1
|
Mehta I, Verma M, Quasmi MN, Kumar D, Jangra A. Emerging roles of histone modifications in environmental toxicants-induced neurotoxicity. Toxicology 2025; 515:154164. [PMID: 40286899 DOI: 10.1016/j.tox.2025.154164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Epigenetics describes itself as heritable modifications in gene function that eventually alter gene and protein expression levels without any alterations in the genome sequence. Epigenetic alterations are closely association with several neurological diseases and neurodevelopmental disorders. In recent years, growing shreds of evidences suggested the crucial role of epigenetic modifications especially histone modifications in environmental toxicants-induced neurotoxicity. This review will give an overview of the state of knowledge on histone alterations and the ways in which environmental pollutants bisphenol-A, heavy metals, pesticides, and phthalates affects post-translational modifications to alter gene transcription and cause neurological abnormalities. We provide a brief summary of the results of recent research on the effects of environmental toxins on each of the prior identified processes of histone modifications, including the neurological consequences and changes in histones. There is also discussion of the limitations of current research findings. Furthermore, this review aims to provide viewers a comprehensive knowledge regarding the role of histone modifications in various environmental toxicants-induced neurological diseases and offers insights for future research.
Collapse
Affiliation(s)
- Ishita Mehta
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - Manika Verma
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - Mohammed Nazish Quasmi
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, Haryana 123031, India.
| |
Collapse
|
2
|
Rodríguez D, Desai G, Barg G, Queirolo EI, Parsons PJ, Palmer CD, Beledo MI, Kordas K. Low-level arsenic exposure, childhood neighborhood disadvantage, and executive functions in adolescents from Montevideo, Uruguay. ENVIRONMENTAL RESEARCH 2025; 279:121791. [PMID: 40335006 DOI: 10.1016/j.envres.2025.121791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
INTRODUCTION Low-level arsenic (As) exposure is linked to cognitive deficits, but its impact on specific executive functions (EF) in adolescents is not well understood. Additionally, neighborhood socioeconomic context may interact with As exposure to influence cognitive outcomes. This study examines associations between blood As levels, neighborhood disadvantage, and EF performance in adolescents from Montevideo, Uruguay. METHODS We analyzed data from 344 adolescents in the Salud Ambiental Montevideo (SAM) cohort, where blood As levels were measured at two time points, with values averaged and log2-transformed for analysis. EFs, including working memory, inhibitory control, cognitive flexibility, and fluid cognition, were assessed using the NIH Cognitive Toolbox. Neighborhood disadvantage (ND) was represented as a factor encompassing sociodemographic indicators. Multiple imputation was used to handle missing data, and linear regression models tested associations between As exposure, EFs, and potential interactions with ND. Furthermore, we explored effect modification by age (young adolescents <11.6 years, older adolescents ≥11.6 years). RESULTS Based on multivariable models, there was no evidence for an association between blood As and EFs or fluid cognition or of interactions with neighborhood disadvantage. Exploratory analyses revealed evidence of effect modification by age, with inverse associations between As exposure and inhibitory control and working memory at younger ages. CONCLUSION There was no evidence for an association between low-level blood As and EFs in adolescents overall, but age-related susceptibility to As was suggested for younger ages. Further research on low-level As exposure in adolescents is needed to better understand critical windows of susceptibility and socioeconomic contexts for neurotoxic effects of As.
Collapse
Affiliation(s)
- Danelly Rodríguez
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| | - Gabriel Barg
- Department of Neuroscience and Learning, Catholic University of Uruguay, Montevideo, Uruguay
| | - Elena I Queirolo
- Department of Neuroscience and Learning, Catholic University of Uruguay, Montevideo, Uruguay
| | - Patrick J Parsons
- Laboratory of Inorganic and Nuclear Chemistry, Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, University at Albany, Albany, NY, USA
| | - Christopher D Palmer
- Laboratory of Inorganic and Nuclear Chemistry, Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, University at Albany, Albany, NY, USA
| | - María Inés Beledo
- Department of Neuroscience and Learning, Catholic University of Uruguay, Montevideo, Uruguay
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, USA.
