1
|
Mathalon DH, Nicholas S, Roach BJ, Billah T, Lavoie S, Whitford T, Hamilton HK, Addamo L, Anohkin A, Bekinschtein T, Belger A, Buccilli K, Cahill J, Carrión RE, Damiani S, Dzafic I, Ebdrup BH, Izyurov I, Jarcho J, Jenni R, Jo A, Kerins S, Lee C, Martin EA, Mayol-Troncoso R, Niznikiewicz MA, Parvaz M, Pogarell O, Prieto-Montalvo J, Rabin R, Roalf DR, Rogers J, Salisbury DF, Shaik R, Shankman S, Stevens MC, Suen YN, Swann NC, Tang X, Thompson JL, Tso I, Wenzel J, Zhou JH, Addington J, Alameda L, Arango C, Breitborde NJK, Broome MR, Cadenhead KS, Calkins ME, Castillo-Passi RI, Chen EYH, Choi J, Conus P, Corcoran CM, Cornblatt BA, Diaz-Caneja CM, Ellman LM, Fusar-Poli P, Gaspar PA, Gerber C, Glenthøj LB, Horton LE, Hui CLM, Kambeitz J, Kambeitz-Ilankovic L, Keshavan MS, Kim M, Kim SW, Koutsouleris N, Kwon JS, Langbein K, Mamah D, Mittal VA, Nordentoft M, Pearlson GD, Perez J, Perkins DO, Powers AR, Sabb FW, Schiffman J, Shah JL, Silverstein SM, Smesny S, Stone WS, Strauss GP, Upthegrove R, Verma SK, Wang J, Wolf DH, Zhang T, Bouix S, Pasternak O, Cho KIK, Coleman MJ, Dwyer D, Nunez A, Tamayo Z, Wood SJ, Kahn RS, et alMathalon DH, Nicholas S, Roach BJ, Billah T, Lavoie S, Whitford T, Hamilton HK, Addamo L, Anohkin A, Bekinschtein T, Belger A, Buccilli K, Cahill J, Carrión RE, Damiani S, Dzafic I, Ebdrup BH, Izyurov I, Jarcho J, Jenni R, Jo A, Kerins S, Lee C, Martin EA, Mayol-Troncoso R, Niznikiewicz MA, Parvaz M, Pogarell O, Prieto-Montalvo J, Rabin R, Roalf DR, Rogers J, Salisbury DF, Shaik R, Shankman S, Stevens MC, Suen YN, Swann NC, Tang X, Thompson JL, Tso I, Wenzel J, Zhou JH, Addington J, Alameda L, Arango C, Breitborde NJK, Broome MR, Cadenhead KS, Calkins ME, Castillo-Passi RI, Chen EYH, Choi J, Conus P, Corcoran CM, Cornblatt BA, Diaz-Caneja CM, Ellman LM, Fusar-Poli P, Gaspar PA, Gerber C, Glenthøj LB, Horton LE, Hui CLM, Kambeitz J, Kambeitz-Ilankovic L, Keshavan MS, Kim M, Kim SW, Koutsouleris N, Kwon JS, Langbein K, Mamah D, Mittal VA, Nordentoft M, Pearlson GD, Perez J, Perkins DO, Powers AR, Sabb FW, Schiffman J, Shah JL, Silverstein SM, Smesny S, Stone WS, Strauss GP, Upthegrove R, Verma SK, Wang J, Wolf DH, Zhang T, Bouix S, Pasternak O, Cho KIK, Coleman MJ, Dwyer D, Nunez A, Tamayo Z, Wood SJ, Kahn RS, Kane JM, McGorry PD, Bearden CE, Nelson B, Woods SW, Shenton ME, Accelerating Medicines Partnership® Schizophrenia Program, Light GA. The electroencephalography protocol for the Accelerating Medicines Partnership® Schizophrenia Program: Reliability and stability of measures. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:85. [PMID: 40480970 PMCID: PMC12144291 DOI: 10.1038/s41537-025-00622-0] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/24/2025] [Indexed: 06/11/2025]
Abstract
Individuals at clinical high risk for psychosis (CHR) have variable clinical outcomes and low conversion rates, limiting development of novel and personalized treatments. Moreover, given risks of antipsychotic drugs, safer effective medications for CHR individuals are needed. The Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ) Program was launched to address this need. Based on past CHR and schizophrenia studies, AMP SCZ assessed electroencephalography (EEG)-based event-related potential (ERP), event-related oscillation (ERO), and resting EEG power spectral density (PSD) measures, including mismatch negativity (MMN), auditory and visual P300 to target (P3b) and novel (P3a) stimuli, 40-Hz auditory steady state response, and resting EEG PSD for traditional frequency bands (eyes open/closed). Here, in an interim analysis of AMP SCZ EEG measures, we assess test-retest reliability and stability over sessions (baseline, month-2 follow-up) in CHR (n = 654) and community control (CON; n = 87) participants. Reliability was calculated as Generalizability (G)-coefficients, and changes over session were assessed with paired t-tests. G-coefficients were generally good to excellent in both groups (CHR: mean = 0.72, range = 0.49-0.85; CON: mean = 0.71, range = 0.44-0.89). Measure magnitudes significantly (p < 0.001) decreased over session (MMN, auditory and visual target P3b, visual novel P3a, 40-Hz ASSR) and/or over runs within sessions (MMN, auditory/visual novel P3a and target P3b), consistent with habituation effects. Despite these small systematic habituation effects, test-retest reliabilities of the AMP SCZ EEG-based measures are sufficiently strong to support their use in CHR studies as potential predictors of clinical outcomes, markers of illness progression, and/or target engagement or secondary outcome measures in controlled clinical trials.
Collapse
Affiliation(s)
- Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Mental Health Service, Veterans Affairs San Francisco Health Care System, San Francisco, CA, USA.
