest risk factor of late-onset neurodegenerative diseases. In the realm of sporadic tauopathies, modelling the process of biological ageing in experimental animals forms the foundation of searching for the molecular origin of pathogenic tau and developing potential therapeutic interventions. Although prior research into transgenic tau models offers valuable lessons for studying how tau mutations and overexpression can drive tau pathologies, the underlying mechanisms by which ageing leads to abnormal tau accumulation remains poorly understood. Mutations associated with human progeroid syndromes have been proposed to be able to mimic an aged environment in animal models. Here, we summarise recent attempts in modelling ageing in relation to tauopathies using animal models that carry mutations associated with human progeroid syndromes, or genetic elements unrelated to human progeroid syndromes, or have exceptional natural lifespans, or a remarkable resistance to ageing-related disorders.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Alex Fleet
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Delphine Larrieu
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| |
Collapse
|
14
|
Sorrentino F, Fenoglio C, Sacchi L, Serpente M, Arighi A, Carandini T, Arosio B, Ferri E, Arcaro M, Visconte C, Rotondo E, Scarpini E, Galimberti D. Klotho Gene Expression Is Decreased in Peripheral Blood Mononuclear Cells in Patients with Alzheimer's Disease and Frontotemporal Dementia. J Alzheimers Dis 2023; 94:1225-1231. [PMID: 37393504 DOI: 10.3233/jad-230322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND The longevity gene Klotho (KL) was recently associated with neurodegenerative diseases including Alzheimer's disease (AD). Its role in the brain has not been completely elucidated, although evidence suggests that KL-VS heterozygosity is associated with a reduced risk of AD in Apolipoprotein E ɛ4 carriers. Conversely, no data about genetic association with frontotemporal dementia (FTD) are available so far. OBJECTIVE To investigate the involvement of KL in AD and FTD by the determination of the genetic frequency of KL-VS variant and the expression analysis of KL gene. METHODS A population consisting of 438 patients and 240 age-matched controls was enrolled for the study. KL-VS and APOE genotypes were assessed by allelic discrimination through a QuantStudio 12K system. KL gene expression analysis was performed in a restricted cohort of patients consisting of 43 AD patients, 41 FTD patients and 19 controls. KL gene expression was assessed in peripheral blood mononuclear cells with specific TaqMan assay. Statistical analysis was performed using GraphPad 9 Prims software. RESULTS KL-VS frequency was comparable to the ones found in literature and no differences were found in both allelic and genotypic frequencies between patients and controls were found. Conversely, KL expression levels were significantly lower in AD and FTD patients compared with controls (mean fold regulation - 4.286 and - 6.561 versus controls in AD and FTD, respectively, p = 0.0037). CONCLUSION This is the first study investigating KL in FTD. We showed a decreased expression of the gene in AD and FTD, independent of the genotype, suggesting a role of Klotho in common steps during neurodegeneration.
Collapse
Affiliation(s)
| | - Chiara Fenoglio
- University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Maria Serpente
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Evelyn Ferri
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Arcaro
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Emanuela Rotondo
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|