| |
Collapse
|
3
|
Du N, Chang D, Boisvert J, Hron B, Rosen R, Punshon T, Silvester J. Effect of Adopting a Gluten-Free Diet on Exposure to Arsenic and Other Heavy Metals in Children With Celiac Disease: A Prospective Cohort Study. Am J Gastroenterol 2025; 120:883-889. [PMID: 39487831 PMCID: PMC11968247 DOI: 10.14309/ajg.0000000000003117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/23/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Lifelong adherence to a gluten-free diet (GFD) is the primary treatment of celiac disease (CeD), a gluten-driven enteropathy. Concerns have been raised about increased exposure to arsenic from a GFD because rice, which naturally bioaccumulates arsenic, is commonly used as a substitute for gluten-containing grains such as wheat. We hypothesize that arsenic exposure increases in newly diagnosed children with CeD after they adopt a GFD. METHODS This is a single-center prospective longitudinal cohort study of children (age 2-18 years) with elevated celiac serology who underwent a diagnostic endoscopy before initiation of a GFD between January and May 2022. The primary outcome was change in urinary arsenic concentration between endoscopy and after 6 months on a GFD. RESULTS Of the 67 recruited participants, 50 had a biopsy diagnostic of CeD and were invited to continue the study. Thirty-five participants completed sample collection. Participants were from a middle-class, well-educated population that was predominantly White with presenting symptoms of abdominal pain (51%) and diarrhea (29%). After 6 months on a GFD, there was a significant increase in the median urinary arsenic concentration (3.3 µg/L vs 13.6 µg/L, P = 0.000004). In regression models, family history of CeD and Hispanic ethnicity were associated with having a higher urinary arsenic concentration after 6 months on a GFD. DISCUSSION Children with newly diagnosed CeD have increased arsenic exposure shortly after transitioning to a GFD. While the arsenic levels were well below acutely toxic concentrations, the clinical impact of chronic exposure to mildly elevated arsenic levels is unknown.
Collapse
Affiliation(s)
- Nan Du
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Denis Chang
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Jason Boisvert
- University of Rochester School of Medicine, Rochester, NY, USA
| | - Bridget Hron
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Rachel Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | | | - Jocelyn Silvester
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, USA
- Celiac Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Tian Y, Hou Q, Zhang M, Gao E, Wu Y. Exposure to arsenic and cognitive impairment in children: A systematic review. PLoS One 2025; 20:e0319104. [PMID: 40009645 PMCID: PMC11864541 DOI: 10.1371/journal.pone.0319104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
OBJECTIVE Arsenic exposure is a significant public health concern, particularly for its impact on children's cognitive development. Arsenic, a prevalent environmental toxin, is known to disrupt various biological pathways, leading to cognitive deficits and neurodevelopmental issues. Understanding the long-term effects and mechanisms underlying arsenic-induced cognitive impairments is crucial for devising effective interventions. METHODS This systematic review included observational and experimental studies focusing on children under 18 years exposed to arsenic through drinking water, food, or other environmental sources. Studies were selected through comprehensive database searches, encompassing articles that measured cognitive outcomes via standardized tests. The synthesis was primarily narrative, given the heterogeneity in study designs, exposure levels, and outcomes. RESULTS The review analysed findings from 24 studies, showing a consistent inverse relationship between arsenic exposure and cognitive performance in children. Higher arsenic levels were associated with lower IQ scores, slower processing speeds, and impaired memory and language skills. These cognitive deficits were evident across diverse geographical regions and persisted even after adjusting for sociodemographic factors. The studies highlighted the potential for both immediate and long-term cognitive effects, underscoring the importance of early-life exposure. CONCLUSIONS Arsenic exposure has the potential to impair cognitive development in children. Nonetheless, quantitative meta-analysis is necessary to deduce any conclusions related to its impact. Public health efforts must prioritize reducing arsenic exposure through improved water quality and community-awareness programs. Future research should focus on longitudinal studies to better understand the dose-response relationship and the effectiveness of intervention strategies. SYSTEMATIC REVIEW REGISTRATION Prospero, CRD42024544442.