| | - Spero Nicholas
- Mental Health Service, Veterans Affairs San Francisco Health Care System, San Francisco, CA, USA
- Northern California Institute for Research and Education, San Francisco, CA, USA
| | - Brian J Roach
- Mental Health Service, Veterans Affairs San Francisco Health Care System, San Francisco, CA, USA
- Northern California Institute for Research and Education, San Francisco, CA, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Suzie Lavoie
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Thomas Whitford
- Orygen, Parkville, VIC, Australia
- School of Psychology, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - Holly K Hamilton
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- University of Minnesota, Minneapolis, MN, USA
| | - Lauren Addamo
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Andrey Anohkin
- Washington University School of Medicine, St. Louis, MO, USA
| | - Tristan Bekinschtein
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Intellectual and Developmental Disabilities Research Center, Carrboro, NC, USA
| | - Kate Buccilli
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - John Cahill
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ricardo E Carrión
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Ilvana Dzafic
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Bjørn H Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research, CNSR Mental Health Centre, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Igor Izyurov
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Johanna Jarcho
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Anna Jo
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Sarah Kerins
- Early Psychosis Detection and Clinical Intervention (EPIC) lab, Department of Psychosis Studies, King's College, London, UK
| | - Clarice Lee
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth A Martin
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Rocio Mayol-Troncoso
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
- Facultad de Psicología, Universidad Alberto Hurtado, Santiago, Chile
| | | | - Muhammad Parvaz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Julio Prieto-Montalvo
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Instituto de Salud Carlos III, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Rachel Rabin
- PEPP-Montreal, Douglas Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack Rogers
- Institute for Mental Health, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Riaz Shaik
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stewart Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Michael C Stevens
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatry Research Center, Hartford HealthCare Behavioral Health Network, Hartford, CT, USA
| | - Yi Nam Suen
- School of Nursing, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Nicole C Swann
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Xiaochen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Judy L Thompson
- Departments of Psychiatry and Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ivy Tso
- Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Julian Wenzel
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Juan Helen Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Luis Alameda
- General Psychiatry Service, Treatment and Early Intervention in Psychosis Program (TIPP-Lausanne), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychosis Studies, King's College, London, UK
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Instituto de Salud Carlos III, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Nicholas J K Breitborde
- Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew R Broome
- Institute for Mental Health, University of Birmingham, Birmingham, UK
- Early Intervention for Psychosis Services, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rolando I Castillo-Passi
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Eric Yu Hai Chen
- Department of Psychiatry, School of Clinical Medicine, LKF Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Jimmy Choi
- Olin Neuropsychiatry Research Center, Hartford HealthCare Behavioral Health Network, Hartford, CT, USA
| | - Philippe Conus
- General Psychiatry Service, Treatment and Early Intervention in Psychosis Program (TIPP-Lausanne), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara A Cornblatt
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Covadonga M Diaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Instituto de Salud Carlos III, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Lauren M Ellman
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Department of Psychosis Studies, King's College, London, UK
| | - Pablo A Gaspar
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Carla Gerber
- Prevention Science Institute, University of Oregon, Eugene, OR, USA
- Oregon Research Institute, Springfield, OR, USA
| | - Louise Birkedal Glenthøj
- Copenhagen Research Centre for Mental Health, Mental Health Copenhagen, University of Copenhagen, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Leslie E Horton
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christy Lai Ming Hui
- Department of Psychiatry, School of Clinical Medicine, LKF Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Joseph Kambeitz
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
- Mindlink, Gwangju Bukgu Mental Health Center, Gwangju, Korea
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychosis Studies, King's College, London, UK
| | - Jun Soo Kwon
- Department of Psychiatry, Hanyang University Hospital, Seoul, South Korea
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Merete Nordentoft
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Research Centre for Mental Health, Mental Health Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatry Research Center, Hartford Hospital, Hartford, CT, USA
| | - Jesus Perez
- CAMEO, Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Institute of Biomedical Research (IBSAL), Department of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Albert R Powers
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Fred W Sabb
- Prevention Science Institute, University of Oregon, Eugene, OR, USA
| | - Jason Schiffman
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Jai L Shah
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Research Centre, Montreal, QC, Canada
| | - Steven M Silverstein
- Departments of Psychiatry and Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Swapna K Verma
- Institute of Mental Health, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sylvain Bouix
- Department of Software Engineering and Information Technology, École de technologie supérieure, Montreal, QC, Canada
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kang-Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael J Coleman
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dominic Dwyer
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Angela Nunez
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Zailyn Tamayo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen J Wood
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Rene S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Patrick D McGorry
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Carrie E Bearden
- Department of Psychological Science, University of California, Irvine, CA, USA
- Departments of Psychiatry and Biobehavioral Sciences & Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Barnaby Nelson
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Scott W Woods
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, CA, USA
- Veterans Affairs San Diego Health Care System, San Diego, CA, USA
| |
Collapse
|
2
|
Ku BS, Hamilton H, Yuan Q, Parker DA, Roach BJ, Bachman PM, Belger A, Carrión RE, Duncan E, Johannesen JK, Light GA, Niznikiewicz MA, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Keshavan M, Perkins DO, Stone W, Woods SW, Walker E, Mathalon DH. Neighborhood social fragmentation in relation to impaired mismatch negativity among youth at clinical high risk for psychosis and healthy comparisons. Neuropsychopharmacology 2025:10.1038/s41386-025-02093-4. [PMID: 40175526 DOI: 10.1038/s41386-025-02093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025]
Abstract
Impairments in mismatch negativity (MMN) are well-established in schizophrenia and have been observed in youth at clinical high-risk for psychosis (CHR-P). Prior animal studies have shown that social isolation may be related to neurobiological changes, including reduced MMN-like responses and schizophrenia-like behaviors. In parallel, neighborhood social fragmentation has been shown to be associated with the onset of psychosis. This study investigates the association between neighborhood social fragmentation and MMN impairment among CHR-P youth and healthy comparisons (HC). Data were collected from the North American Prodrome Longitudinal Study Phase 2. Electroencephalography was recorded during an unattended auditory oddball paradigm with duration-, pitch-, and double-deviant tones. Generalized linear mixed models tested the association between neighborhood social fragmentation and the frontal-central averaged MMN for three deviant types for youth at CHR-P and HC separately. The models adjusted for age, sex, race/ethnicity, parental education, parental history of psychosis, and neighborhood poverty. Participants (mean [SD] age: 18.69 [4.59], 41.9% females, 51.3% White non-Hispanic) included 304 CHR-P and 92 HC. In the CHR-P group, greater neighborhood social fragmentation was associated with impaired duration-deviant MMN (bootstrapped β = 0.18, 95% CI: 0.04 to 0.33, p = .022) but not for pitch-deviant (bootstrapped β = 0.09, 95% CI: -0.05 to 0.22, p = .199) or double-deviant MMN (bootstrapped β = 0.10, 95% CI: -0.09 to 0.17, p = .559). Greater neighborhood social fragmentation was associated with impaired duration-deviant MMN amplitude among high-risk individuals. Further research is needed to explore underlying mechanisms.
Collapse
Affiliation(s)
- Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Holly Hamilton
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veteran Affairs Health Care System, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Qingyue Yuan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Parker
- Departments of Psychology, Emory University, Atlanta, GA, USA
| | - Brian J Roach
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Peter M Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes of Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Erica Duncan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | | | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Margaret A Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA, USA
- Veterans Affairs Boston Healthcare System, Brockton, MA, USA
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Elaine Walker
- Departments of Psychology, Emory University, Atlanta, GA, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
3
|
Jiang C, Wang J, Sun Y, Tan S, Percell SM, Zhou Z, Pan JQ, Hall MH. Unveiling distinct representations of P3a in schizophrenia through two-stimulus and three-stimulus auditory oddball paradigms. Schizophr Res 2025; 277:159-168. [PMID: 40073614 DOI: 10.1016/j.schres.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND P3a event-related potential (ERP) is considered a potential biomarker for schizophrenia (SZ), can be elicited through both passive two-stimulus and active three-stimulus auditory oddball paradigms. While both types of P3a reflect involuntary attention shifts, the nuanced understanding of what P3a represents in different contexts is important and rarely studied. This study aims to examine correlations between P3a ERPs elicited from different paradigms and associations of each P3a with cognitive function, clinical symptoms, and antipsychotic medication. METHODS Our sample included 178 SZ patients and 127 healthy controls (HC). Data on two-stimulus paradigm, three-stimulus oddball paradigm, Chinese version of MATRICS Consensus Cognitive Battery (MCCB), symptom severity, and medication use were collected. RESULTS In both paradigms, SZ group's P3a amplitude was significantly reduced compared to HC's (both p < 0.05). P3a evoked by the two-stimulus paradigm and the three-stimulus paradigm were not correlated (r = -0.06, p = 0.661). Three-stimulus paradigm-P3a was significantly correlated with attention/vigilance (r = 0.27, p = 0.017) in SZ, and with working memory (r = 0.39, p = 0.001) and overall MCCB score (r = 0.25, p = 0.042) in HC. Additionally, the two-stimulus paradigm-P3a correlated with olanzapine equivalent antipsychotic dose (r = -0.26, p = 0.022). CONCLUSIONS Our findings offer new insights into the role of P3a in clinical research. P3a ERPs from different paradigms may represent functionally distinct components. The context in which the P3a is elicited should be taken into account when discussing its functional or neurocognitive significance.
Collapse
Affiliation(s)
- Chenguang Jiang
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Jun Wang
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Yifan Sun
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Shaun M Percell
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Zhenhe Zhou
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China.
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States.
| | - Mei-Hua Hall
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, United States.
| |
Collapse
|
4
|
Nejat H, Sherfey J, Bastos AM. Predictive routing emerges from self-supervised stochastic neural plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630823. [PMID: 39803482 PMCID: PMC11722284 DOI: 10.1101/2024.12.31.630823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms preparing specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking for predictable inputs. This is called predictive routing model. It is unclear which circuit mechanisms implement this push-pull interaction between alpha/beta and gamma rhythms. To explore how predictive routing is implemented, we developed a self-supervised learning algorithm we call generalized Stochastic Delta Rule (gSDR). Development of this algorithm was necessary because manual tuning of parameters (frequently used in computational modeling) is inefficient to search through a non-linear parameter space that leads to emergence of neuronal rhythms. We used gSDR to train biophysical neural circuits and validated the algorithm on simple objectives. Then we applied gSDR to model observed neurophysiology. We asked the model to reproduce a shift from baseline oscillatory dynamics (~<20Hz) to stimulus induced gamma (~40-90Hz) dynamics recorded in the macaque visual cortex. This gamma oscillation during stimulation emerged by self-modulation of synaptic weights via gSDR. We further showed that the gamma-beta push-pull interactions implied by predictive routing could emerge via stochastic modulation of the local circuitry as well as top-down modulatory inputs to a network. To summarize, gSDR succeeded in training biophysical neural circuits to satisfy a series of neuronal objectives. This revealed the inhibitory neuron mechanisms underlying the gamma-beta push-pull dynamics that are observed during predictive processing tasks in systems and cognitive neuroscience.