Collapse
Affiliation(s)
- Yumei Tian
- School of Nursing, Hunan Medical University, Huaihua City, Hunan Province, China
| | - Qi Hou
- Wuhan Polytechnic University, School of Life Sciences and Technology, Wuhan City, Hubei Province, China
| | - Mingyue Zhang
- School of Nursing, Ningxia Medical University, Yinchuan City, Ningxia Province, China
| | - Er Gao
- School of Nursing, Ningxia Medical University, Yinchuan City, Ningxia Province, China
| | - Yue Wu
- School of Nursing, Ningxia Medical University, Yinchuan City, Ningxia Province, China
| |
Collapse
|
5
|
Moriarity RJ, Wilton MJ, Tsuji LJS, Sarkar A, Liberda EN. Evaluating human health risks from exposure to agricultural soil contaminants using one- and two-dimensional Monte Carlo simulations. ENVIRONMENTAL RESEARCH 2025; 265:120391. [PMID: 39577724 DOI: 10.1016/j.envres.2024.120391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/27/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
The health and well-being of Indigenous Peoples are closely connected to the state of their lands. While natural soils are important for food security initiatives within these communities, they may also expose people to harmful contaminants. Consequently, this study - guided by Indigenous community members and leaders - evaluates the human health risks associated with contaminants in soils intended for agricultural purposes on Indigenous Peoples' lands in regions of Australia and Canada. Soil samples were collected from 47 sites in seven locations and analyzed for metals, metalloids, and organochlorine pesticides. Non-carcinogenic and carcinogenic risks were assessed for children, youths, and adults using one- and two-dimensional Monte Carlo simulations. The results indicate that there is a non-carcinogenic risk of exposure to lead (Pb) for children (HQ = 1.83) in Australia and an oral ingestion risk due to inorganic arsenic (As) for children (HQ = 1.05) in Newfoundland. Carcinogenic risks from As exposure were also identified for children (R = 1.68 × 10-5) and adults (R = 1.18 × 10-5) in Newfoundland from oral ingestion. However, no non-carcinogenic or carcinogenic risk from dermal exposure was found for all tested contaminants. The results indicate a potential need for targeted interventions, such as soil remediation, when and where possible, or community education, to reduce exposure risks.
Collapse
Affiliation(s)
- Robert J Moriarity
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, ON, Canada.
| | - Meaghan J Wilton
- Department of Health and Society, University of Toronto, Toronto, ON, Canada
| | - Leonard J S Tsuji
- Department of Health and Society, University of Toronto, Toronto, ON, Canada; Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada
| | - Atanu Sarkar
- Division of Community Health and Humanities, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Eric N Liberda
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, ON, Canada
| |
Collapse
|
6
|
Shu L, Yang G, Liu S, Huang N, Wang R, Yang M, Chen C. A comprehensive review on arsenic exposure and risk assessment in infants and young children diets: Health implications and mitigation interventions in a global perspective. Compr Rev Food Sci Food Saf 2025; 24:e70063. [PMID: 39731717 DOI: 10.1111/1541-4337.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 12/30/2024]
Abstract
The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications. This review aims to fill these gaps by providing a comprehensive synthesis of epidemiological evidence related to arsenic exposure during early life, with an emphasis on the underlying mechanisms of arsenic toxicity that contribute to adverse health outcomes, including neurodevelopmental impairments, immune dysfunction, cardiovascular diseases, and cancer. Further, by systematically comparing dietary arsenic exposure in infants across Asia, the Americas, and Europe, our findings reveal that infants in Bangladesh, Pakistan, and India, exposed to levels significantly exceeding the health reference value range of 0.3-8 µg/kg/day, are particularly vulnerable to dietary inorganic arsenic. This comparative analysis not only highlights geographic disparities in exposure but also underscores the variability in regulatory frameworks. Finally, the review identifies early life as a critical window for dietary arsenic exposure and offers evidence-based recommendations for mitigating arsenic contamination in infant foods. These strategies include improved agricultural practices, dietary modifications, stricter regulatory limits on arsenic in infant products, and encouragement of low-arsenic dietary alternatives. Our work establishes the framework for future research and policy development aimed at reducing the burden of arsenic exposure from source to table and effectively addressing this significant public health challenge.
Collapse
Affiliation(s)
- Lin Shu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengxue Yang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Vaid U. Cognitive Health Costs of Poor Housing for Women: Exploring Executive Function and Housing Stress in Urban Slums in India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1710. [PMID: 39767549 PMCID: PMC11727654 DOI: 10.3390/ijerph21121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
An increasing body of literature has investigated the implications of housing quality on health, confirming the negative consequences of poor housing quality on physical and mental health. Despite this increased focus on the salutogenic impacts of housing, the relationship between housing quality and cognitive health remains understudied. This study examined how the housing quality in urban informal settlements, where living conditions are often substandard, affects women's cognitive functioning, with a specific focus on executive function (EF) skills. EF is a decision-making system that enables us to make decisions using working memory and attentional control. This study addressed two key questions: (1) Is housing quality associated with EF skills? (2) Does perceived housing stress experienced by women mediate the housing-EF relationship? A standardized observer-based tool assessed housing quality, psychometric instruments measured EF skills, and a 12-item questionnaire evaluated perceived housing stress. Results indicated that better housing quality is positively associated with higher EF skills, with housing stress acting as a mediating factor in this relationship. These findings have important implications for both health and housing policies. Investments in improving housing conditions can yield cognitive health benefits for women, and addressing stress-inducing housing factors could further enhance cognitive outcomes.
Collapse
Affiliation(s)
- Uchita Vaid
- Design Studies Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Domingo-Relloso A, McGraw KE, Heckbert SR, Luchsinger JA, Schilling K, Glabonjat RA, Martinez-Morata I, Mayer M, Liu Y, Wood AC, Goldsmith J, Hayden KM, Habes M, Nasrallah IM, Bryan RN, Rashid T, Post WS, Rotter JI, Palta P, Valeri L, Hughes TM, Navas-Acien A. Urinary Metal Levels, Cognitive Test Performance, and Dementia in the Multi-Ethnic Study of Atherosclerosis. JAMA Netw Open 2024; 7:e2448286. [PMID: 39621345 PMCID: PMC11612832 DOI: 10.1001/jamanetworkopen.2024.48286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 12/06/2024] Open
Abstract
Importance Metals are established neurotoxicants, but evidence of their association with cognitive performance at low chronic exposure levels is limited. Objective To investigate the association of urinary metal levels, individually and as a mixture, with cognitive tests and dementia diagnosis, including effect modification by apolipoprotein ε4 allele (APOE4). Design, Setting, and Participants The multicenter prospective cohort Multi-Ethnic Study of Atherosclerosis (MESA) was started from July 2000 to August 2002, with follow-up through 2018. A total of 6303 MESA participants were included. Data analysis was performed from October 12, 2023, to June 13, 2024. Exposure Urine samples were collected at baseline (2000-2002), and arsenic, cadmium, cobalt, copper, lead, manganese, tungsten, uranium, and zinc levels were measured in 2020-2022. Main Outcomes and Measures Digit Symbol Coding (DSC) (n = 3819) (possible score range, 0-133), Cognitive Abilities Screening Instrument (CASI) (n = 3918) (possible score range, 0-100), and Digit Span (DS) (n = 4176) (possible score range, 0-30) cognitive tests were administered in 2010-2012; higher scores of each test indicate increasing levels of positive response. Results A total of 6303 participants were followed up for dementia diagnosis through 2018. The median age at baseline was 60 (IQR, 53-70) years, and 3303 participants (52.4%) were female. The median cognitive scores were 51 (IQR, 38-64) for DSC, 90 (IQR, 84-95) for CASI, and 15 (IQR, 12-18) for DS. There were 559 cases of dementia through the follow-up period. Inverse associations with DSC were identified: mean differences in z scores per IQR increase in metal levels were -0.03 (95% CI, -0.07 to 0.00) for arsenic, -0.05 (95% CI, -0.09 to -0.004) for cobalt, -0.05 (95% CI, -0.07 to -0.02) for copper, -0.04 (95% CI, -0.08 to -0.001) for