Collapse
Affiliation(s)
- Hamed Nejat
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jason Sherfey
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - André M. Bastos
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Dondé C, Palmer-Cooper E, Gauld C, Polosan M, Alderson-Day B. Early auditory impairments as a candidate marker of attenuated sensory symptoms of psychosis. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111214. [PMID: 39647691 DOI: 10.1016/j.pnpbp.2024.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/05/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND AND HYPOTHESIS Deficits in early auditory processing (EAP), as indexed by tone-matching performance, have been consistently demonstrated in individuals with schizophrenia spectrum disorders. However, the ontogeny of tone-matching deficits in schizophrenia remains relatively unknown. The current study aims to determine the relationship between clinical high risk for psychosis and EAP. STUDY DESIGN We employed a web-based screening approach to identify CHR individuals. A sample of 892 community dwelling participants completed the 16-tem version of the prodromal questionnaire (PQ16) for the assessment of attenuated psychotic symptoms, a 9-item questionnaire of perceptual and cognitive aberrations (PCA) for the assessment of basic symptoms and a tone-matching task. STUDY RESULTS 505 (43.4 %) participants met cut-off criteria for attenuated psychotic symptoms (PQ16 ≥ 6 endorsed items), 614 (68.3 %) for basic symptoms (PCA ≥ 3 endorsed items), 647 (72.0 %) for either and 358 (40.1 %) for both of them. No significant differences in tone-matching performance were observed between CHR and non-CHR subjects, using either attenuated psychotic symptoms, basic symptoms, either or both cutoffs. In the CHR group screened with attenuated psychotic symptoms, auditory and tactile sensory symptoms were significantly associated with tone-matching deficits. CONCLUSION Tone-matching may not serve as a reliable biomarker for CHR status but rather a risk marker for the emergence of early sensory manifestations.
Collapse
Affiliation(s)
- Clément Dondé
- Univ. Grenoble Alpes, F-38000 Grenoble, France; INSERM, U1216, Grenoble institute Neurosciences, F-38000 Grenoble, France; Adult Psychiatry Department, University Hospital Grenoble Alpes, F-38000 Grenoble, France; Adult Psychiatry Department, CH Alpes-Isère, F-38000 Saint-Egrève, France.
| | - Emma Palmer-Cooper
- School of Psychology, Centre for Innovation in Mental Health, University of Southampton, United Kingdom
| | - Christophe Gauld
- Department of Child and Adolescent Psychopathology, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Mircea Polosan
- Univ. Grenoble Alpes, F-38000 Grenoble, France; INSERM, U1216, Grenoble institute Neurosciences, F-38000 Grenoble, France; Adult Psychiatry Department, University Hospital Grenoble Alpes, F-38000 Grenoble, France
| | - Ben Alderson-Day
- Department of Psychology, Durham University, Durham, United Kingdom
| |
Collapse
|
6
|
Fisher DJ, Todd J. From Näätänen to now: Moving the Mismatch Negativity into the Next 50 Years. Clin EEG Neurosci 2025; 56:3-7. [PMID: 39632547 DOI: 10.1177/15500594241303562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Affiliation(s)
- Derek J Fisher
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| | - Juanita Todd
- Department of Psychology, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
7
|
Andriola I, Valt C, Marsella V, Palma C, Tavella A, Putignano F, Stolfa G, Fazio L, Rampino A, Pergola G, Bertolino A. Different abnormalities of mismatch negativity in schizophrenia and depression as assessed with magnetoencephalography. J Psychiatr Res 2025; 181:126-133. [PMID: 39612606 DOI: 10.1016/j.jpsychires.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 12/01/2024]
Abstract
Mismatch negativity (MMN) is widely considered a candidate diagnostic biomarker for schizophrenia (SCZ). Although blunted MMN responses have been reliably observed in psychosis, the evidence for MMN deficits in other disorders, such as major depressive disorder (MDD), is mixed. This study explores whether MMN alterations in amplitude or latency are unique to SCZ or extend to non-psychotic MDD patients. Seventeen patients diagnosed with a first MDD episode, 18 with recurrent MDD, 17 with first episode of SCZ spectrum disorder, and 18 with chronic SCZ, along with two groups of age- and sex-matched neurotypical controls (NC, 17 and 18), participated in a passive auditory MMN task during magnetoencephalography (MEG) recording. We examined the magnetic MMN (mMMN) amplitude and latency, exploring potential links between observed MMN alterations and psychotropic medication treatments. The mMMN amplitudes were significantly attenuated in SCZ compared to NC. Although, on average, mMMN amplitudes also appeared to be small in MDD, there was no significant difference between MDD and SCZ or NC. Notably, MDD patients had longer mMMN latencies compared to SCZ and NC, especially those with recurrent MDD. These results remained consistent after controlling for mood stabilizers, antidepressants, or benzodiazepines. These findings show that mMMN amplitude reductions may be more pronounced in psychotic disorders than in depressive disorders, whereas abnormal mMMN latencies may be more specific to MDD, suggesting differential mMMN alterations in SCZ and MDD. Caution is advised regarding mMMN amplitude as a diagnostic biomarker for SCZ, as small reductions also occur in MDD.
Collapse
Affiliation(s)
- Ileana Andriola
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy; University Hospital Polyclinic of Bari: Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Christian Valt
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Verdiana Marsella
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Celestino Palma
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Angelantonio Tavella
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy; Department of Mental Health, ASL Bari, Bari, Italy
| | - Francesca Putignano
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Stolfa
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Fazio
- Department of Medicine and Surgery - LUM University - Bari, Italy
| | - Antonio Rampino
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy; University Hospital Polyclinic of Bari: Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy; University Hospital Polyclinic of Bari: Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy.
| |
Collapse
|
8
|
Bissonnette JN, Anderson TJ, Crocker CE, Tibbo PG, Salisbury DF, Fisher DJ. Examining the Complex Mismatch Negativity in Early Phase Psychosis Using the Dual Rule Paradigm. Clin EEG Neurosci 2025; 56:91-99. [PMID: 39150248 PMCID: PMC11664881 DOI: 10.1177/15500594241273287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Using electroencephalography (EEG) to examine the simple mismatch negativity (MMN), a marker of auditory cortex function, has been of great interest in the exploration of biomarkers for psychotic illness. Despite many studies reporting MMN deficits in chronic schizophrenia, there are inconsistent reports of MMN reductions in the early phases of psychotic illness, suggesting the MMN elicited by traditional paradigms may not be a sensitive enough measure of vulnerability to be used as a biomarker. Recently, a more computationally complex measure of auditory cortex function (the complex mismatch negativity; cMMN) has been hypothesized to provide a more sensitive marker of illness vulnerability. The current study employed a novel dual rule paradigm, in which two pattern rules are established and violated, to examine the cMMN in 14 individuals with early phase psychosis (EPP, < 5 years illness) and 15 healthy controls (HC). Relationships between cMMN waveforms, symptom severity, and measures of functioning were explored. We found reductions of cMMN amplitudes at the site of maximal amplitude in EPP (p = .017) with large effect sizes (Hedges' g = 0.96). This study is an early step in the exploration of the cMMN as a biomarker for psychosis. Our results provide evidence that the dual rule cMMN paradigm shows promise as a method for cMMN elicitation that captures more subtle neurofunctional changes in the early stages of illness.
Collapse
Affiliation(s)
- Jenna N. Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - T-Jay Anderson
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Candice E. Crocker
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Philip G. Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dean F. Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Derek J. Fisher
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Hamilton HK, Roach BJ, Bachman PM, Belger A, Carrión RE, Duncan E, Johannesen JK, Light GA, Niznikiewicz MA, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, Perkins DO, Tsuang MT, Walker EF, Woods SW, Cannon TD, Mathalon DH. Mismatch Negativity as an Index of Auditory Short-Term Plasticity: Associations with Cortisol, Inflammation, and Gray Matter Volume in Youth at Clinical High Risk for Psychosis. Clin EEG Neurosci 2025; 56:46-59. [PMID: 39552576 DOI: 10.1177/15500594241294035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mismatch negativity (MMN) event-related potential (ERP) component reduction, indexing N-methyl-D-aspartate receptor (NMDAR)-dependent auditory echoic memory and short-term plasticity, is a well-established biomarker of schizophrenia that is sensitive to psychosis risk among individuals at clinical high-risk (CHR-P). Based on the NMDAR-hypofunction model of schizophrenia, NMDAR-dependent plasticity is predicted to contribute to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia during late adolescence or young adulthood, including gray matter loss. Moreover, stress and inflammation disrupt plasticity. Therefore, using data collected during the 8-center North American Prodrome Longitudinal Study (NAPLS-2), we explored relationships between MMN amplitudes and salivary cortisol, gray matter volumes, and inflammatory cytokines. Participants included 303 CHR-P individuals with baseline electroencephalography (EEG) data recorded during an MMN paradigm as well as structural magnetic resonance imaging (MRI) and salivary cortisol, of which a subsample (n = 57) also completed blood draws. More deficient MMN amplitudes were associated with greater salivary cortisol and pro-inflammatory cytokine levels in future CHR-Converters, but not among those who did not convert to psychosis within the next two years. More deficient MMN amplitude was also associated with smaller total gray matter volume across participants regardless of future clinical outcomes, and with subcortical gray matter volumes among future CHR-Converters only. These findings are consistent with the theory that deficient NMDAR-dependent plasticity results in an overabundance of weak synapses that are subject to over-pruning during psychosis onset, contributing to gray matter loss. Further, MMN plasticity mechanisms may interact with stress, cortisol, and neuroinflammatory processes, representing a proximal influence of psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- Mental Health Service, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Peter M Bachman
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA
| | - Erica Duncan
- Mental Health Service, Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason K Johannesen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Mental Health Service, Veterans Affairs San Diego Health Care System, La Jolla, CA, USA
| | - Margaret A Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
- Mental Health Service, Veterans Affairs Boston Health Care System, Brockton, MA, USA
| | - Jean Addington
- Hotchkiss Brain Institute Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Elaine F Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, School of Medicine, New Haven, CT, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, CA, USA
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
10
|
Salisbury DF, López Caballero F, Coffman BA. Development of Biomarkers Potentially Sensitive to Early Psychosis Using Mismatch Negativity (MMN) to Complex Pattern Deviations. Clin EEG Neurosci 2025; 56:83-90. [PMID: 38755955 PMCID: PMC11910136 DOI: 10.1177/15500594241254896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Infrequent stimulus deviations from repetitive sequences elicit mismatch negativity (MMN) even passively, making MMN practical for clinical applications. Auditory MMN is typically elicited by a change in one (or more) physical stimulus parameters (eg, pitch, duration). This lower-order simple MMN (sMMN) is impaired in long-term schizophrenia. However, sMMN contains activity from release from stimulus adaptation, clouding its face validity as purely deviance-related. More importantly, it is unreliably reduced in samples of first-episode psychosis, limiting its utility as a biomarker. Complex pattern-deviant MMN (cMMN) tasks, which elicit early and late responses, are based on higher-order abstractions and better isolate deviance detection. Their abstract nature may increase the sensitivity to processing deficits in early psychosis. However, both the early and late cMMNs are small, limiting separation between healthy and psychotic samples. In 29 healthy individuals, we tested a new dual-rule cMMN paradigm to assess additivity of deviance. Sounds alternated lateralization between left and right, and low and high pitches, creating a left-low, right-high alternating pattern. Deviants were a repeated left-low, violating lateralization and pitch patterns. Early and late cMMNs on the dual-rule task were significantly larger than those on the one-rule extra tone cMMN task (P < .05). Further, the dual-rule early cMMN was not significantly smaller than pitch or duration sMMNs (P > .48, .28, respectively). These results demonstrate additivity for cMMN pattern-violating rules. This increase in cMMN amplitude should increase group difference effect size, making it a prime candidate for a biomarker of disease presence at first psychotic episode, and perhaps even prior to the emergence of psychosis.
Collapse
Affiliation(s)
- Dean F. Salisbury
- Clinical Neurophysiology Research Laboratory, Wester Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fran López Caballero
- Clinical Neurophysiology Research Laboratory, Wester Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A. Coffman
- Clinical Neurophysiology Research Laboratory, Wester Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Etkin A, Mathalon DH. Bringing Imaging Biomarkers Into Clinical Reality in Psychiatry. JAMA Psychiatry 2024; 81:1142-1147. [PMID: 39230917 DOI: 10.1001/jamapsychiatry.2024.2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Importance Advancing precision psychiatry, where treatments are based on an individual's biology rather than solely their clinical presentation, requires attention to several key attributes for any candidate biomarker. These include test-retest reliability, sensitivity to relevant neurophysiology, cost-effectiveness, and scalability. Unfortunately, these issues have not been systematically addressed by biomarker development efforts that use common neuroimaging tools like magnetic resonance imaging (MRI) and electroencephalography (EEG). Here, the critical barriers that neuroimaging methods will need to overcome to achieve clinical relevance in the near to intermediate term are examined. Observations Reliability is often overlooked, which together with sensitivity to key aspects of neurophysiology and replicated predictive utility, favors EEG-based methods. The principal barrier for EEG has been the lack of large-scale data collection among multisite psychiatric consortia. By contrast, despite its high reliability, structural MRI has not demonstrated clinical utility in psychiatry, which may be due to its limited sensitivity to psychiatry-relevant neurophysiology. Given the prevalence of structural MRIs, establishment of a compelling clinical use case remains its principal barrier. By contrast, low reliability and difficulty in standardizing collection are the principal barriers for functional MRI, along with the need for demonstration that its superior spatial resolution over EEG and ability to directly image subcortical regions in fact provide unique clinical value. Often missing, moreover, is consideration of how these various scientific issues can be balanced against practical economic realities of psychiatric health care delivery today, for which embedding economic modeling into biomarker development efforts may help direct research efforts. Conclusions and Relevance EEG seems most ripe for near- to intermediate-term clinical impact, especially considering its scalability and cost-effectiveness. Recent efforts to broaden its collection, as well as development of low-cost turnkey systems, suggest a promising pathway by which neuroimaging can impact clinical care. Continued MRI research focused on its key barriers may hold promise for longer-horizon utility.
Collapse
Affiliation(s)
- Amit Etkin
- Alto Neuroscience Inc, Los Altos, California
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- Veterans Affairs San Francisco Health Care System, San Francisco, California
| |
Collapse
|
12
|
Etkin A, Powell J, Savitz AJ. Opportunities for use of neuroimaging in de-risking drug development and improving clinical outcomes in psychiatry: an industry perspective. Neuropsychopharmacology 2024; 50:258-268. [PMID: 39169213 PMCID: PMC11526012 DOI: 10.1038/s41386-024-01970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Neuroimaging, across positron emission tomography (PET), electroencephalography (EEG), and magnetic resonance imaging (MRI), has been a mainstay of clinical neuroscience research for decades, yet has penetrated little into psychiatric drug development beyond often underpowered phase 1 studies, or into clinical care. Simultaneously, there is a pressing need to improve the probability of success in drug development, increase mechanistic diversity, and enhance clinical efficacy. These goals can be achieved by leveraging neuroimaging in a precision psychiatry framework, wherein effects of drugs on the brain are measured early in clinical development to understand dosing and indication, and then in later-stage trials to identify likely drug responders and enrich clinical trials, ultimately improving clinical outcomes. Here we examine the key variables important for success in using neuroimaging for precision psychiatry from the lens of biotechnology and pharmaceutical companies developing and deploying new drugs in psychiatry. We argue that there are clear paths for incorporating different neuroimaging modalities to de-risk subsequent development phases in the near to intermediate term, culminating in use of select neuroimaging modalities in clinical care for prescription of new precision drugs. Better outcomes through neuroimaging biomarkers, however, require a wholesale commitment to a precision psychiatry approach and will necessitate a cultural shift to align biopharma and clinical care in psychiatry to a precision orientation already routine in other areas of medicine.