uranium, and -0.03 (95% CI, -0.06 to -0.01) for zinc. Among 1058 APOE4 carriers, manganese was also inversely associated with DSC. The joint mean difference of DSC comparing percentile 95th with the 25th of the 9-metal mixture was -0.30 (95% CI, -0.47 to -0.14) for APOE4 carriers and -0.10 (95% CI, -0.19 to -0.01) for noncarriers. Arsenic, cadmium, cobalt, copper, tungsten, uranium, and zinc were individually associated with dementia, with hazard ratios per IQR of metal ranging from 1.15 (95% CI, 1.03-1.29) for tungsten to 1.46 (95% CI, 1.06-2.02) for uranium. The joint hazard ratio of dementia comparing percentiles 95th with the 25th of the 9-metal mixture was 1.71 (95% CI, 1.24-3.89), with no significant difference by APOE4 status. Conclusions and Relevance In this study, participants with higher concentrations of metals in their urine, compared with those with lower concentrations, had worse performance on cognitive tests and greater likelihood of developing dementia. The findings of this multicenter multiethnic cohort study might inform screening and potential interventions for prevention of dementia based on individuals' metal exposure levels and genetic profiles.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
- Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Katlyn E. McGraw
- Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington School of Public Health, Seattle
| | - Jose A. Luchsinger
- Division of General Medicine, Columbia University Department of Medicine, New York, New York
| | - Kathrin Schilling
- Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Ronald A. Glabonjat
- Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Irene Martinez-Morata
- Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Melanie Mayer
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
| | - Yongmei Liu
- Department of Cardiology, Duke University School of Medicine, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Alexis C. Wood
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Kathleen M. Hayden
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio
| | | | - R. Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Tanweer Rashid
- Neuroimage Analytics Laboratory, University of Texas, San Antonio, San Antonio
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Priya Palta
- Department of Radiology, University of North Carolina School of Medicine, Chapell Hill
| | - Linda Valeri
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Timothy M. Hughes
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Ana Navas-Acien
- Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| |
Collapse
|
9
|
Vaidya N, Marquand AF, Nees F, Siehl S, Schumann G. The impact of psychosocial adversity on brain and behaviour: an overview of existing knowledge and directions for future research. Mol Psychiatry 2024; 29:3245-3267. [PMID: 38658773 PMCID: PMC11449794 DOI: 10.1038/s41380-024-02556-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Environmental experiences play a critical role in shaping the structure and function of the brain. Its plasticity in response to different external stimuli has been the focus of research efforts for decades. In this review, we explore the effects of adversity on brain's structure and function and its implications for brain development, adaptation, and the emergence of mental health disorders. We are focusing on adverse events that emerge from the immediate surroundings of an individual, i.e., microenvironment. They include childhood maltreatment, peer victimisation, social isolation, affective loss, domestic conflict, and poverty. We also take into consideration exposure to environmental toxins. Converging evidence suggests that different types of adversity may share common underlying mechanisms while also exhibiting unique pathways. However, they are often studied in isolation, limiting our understanding of their combined effects and the interconnected nature of their impact. The integration of large, deep-phenotyping datasets and collaborative efforts can provide sufficient power to analyse high dimensional environmental profiles and advance the systematic mapping of neuronal mechanisms. This review provides a background for future research, highlighting the importance of understanding the cumulative impact of various adversities, through data-driven approaches and integrative multimodal analysis techniques.
Collapse
Affiliation(s)
- Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Sebastian Siehl
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| |
Collapse
|
10
|
Kashyap R, Holla B, Bhattacharjee S, Sharma E, Mehta UM, Vaidya N, Bharath RD, Murthy P, Basu D, Nanjayya SB, Singh RL, Lourembam R, Chakrabarti A, Kartik K, Kalyanram K, Kumaran K, Krishnaveni G, Krishna M, Kuriyan R, Kurpad SS, Desrivieres S, Purushottam M, Barker G, Orfanos DP, Hickman M, Heron J, Toledano M, Schumann G, Benegal V. Childhood adversities characterize the heterogeneity in the brain pattern of individuals during neurodevelopment. Psychol Med 2024; 54:2599-2611. [PMID: 38509831 DOI: 10.1017/s0033291724000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Several factors shape the neurodevelopmental trajectory. A key area of focus in neurodevelopmental research is to estimate the factors that have maximal influence on the brain and can tip the balance from typical to atypical development. METHODS Utilizing a dissimilarity maximization algorithm on the dynamic mode decomposition (DMD) of the resting state functional MRI data, we classified subjects from the cVEDA neurodevelopmental cohort (n = 987, aged 6-23 years) into homogeneously patterned DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD (indicative of atypical development in 178 subjects). RESULTS Significant DMD differences were primarily identified in the default mode network (DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were comparable in cognitive performance, the atypical group had more frequent exposure to adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-behavior correlations, we found that correlation patterns between adversity and DMN dynamic modes exhibited age-dependent variations for atypical subjects, hinting at differential utilization of the DMN due to chronic adversities. CONCLUSION Adversities (particularly abuse) maximally influence the DMN during neurodevelopment and lead to the failure in the development of a coherent DMN system. While DMN's integrity is preserved in typical development, the age-dependent variability in atypically developing individuals is contrasting. The flexibility of DMN might be a compensatory mechanism to protect an individual in an abusive environment. However, such adaptability might deprive the neural system of the faculties of normal functioning and may incur long-term effects on the psyche.
Collapse
Affiliation(s)
- Rajan Kashyap
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Bharath Holla
- Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sagarika Bhattacharjee
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Eesha Sharma
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nilakshi Vaidya
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany
- Department of Psychiatry, Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Pratima Murthy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Debashish Basu
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Roshan Lourembam
- Department of Psychiatry, Regional Institute of Medical Sciences, Imphal, India
| | - Amit Chakrabarti
- Division of Mental Health, ICMR-Centre for Ageing and Mental Health, Kolkata, India
| | - Kamakshi Kartik
- Rishi Valley Rural Health Centre, Madanapalle, Chittoor, India
| | | | - Kalyanaraman Kumaran
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Ghattu Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
| | - Murali Krishna
- Health Equity Cluster, Institute of Public Health, Bangalore, India
| | - Rebecca Kuriyan
- Division of Nutrition, St John's Research Institute, Bengaluru, India
| | - Sunita Simon Kurpad
- Department of Psychiatry & Department of Medical Ethics, St John's Research Institute, Bengaluru, India
| | - Sylvane Desrivieres
- SGDP Centre, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | - Meera Purushottam
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gareth Barker
- Department of Neuroimaging, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | | | - Matthew Hickman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jon Heron
- Center for Public Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Mireille Toledano
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Gunter Schumann
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany
- PONS Centre, Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Vivek Benegal
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
11
|
Demissie S, Mekonen S, Awoke T, Mengistie B. Assessing Acute and Chronic Risks of Human Exposure to Arsenic: A Cross-Sectional Study in Ethiopia Employing Body Biomarkers. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241257365. [PMID: 38828044 PMCID: PMC11141224 DOI: 10.1177/11786302241257365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024]
Abstract
Background Arsenic, a widely recognized and highly toxic carcinogen, is regarded as one of the most hazardous metalloids globally. However, the precise assessment of acute and chronic human exposure to arsenic and its contributing factors remains unclear in Ethiopia. Objective The primary goal of this study was to assess the levels of acute and chronic arsenic exposure, as well as the contributing factors, using urine and nail biomarkers. Methods A community-based analytical cross-sectional study design was employed for this study. Agilent 7900 series inductively coupled plasma mass spectrometry was used to measure the concentrations of arsenic in urine and nail samples. We performed a multiple linear regression analysis to assess the relationships between multiple predictors and outcome variables. Results The concentration of arsenic in the urine samples ranged from undetectable (<0.01) to 126.13, with a mean and median concentration of 16.02 and 13.5 μg/L, respectively. However, the mean and median concentration of arsenic in the nails was 1.01, ranging from undetectable (<0.01 μg/g) to 2.54 μg/g. Furthermore, Pearson's correlation coefficient analysis showed a significant positive correlation between arsenic concentrations in urine and nail samples (r = 0.432, P < .001). Also, a positive correlation was observed between urinary (r = 0.21, P = .007) and nail (r = 0.14, P = .044) arsenic concentrations and the arsenic concentration in groundwater. Groundwater sources and smoking cigarettes were significantly associated with acute arsenic exposure. In contrast, groundwater sources, cigarette smoking, and the frequency of showers were significantly associated with chronic arsenic exposure. Conclusions The study's findings unveiled the widespread occurrence of both acute and chronic arsenic exposure in the study area. Consequently, it is crucial to prioritize the residents in the study area and take further measures to prevent both acute and chronic arsenic exposure.