Collapse
Affiliation(s)
- Amit Etkin
- Alto Neuroscience Inc., Los Altos, CA, 94022, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94304, USA.
| | | | - Adam J Savitz
- Alto Neuroscience Inc., Los Altos, CA, 94022, USA
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10021, USA
| |
Collapse
|
13
|
Valt C, López-Caballero F, Tavella A, Altamura M, Bellomo A, Barrasso G, Coffman B, Iovine F, Rampino A, Saponaro A, Seebold D, Selvaggi P, Semisa D, Stolfa G, Bertolino A, Pergola G, Salisbury DF. Abnormal inter-hemispheric effective connectivity from left to right auditory regions during Mismatch Negativity (MMN) tasks in psychosis. Psychiatry Res 2024; 342:116189. [PMID: 39321639 DOI: 10.1016/j.psychres.2024.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Anomalous Mismatch Negativity (MMN) in psychosis could be a consequence of disturbed neural oscillatory activity at sensory/perceptual stages of stimulus processing. This study investigated effective connectivity within and between the auditory regions during auditory odd-ball deviance tasks. The analyses were performed on two magnetoencephalography (MEG) datasets: one on duration MMN in a cohort with various diagnoses within the psychosis spectrum and neurotypical controls, and one on duration and pitch MMN in first-episode psychosis patients and matched neurotypical controls. We applied spectral Granger causality to MEG source-reconstructed signals to compute effective connectivity within and between the left and right auditory regions. Both experiments showed that duration-deviance detection was associated with early increases of effective connectivity in the beta band followed by increases in the alpha and theta bands, with the connectivity strength linked to the laterality of the MMN amplitude. Compared to controls, people with psychosis had overall smaller effective connectivity, particularly from left to right auditory regions, in the pathway where bilateral information converges toward lateralized processing, often rightward. Blunted MMN in psychosis might reflect a deficit in inter-hemispheric communication between auditory regions, highlighting a "dysconnection" already at preattentive stages of stimulus processing as a model system of widespread pathophysiology.
Collapse
Affiliation(s)
- Christian Valt
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Fran López-Caballero
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angelantonio Tavella
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Department of Mental Health, ASL Bari, Bari, Italy
| | - Mario Altamura
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Barrasso
- Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
| | - Brian Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Filippo Iovine
- Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
| | - Antonio Rampino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Department of Psychiatry, Bari University Hospital, Bari, Italy
| | | | - Dylan Seebold
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pierluigi Selvaggi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Department of Psychiatry, Bari University Hospital, Bari, Italy
| | | | - Giuseppe Stolfa
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Department of Psychiatry, Bari University Hospital, Bari, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
14
|
Di Lisi A, Pupo S, Menchetti M, Pelizza L. Antipsychotic Treatment in People at Clinical High Risk for Psychosis: A Narrative Review of Suggestions for Clinical Practice. J Clin Psychopharmacol 2024; 44:502-508. [PMID: 39250139 PMCID: PMC11460766 DOI: 10.1097/jcp.0000000000001891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/29/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE The "early intervention" paradigm in psychiatry holds significant promise for preventing psychosis. Recent evidence showed that individuals at clinical high risk for psychosis (CHR-P) with antipsychotic (AP) prescription at baseline have higher psychosis transition rates compared with those without AP, although the underlying cause remains unclear. In this article, we reviewed international guidelines on early intervention in CHR-P people, paying specific attention to clinical recommendations on AP treatment. Then, we comment on these suggestions in the light of recent empirical evidence examining AP prescription in CHR-P populations within "real-world" clinical settings. METHODS This search was conducted on PubMed/MEDLINE, PsycINFO, EMBASE, and Google, looking for both "Guidelines AND CHR-P OR UHR OR Early Psychosis." RESULTS International guidelines generally recommend not using AP as first-line treatment, but only when psychosocial interventions have failed. CHR-P people with AP drug showed high prevalence rates and had more severe clinical picture at entry. Is this a "warning signal" for potentially higher psychosis transition risk? Is it a direct AP iatrogenic effect? Is it possible to detect specific CHR-P subgroup that may benefit from AP? These are the questions that this article seeks to explore. CONCLUSIONS The current framework for identifying CHR-P subjects has defined psychometric criteria mainly based on positive symptoms. In our opinion, this is reductive, especially for evaluating therapeutic outcomes and prognosis. A more comprehensive assessment considering quality of life, psychiatric comorbidity, persistent negative symptoms, subjective experience of CHR-P psychopathology, and social/personal recovery is thus needed.
Collapse
Affiliation(s)
- Alessandro Di Lisi
- From the Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum Università di Bologna, Bologna
| | - Simona Pupo
- Pain Therapy Service, Department of Medicine and Surgery, Azienda Ospedaliero–Universitaria di Parma, Parma, Italy
| | - Marco Menchetti
- From the Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum Università di Bologna, Bologna
| | - Lorenzo Pelizza
- From the Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum Università di Bologna, Bologna
| |
Collapse
|
15
|
Li X, Wei W, Wang Q, Deng W, Li M, Ma X, Zeng J, Zhao L, Guo W, Hall MH, Li T. Identify Potential Causal Relationships Between Cortical Thickness, Mismatch Negativity, Neurocognition, and Psychosocial Functioning in Drug-Naïve First-Episode Psychosis Patients. Schizophr Bull 2024; 50:827-838. [PMID: 38635296 PMCID: PMC11283193 DOI: 10.1093/schbul/sbae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Cortical thickness (CT) alterations, mismatch negativity (MMN) reductions, and cognitive deficits are robust findings in first-episode psychosis (FEP). However, most studies focused on medicated patients, leaving gaps in our understanding of the interrelationships between CT, MMN, neurocognition, and psychosocial functioning in unmedicated FEP. This study aimed to employ multiple mediation analysis to investigate potential pathways among these variables in unmedicated drug-naïve FEP. METHODS We enrolled 28 drug-naïve FEP and 34 age and sex-matched healthy controls. Clinical symptoms, neurocognition, psychosocial functioning, auditory duration MMN, and T1 structural magnetic resonance imaging data were collected. We measured CT in the superior temporal gyrus (STG), a primary MMN-generating region. RESULTS We found a significant negative correlation between MMN amplitude and bilateral CT of STG (CT_STG) in FEP (left: r = -.709, P < .001; right: r = -.612, P = .008). Multiple mediation models revealed that a thinner left STG cortex affected functioning through both direct (24.66%) and indirect effects (75.34%). In contrast, the effects of the right CT_STG on functioning were mainly mediated through MMN and neurocognitive pathways. CONCLUSIONS Bilateral CT_STG showed significant association with MMN, and MMN plays a mediating role between CT and cognition. Both MMN alone and its interaction with cognition mediated the effects of structural alterations on psychosocial function. The decline in overall function in FEP may stem from decreased CT_STG, leading to subsequent MMN deficits and neurocognitive dysfunction. These findings underline the crucial role of MMN in elucidating how subtle structural alterations can impact neurocognition and psychosocial function in FEP.
Collapse
Affiliation(s)
- Xiaojing Li
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wei Wei
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Deng
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinkun Zeng
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wanjun Guo
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Tao Li
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Wynn JK, Green MF. An EEG-Based Neuroplastic Approach to Predictive Coding in People With Schizophrenia or Traumatic Brain Injury. Clin EEG Neurosci 2024; 55:445-454. [PMID: 38711326 DOI: 10.1177/15500594241252897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Despite different etiologies, people with schizophrenia (SCZ) or with traumatic brain injury (TBI) both show aberrant neuroplasticity. One neuroplastic mechanism that may be affected is prediction error coding. We used a roving mismatch negativity (rMMN) paradigm which uses different lengths of standard tone trains and is optimized to assess predictive coding. Twenty-five SCZ, 22 TBI (mild to moderate), and 25 healthy controls were assessed. We used a frequency-deviant rMMN in which the number of standards preceding the deviant was either 2, 6, or 36. We evaluated repetition positivity to the standard tone immediately preceding a deviant tone (repetition positivity [RP], to assess formation of the memory trace), deviant negativity to the deviant stimulus (deviant negativity [DN], which reflects signaling of a prediction error), and the difference wave between the 2 (the MMN). We found that SCZ showed reduced DN and MMN compared with healthy controls and with people with mild to moderate TBI. We did not detect impairments in any index (RP, DN, or MMN) in people with TBI compared to controls. Our findings suggest that prediction error coding assessed with rMMN is aberrant in SCZ but intact in TBI, though there is a suggestion that severity of head injury results in poorer prediction error coding.