Collapse
Affiliation(s)
- Solomon Demissie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| | - Seblework Mekonen
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bezatu Mengistie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| |
Collapse
|
12
|
Fu Z, Batta I, Wu L, Abrol A, Agcaoglu O, Salman MS, Du Y, Iraji A, Shultz S, Sui J, Calhoun VD. Searching Reproducible Brain Features using NeuroMark: Templates for Different Age Populations and Imaging Modalities. Neuroimage 2024; 292:120617. [PMID: 38636639 PMCID: PMC11416721 DOI: 10.1016/j.neuroimage.2024.120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
A primary challenge to the data-driven analysis is the balance between poor generalizability of population-based research and characterizing more subject-, study- and population-specific variability. We previously introduced a fully automated spatially constrained independent component analysis (ICA) framework called NeuroMark and its functional MRI (fMRI) template. NeuroMark has been successfully applied in numerous studies, identifying brain markers reproducible across datasets and disorders. The first NeuroMark template was constructed based on young adult cohorts. We recently expanded on this initiative by creating a standardized normative multi-spatial-scale functional template using over 100,000 subjects, aiming to improve generalizability and comparability across studies involving diverse cohorts. While a unified template across the lifespan is desirable, a comprehensive investigation of the similarities and differences between components from different age populations might help systematically transform our understanding of the human brain by revealing the most well-replicated and variable network features throughout the lifespan. In this work, we introduced two significant expansions of NeuroMark templates first by generating replicable fMRI templates for infants, adolescents, and aging cohorts, and second by incorporating structural MRI (sMRI) and diffusion MRI (dMRI) modalities. Specifically, we built spatiotemporal fMRI templates based on 6,000 resting-state scans from four datasets. This is the first attempt to create robust ICA templates covering dynamic brain development across the lifespan. For the sMRI and dMRI data, we used two large publicly available datasets including more than 30,000 scans to build reliable templates. We employed a spatial similarity analysis to identify replicable templates and investigate the degree to which unique and similar patterns are reflective in different age populations. Our results suggest remarkably high similarity of the resulting adapted components, even across extreme age differences. With the new templates, the NeuroMark framework allows us to perform age-specific adaptations and to capture features adaptable to each modality, therefore facilitating biomarker identification across brain disorders. In sum, the present work demonstrates the generalizability of NeuroMark templates and suggests the potential of new templates to boost accuracy in mental health research and advance our understanding of lifespan and cross-modal alterations.
Collapse
Affiliation(s)
- Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States.
| | - Ishaan Batta
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Lei Wu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Anees Abrol
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Oktay Agcaoglu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Mustafa S Salman
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Yuhui Du
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Sarah Shultz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
13
|
Ma H, Yang W, Li Y, Li J, Yang X, Chen Y, Ma Y, Sun D, Sun H. Effects of sodium arsenite exposure on behavior, ultrastructure and gene expression of brain in adult zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116107. [PMID: 38382348 DOI: 10.1016/j.ecoenv.2024.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Arsenic, a common metal-like substance, has been demonstrated to pose potential health hazards and induce behavioral changes in humans and rodents. However, the chronic neurotoxic effects of arsenic on aquatic animals are still not fully understood. This study aimed to investigate the effects of arsenic exposure on adult zebrafish by subjecting 3-month-old zebrafish to three different sodium arsenite water concentrations: 0 μg/L (control group), 50 μg/L, and 500 μg/L, over a period of 30 days. To assess the risk associated with arsenic exposure in the aquatic environment, behavior analysis, transmission electron microscopy techniques, and quantitative real-time PCR were employed. The behavior of adult zebrafish was evaluated using six distinct tests: the mirror biting test, shoaling test, novel tank test, social preference test, social recognition test, and T maze. Following the behavioral tests, the brains of zebrafish were dissected and collected for ultrastructural examination and gene expression analysis. The results revealed that sodium arsenite exposure led to a significant reduction in aggression, cohesion, social ability, social cognition ability, learning, and memory capacity of zebrafish. Furthermore, ultrastructure and genes regulating behavior in the zebrafish brain were adversely affected by sodium arsenite exposure.
Collapse
Affiliation(s)
- Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Yang Li
- The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu Distinct, Nanchang, Jiangxi 330006, China.
| | - Jing Li
- Department of Electron Microscopy Center, Faculty of Basic Medical Science, Harbin Medical University, Harbin, China.
| | - Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Yunyan Chen
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| | - Yifan Ma
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| |
Collapse
|
14
|
Embry L, Bingen K, Conklin HM, Hardy S, Jacola LM, Marchak JG, Paltin I, Pelletier W, Devine KA. Children's Oncology Group's 2023 blueprint for research: Behavioral science. Pediatr Blood Cancer 2023; 70 Suppl 6:e30557. [PMID: 37430416 PMCID: PMC10528542 DOI: 10.1002/pbc.30557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
As survival rates for childhood cancer have improved, there has been increasing focus on identifying and addressing adverse impacts of cancer and its treatment on children and their families during treatment and into survivorship. The Behavioral Science Committee (BSC) of the Children's Oncology Group (COG), comprised of psychologists, neuropsychologists, social workers, nurses, physicians, and clinical research associates, aims to improve the lives of children with cancer and their families through research and dissemination of empirically supported knowledge. Key achievements of the BSC include enhanced interprofessional collaboration through integration of liaisons into other key committees within COG, successful measurement of critical neurocognitive outcomes through standardized neurocognitive assessment strategies, contributions to evidence-based guidelines, and optimization of patient-reported outcome measurement. The collection of neurocognitive and behavioral data continues to be an essential function of the BSC, in the context of therapeutic trials that are modifying treatments to maximize event-free survival, minimize adverse outcomes, and optimize quality of life. In addition, through hypothesis-driven research and multidisciplinary collaborations, the BSC will also begin to prioritize initiatives to expand the systematic collection of predictive factors (e.g., social determinants of health) and psychosocial outcomes, with overarching goals of addressing health inequities in cancer care and outcomes, and promoting evidence-based interventions to improve outcomes for all children, adolescents, and young adults with cancer.
Collapse
Affiliation(s)
- Leanne Embry
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Kristin Bingen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Heather M Conklin
- Department of Psychology and Biobehavioral Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Steven Hardy
- Division of Oncology, Children's National Hospital and Departments of Pediatrics and Psychiatry & Behavioral Sciences, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Lisa M Jacola
- Department of Psychology and Biobehavioral Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jordan Gilleland Marchak
- Emory University School of Medicine and Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Iris Paltin
- Division of Oncology, The Children's Hospital of Philadelphia Department of Child and Adolescent Psychiatry and Behavioral Sciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wendy Pelletier
- Department of Oncology, Division of Psychosocial Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Katie A Devine
- Department of Pediatrics, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|