Collapse
Affiliation(s)
- Jonathan K Wynn
- Center on Enhancement of Community Integration for Homeless Veterans, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Michael F Green
- Center on Enhancement of Community Integration for Homeless Veterans, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Bose A, Agarwal SM, Nawani H, Shivakumar V, Sreeraj VS, Narayanaswamy JC, Kumar D, Venkatasubramanian G. Mismatch Negativity in Schizophrenia, Unaffected First-degree Relatives, and Healthy Controls. J Psychiatr Res 2024; 175:81-88. [PMID: 38718443 DOI: 10.1016/j.jpsychires.2024.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Mismatch negativity (MMN) amplitude is attenuated in schizophrenia patients (SZ). However, variability in illness course among SZ samples and types of deviant stimuli used in MMN paradigms have contributed to inconsistent findings across studies. Though MMN is suggested to be impaired in schizotypy, the potential link between the two is yet to be systematically examined in unaffected first-degree relatives of schizophrenia patients (FDR). METHODS The SZ sample had twenty-two drug-naïve or drug-free patients (dSZ) and thirty chronic/medicated patients (cSZ). dSZ and cSZ patients were compared with thirty-six unaffected FDR and thirty-two healthy controls (HC) using a two-tone passive auditory oddball MMN paradigm in an event-related potential experiment with two conditions (presented as separate blocks)-duration-deviant (duration-MMN) and frequency-deviant (frequency-MMN). Schizotypy scores and MMN indices were examined for correlation in FDR. RESULTS Duration-MMN amplitude was significantly attenuated in both dSZ and cSZ compared to other groups. dSZ and cSZ did not differ on MMN indices. Psychopathology scores and features of illness (illness duration, medication dosage, etc.) did not correlate with MMN indices. In FDR, Schizotypal trait measures did not correlate with MMN indices. CONCLUSIONS Duration-MMN emerged as a more robust indicator of prediction error signalling deficit in SZ. Frequency-MMN amplitude did not significantly differ among the groups, and MMN indices did not correlate with state and trait measures of schizophrenia-related psychopathology. These findings reiterates that auditory sensory processing captured by MMN is likely reflective of dynamic cognitive functions at the point of testing, and is unlikely to be an expression of enduring symptomatology.
Collapse
Affiliation(s)
- Anushree Bose
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Sri Mahavir Agarwal
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Hema Nawani
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vanteemar S Sreeraj
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Devvarta Kumar
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
18
|
Wannan CMJ, Nelson B, Addington J, Allott K, Anticevic A, Arango C, Baker JT, Bearden CE, Billah T, Bouix S, Broome MR, Buccilli K, Cadenhead KS, Calkins ME, Cannon TD, Cecci G, Chen EYH, Cho KIK, Choi J, Clark SR, Coleman MJ, Conus P, Corcoran CM, Cornblatt BA, Diaz-Caneja CM, Dwyer D, Ebdrup BH, Ellman LM, Fusar-Poli P, Galindo L, Gaspar PA, Gerber C, Glenthøj LB, Glynn R, Harms MP, Horton LE, Kahn RS, Kambeitz J, Kambeitz-Ilankovic L, Kane JM, Kapur T, Keshavan MS, Kim SW, Koutsouleris N, Kubicki M, Kwon JS, Langbein K, Lewandowski KE, Light GA, Mamah D, Marcy PJ, Mathalon DH, McGorry PD, Mittal VA, Nordentoft M, Nunez A, Pasternak O, Pearlson GD, Perez J, Perkins DO, Powers AR, Roalf DR, Sabb FW, Schiffman J, Shah JL, Smesny S, Spark J, Stone WS, Strauss GP, Tamayo Z, Torous J, Upthegrove R, Vangel M, Verma S, Wang J, Rossum IWV, Wolf DH, Wolff P, Wood SJ, Yung AR, Agurto C, Alvarez-Jimenez M, Amminger P, Armando M, Asgari-Targhi A, Cahill J, Carrión RE, Castro E, Cetin-Karayumak S, Mallar Chakravarty M, Cho YT, Cotter D, D’Alfonso S, Ennis M, Fadnavis S, Fonteneau C, Gao C, Gupta T, Gur RE, Gur RC, et alWannan CMJ, Nelson B, Addington J, Allott K, Anticevic A, Arango C, Baker JT, Bearden CE, Billah T, Bouix S, Broome MR, Buccilli K, Cadenhead KS, Calkins ME, Cannon TD, Cecci G, Chen EYH, Cho KIK, Choi J, Clark SR, Coleman MJ, Conus P, Corcoran CM, Cornblatt BA, Diaz-Caneja CM, Dwyer D, Ebdrup BH, Ellman LM, Fusar-Poli P, Galindo L, Gaspar PA, Gerber C, Glenthøj LB, Glynn R, Harms MP, Horton LE, Kahn RS, Kambeitz J, Kambeitz-Ilankovic L, Kane JM, Kapur T, Keshavan MS, Kim SW, Koutsouleris N, Kubicki M, Kwon JS, Langbein K, Lewandowski KE, Light GA, Mamah D, Marcy PJ, Mathalon DH, McGorry PD, Mittal VA, Nordentoft M, Nunez A, Pasternak O, Pearlson GD, Perez J, Perkins DO, Powers AR, Roalf DR, Sabb FW, Schiffman J, Shah JL, Smesny S, Spark J, Stone WS, Strauss GP, Tamayo Z, Torous J, Upthegrove R, Vangel M, Verma S, Wang J, Rossum IWV, Wolf DH, Wolff P, Wood SJ, Yung AR, Agurto C, Alvarez-Jimenez M, Amminger P, Armando M, Asgari-Targhi A, Cahill J, Carrión RE, Castro E, Cetin-Karayumak S, Mallar Chakravarty M, Cho YT, Cotter D, D’Alfonso S, Ennis M, Fadnavis S, Fonteneau C, Gao C, Gupta T, Gur RE, Gur RC, Hamilton HK, Hoftman GD, Jacobs GR, Jarcho J, Ji JL, Kohler CG, Lalousis PA, Lavoie S, Lepage M, Liebenthal E, Mervis J, Murty V, Nicholas SC, Ning L, Penzel N, Poldrack R, Polosecki P, Pratt DN, Rabin R, Rahimi Eichi H, Rathi Y, Reichenberg A, Reinen J, Rogers J, Ruiz-Yu B, Scott I, Seitz-Holland J, Srihari VH, Srivastava A, Thompson A, Turetsky BI, Walsh BC, Whitford T, Wigman JTW, Yao B, Yuen HP, Ahmed U, Byun A(JS, Chung Y, Do K, Hendricks L, Huynh K, Jeffries C, Lane E, Langholm C, Lin E, Mantua V, Santorelli G, Ruparel K, Zoupou E, Adasme T, Addamo L, Adery L, Ali M, Auther A, Aversa S, Baek SH, Bates K, Bathery A, Bayer JMM, Beedham R, Bilgrami Z, Birch S, Bonoldi I, Borders O, Borgatti R, Brown L, Bruna A, Carrington H, Castillo-Passi RI, Chen J, Cheng N, Ching AE, Clifford C, Colton BL, Contreras P, Corral S, Damiani S, Done M, Estradé A, Etuka BA, Formica M, Furlan R, Geljic M, Germano C, Getachew R, Goncalves M, Haidar A, Hartmann J, Jo A, John O, Kerins S, Kerr M, Kesselring I, Kim H, Kim N, Kinney K, Krcmar M, Kotler E, Lafanechere M, Lee C, Llerena J, Markiewicz C, Matnejl P, Maturana A, Mavambu A, Mayol-Troncoso R, McDonnell A, McGowan A, McLaughlin D, McIlhenny R, McQueen B, Mebrahtu Y, Mensi M, Hui CLM, Suen YN, Wong SMY, Morrell N, Omar M, Partridge A, Phassouliotis C, Pichiecchio A, Politi P, Porter C, Provenzani U, Prunier N, Raj J, Ray S, Rayner V, Reyes M, Reynolds K, Rush S, Salinas C, Shetty J, Snowball C, Tod S, Turra-Fariña G, Valle D, Veale S, Whitson S, Wickham A, Youn S, Zamorano F, Zavaglia E, Zinberg J, Woods SW, Shenton ME. Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ): Rationale and Study Design of the Largest Global Prospective Cohort Study of Clinical High Risk for Psychosis. Schizophr Bull 2024; 50:496-512. [PMID: 38451304 PMCID: PMC11059785 DOI: 10.1093/schbul/sbae011] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
This article describes the rationale, aims, and methodology of the Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ). This is the largest international collaboration to date that will develop algorithms to predict trajectories and outcomes of individuals at clinical high risk (CHR) for psychosis and to advance the development and use of novel pharmacological interventions for CHR individuals. We present a description of the participating research networks and the data processing analysis and coordination center, their processes for data harmonization across 43 sites from 13 participating countries (recruitment across North America, Australia, Europe, Asia, and South America), data flow and quality assessment processes, data analyses, and the transfer of data to the National Institute of Mental Health (NIMH) Data Archive (NDA) for use by the research community. In an expected sample of approximately 2000 CHR individuals and 640 matched healthy controls, AMP SCZ will collect clinical, environmental, and cognitive data along with multimodal biomarkers, including neuroimaging, electrophysiology, fluid biospecimens, speech and facial expression samples, novel measures derived from digital health technologies including smartphone-based daily surveys, and passive sensing as well as actigraphy. The study will investigate a range of clinical outcomes over a 2-year period, including transition to psychosis, remission or persistence of CHR status, attenuated positive symptoms, persistent negative symptoms, mood and anxiety symptoms, and psychosocial functioning. The global reach of AMP SCZ and its harmonized innovative methods promise to catalyze the development of new treatments to address critical unmet clinical and public health needs in CHR individuals.
Collapse
Affiliation(s)
- Cassandra M J Wannan
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Barnaby Nelson
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kelly Allott
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Instituto de Salud Carlos III, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Justin T Baker
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Carrie E Bearden
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Department of Software Engineering and Information Technology, École de technologie supérieure, Montréal, Canada
| | - Matthew R Broome
- School of Psychology, Institute for Mental Health, University of Birmingham, Birmingham, UK
- Early Intervention for Psychosis Services, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Kate Buccilli
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | | | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Eric Yu Hai Chen
- Department of Psychiatry, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kang Ik K Cho
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jimmy Choi
- Olin Neuropsychiatry Research Center, Hartford Hospital, Hartford, CT, USA
| | - Scott R Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Basil Hetzel Institute, Woodville, SA, Australia
| | - Michael J Coleman
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Philippe Conus
- General Psychiatry Service, Treatment and Early Intervention in Psychosis Program (TIPP–Lausanne), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara A Cornblatt
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Covadonga M Diaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Instituto de Salud Carlos III, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Dominic Dwyer
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Bjørn H Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research, CNSR Mental Health Centre, Glostrup, Copenhagen, Denmark
| | - Lauren M Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, King’s College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Liliana Galindo
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Pablo A Gaspar
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Carla Gerber
- Behavioral Health Services, PeaceHealth Medical Group, Eugene, OR, USA
| | - Louise Birkedal Glenthøj
- Copenhagen Research Centre for Mental Health, Mental Health Copenhagen, University of Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Robert Glynn
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health and Harvard Medical School, Boston, MA, USA
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Leslie E Horton
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Kambeitz
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Tina Kapur
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
- Mindlink, Gwangju Bukgu Mental Health Center, Gwangju, Korea
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marek Kubicki
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Kathryn E Lewandowski
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, CA, USA
- Veterans Affairs San Diego Health Care System, San Diego, CA, USA
| | - Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | | | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Mental Health Service 116D, Veterans Affairs San Francisco Health Care System, San Francisco, CA, USA
| | - Patrick D McGorry
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Copenhagen, University of Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Angela Nunez
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Ofer Pasternak
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatry Research Center, Hartford Hospital, Hartford, CT, USA
| | - Jesus Perez
- CAMEO, Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Department of Medicine, Institute of Biomedical Research (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Albert R Powers
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fred W Sabb
- Prevention Science Institute, University of Oregon, Eugene, OR, USA
| | - Jason Schiffman
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Jai L Shah
- PEPP-Montreal, Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jessica Spark
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Zailyn Tamayo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - John Torous
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Rachel Upthegrove
- Department of Software Engineering and Information Technology, École de technologie supérieure, Montréal, Canada
- Birmingham Womens and Childrens, NHS Foundation Trust, Birmingham, UK
| | - Mark Vangel
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Swapna Verma
- Department of Psychosis, Institute of Mental Health, Singapore
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Inge Winter-van Rossum
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Wolff
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Stephen J Wood
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
- School of Psychology, University of Birmingham, Edgbaston, UK
| | - Alison R Yung
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Carla Agurto
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Mario Alvarez-Jimenez
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Paul Amminger
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Marco Armando
- Youth Early Detection/Intervention in Psychosis Platform (Plateforme ERA), Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and The University of Lausanne, Lausanne, Switzerland
| | | | - John Cahill
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Ricardo E Carrión
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Eduardo Castro
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Suheyla Cetin-Karayumak
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - David Cotter
- Department Psychiatry, Beaumont Hospital, Dublin 9, Ireland
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Simon D’Alfonso
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Michaela Ennis
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Shreyas Fadnavis
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Caroline Gao
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Tina Gupta
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly K Hamilton
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Gil D Hoftman
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Grace R Jacobs
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Johanna Jarcho
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Christian G Kohler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paris Alexandros Lalousis
- School of Psychology, Institute for Mental Health, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Suzie Lavoie
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Martin Lepage
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Einat Liebenthal
- Program for Specialized Treatment Early in Psychosis (STEP), CMHC, New Haven, CT, USA
| | - Josh Mervis
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Vishnu Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Spero C Nicholas
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Lipeng Ning
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nora Penzel
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Russell Poldrack
- Department of Psychology, Stanford University, Stanford, CA, USA
| | | | - Danielle N Pratt
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Rachel Rabin
- PEPP-Montreal, Douglas Research Centre, Montreal, Quebec, Canada
| | | | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Avraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenna Reinen
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Jack Rogers
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Bernalyn Ruiz-Yu
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Isabelle Scott
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Vinod H Srihari
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Program for Specialized Treatment Early in Psychosis (STEP), CMHC, New Haven, CT, USA
| | - Agrima Srivastava
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Thompson
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Bruce I Turetsky
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara C Walsh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Thomas Whitford
- Orygen, Parkville, VIC, Australia
- School of Psychology, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - Johanna T W Wigman
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center,Groningen, Netherlands
| | - Beier Yao
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Hok Pan Yuen
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | | | - Andrew (Jin Soo) Byun
- Division of Digital Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Yoonho Chung
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Kim Do
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience King’s College London, London, UK
| | - Larry Hendricks
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Kevin Huynh
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Clark Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Erlend Lane
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Carsten Langholm
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Eric Lin
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Boston, MA, USA
- Medical Informatics Fellowship, Veteran Affairs Boston Healthcare System, Boston, MA, USA
- Food and Drug Administration, Silver Spring, MD, USA
| | - Valentina Mantua
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Gennarina Santorelli
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Kosha Ruparel
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Eirini Zoupou
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Tatiana Adasme
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Lauren Addamo
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Laura Adery
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Munaza Ali
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Andrea Auther
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Samantha Aversa
- PEPP-Montreal, Douglas Research Centre, Montreal, Quebec, Canada
| | - Seon-Hwa Baek
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
- Mindlink, Gwangju Bukgu Mental Health Center, Gwangju, Korea
| | - Kelly Bates
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Alyssa Bathery
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Johanna M M Bayer
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Rebecca Beedham
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Zarina Bilgrami
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Sonia Birch
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Ilaria Bonoldi
- Department of Psychosis Studies, King’s College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Owen Borders
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Lisa Brown
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alejandro Bruna
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Holly Carrington
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Rolando I Castillo-Passi
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
- Department of Neurology and Psychiatry, Clínica Alemana—Universidad del Desarrollo, Santiago, Chile
| | - Justine Chen
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicholas Cheng
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Ann Ee Ching
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Chloe Clifford
- School of Psychology, Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Beau-Luke Colton
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Pamela Contreras
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Sebastián Corral
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Monica Done
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrés Estradé
- Early Psychosis Detection and Clinical Intervention (EPIC) Lab, Department of Psychosis Studies, King’s College London, London, UK
| | - Brandon Asika Etuka
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Melanie Formica
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Rachel Furlan
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Mia Geljic
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Carmela Germano
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Ruth Getachew
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | | | - Anastasia Haidar
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Hartmann
- Department of Public Mental Health, Central Institute of Mental Health, Heidelberg Univeristy, Mannheim, Germany
| | - Anna Jo
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Omar John
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Kerins
- Early Psychosis Detection and Clinical Intervention (EPIC) Lab, Department of Psychosis Studies, King’s College London, London, UK
| | - Melissa Kerr
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Irena Kesselring
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Honey Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Nicholas Kim
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kyle Kinney
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Marija Krcmar
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Elana Kotler
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Melanie Lafanechere
- School of Psychology, University of Birmingham, Edgbaston, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Clarice Lee
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Joshua Llerena
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | | | | | | | - Aissata Mavambu
- School of Psychology, Institute for Mental Health, University of Birmingham, Birmingham, UK
| | | | - Amelia McDonnell
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Alessia McGowan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Rebecca McIlhenny
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brittany McQueen
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Yohannes Mebrahtu
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Martina Mensi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | | | - Yi Nam Suen
- Department of Psychiatry, University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | - Neal Morrell
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Mariam Omar
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Alice Partridge
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Christina Phassouliotis
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Christian Porter
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Umberto Provenzani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Nicholas Prunier
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jasmine Raj
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Susan Ray
- Northwell Health, Glen Oaks, NY, USA
| | - Victoria Rayner
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Manuel Reyes
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
- Department of Neurology and Psychiatry, Clínica Alemana—Universidad del Desarrollo, Santiago, Chile
| | - Kate Reynolds
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Sage Rush
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Cesar Salinas
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Jashmina Shetty
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Callum Snowball
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Sophie Tod
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | | | - Daniela Valle
- Department of Psychiatry, IMHAY, University of Chile, Santiago, Chile
| | - Simone Veale
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Whitson
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Alana Wickham
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Youn
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Francisco Zamorano
- Unidad de imágenes cuantitativas avanzadas, departamento de imágenes, clínica alemana, universidad del Desarrollo, Santiago, Chile
- Facultad de ciencias para el cuidado de la salud, Universidad San Sebastián, Campus Los Leones, Santiago, Chile
| | - Elissa Zavaglia
- PEPP-Montreal, Douglas Research Centre, Montreal, Quebec, Canada
| | - Jamie Zinberg
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Dickie EW, Ameis SH, Boileau I, Diaconescu AO, Felsky D, Goldstein BI, Gonçalves V, Griffiths JD, Haltigan JD, Husain MO, Rubin-Kahana DS, Iftikhar M, Jani M, Lai MC, Lin HY, MacIntosh BJ, Wheeler AL, Vasdev N, Vieira E, Ahmadzadeh G, Heyland L, Mohan A, Ogunsanya F, Oliver LD, Zhu C, Wong JKY, Charlton C, Truong J, Yu L, Kelly R, Cleverley K, Courtney DB, Foussias G, Hawke LD, Hill S, Kozloff N, Polillo A, Rotenberg M, Quilty LC, Tempelaar W, Wang W, Nikolova YS, Voineskos AN. Neuroimaging and Biosample Collection in the Toronto Adolescent and Youth Cohort Study: Rationale, Methods, and Early Data. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:275-284. [PMID: 37979944 DOI: 10.1016/j.bpsc.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND The Toronto Adolescent and Youth (TAY) Cohort Study will characterize the neurobiological trajectories of psychosis spectrum symptoms, functioning, and suicidality (i.e., suicidal thoughts and behaviors) in youth seeking mental health care. Here, we present the neuroimaging and biosample component of the protocol. We also present feasibility and quality control metrics for the baseline sample collected thus far. METHODS The current study includes youths (ages 11-24 years) who were referred to child and youth mental health services within a large tertiary care center in Toronto, Ontario, Canada, with target recruitment of 1500 participants. Participants were offered the opportunity to provide any or all of the following: 1) 1-hour magnetic resonance imaging (MRI) scan (electroencephalography if ineligible for or declined MRI), 2) blood sample for genomic and proteomic data (or saliva if blood collection was declined or not feasible) and urine sample, and 3) heart rate recording to assess respiratory sinus arrhythmia. RESULTS Of the first 417 participants who consented to participate between May 4, 2021, and February 2, 2023, 412 agreed to participate in the imaging and biosample protocol. Of these, 334 completed imaging, 341 provided a biosample, 338 completed respiratory sinus arrhythmia, and 316 completed all 3. Following quality control, data usability was high (MRI: T1-weighted 99%, diffusion-weighted imaging 99%, arterial spin labeling 90%, resting-state functional MRI 95%, task functional MRI 90%; electroencephalography: 83%; respiratory sinus arrhythmia: 99%). CONCLUSIONS The high consent rates, good completion rates, and high data usability reported here demonstrate the feasibility of collecting and using brain imaging and biosamples in a large clinical cohort of youths seeking mental health care.
Collapse
Affiliation(s)
- Erin W Dickie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Andreea O Diaconescu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Felsky
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Gonçalves
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John D Griffiths
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John D Haltigan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Muhammad O Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dafna S Rubin-Kahana
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Myera Iftikhar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Melanie Jani
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; National Taiwan University Hospital and College of Medicine, Taiwan
| | - Hsiang-Yuan Lin
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Oslo University Hospital, Oslo, Norway
| | - Anne L Wheeler
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Hospital for Sick Children, Neurosciences and Mental Health, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Neil Vasdev
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erica Vieira
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ghazaleh Ahmadzadeh
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Lindsay Heyland
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Acadia University, Wolfville, Nova Scotia, Canada
| | - Akshay Mohan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Feyi Ogunsanya
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Cherrie Zhu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute at Sinai Health, Toronto, Ontario, Canada
| | - Jimmy K Y Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Colleen Charlton
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jennifer Truong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Lujia Yu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rachel Kelly
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kristin Cleverley
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Darren B Courtney
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - George Foussias
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lisa D Hawke
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Nicole Kozloff
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alexia Polillo
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Martin Rotenberg
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lena C Quilty
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wanda Tempelaar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wei Wang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Larsen KM, Madsen KS, Ver Loren van Themaat AH, Thorup AAE, Plessen KJ, Mors O, Nordentoft M, Siebner HR. Children at Familial High risk of Schizophrenia and Bipolar Disorder Exhibit Altered Connectivity Patterns During Pre-attentive Processing of an Auditory Prediction Error. Schizophr Bull 2024; 50:166-176. [PMID: 37379847 PMCID: PMC10754183 DOI: 10.1093/schbul/sbad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Individuals with schizophrenia or bipolar disorder have attenuated auditory mismatch negativity (MMN) responses, indicating impaired sensory information processing. Computational models of effective connectivity between brain areas underlying MMN responses show reduced connectivity between fronto-temporal areas in individuals with schizophrenia. Here we ask whether children at familial high risk (FHR) of developing a serious mental disorder show similar alterations. STUDY DESIGN We recruited 67 children at FHR for schizophrenia, 47 children at FHR for bipolar disorder as well as 59 matched population-based controls from the Danish High Risk and Resilience study. The 11-12-year-old participants engaged in a classical auditory MMN paradigm with deviations in frequency, duration, or frequency and duration, while we recorded their EEG. We used dynamic causal modeling (DCM) to infer on the effective connectivity between brain areas underlying MMN. STUDY RESULTS DCM yielded strong evidence for differences in effective connectivity among groups in connections from right inferior frontal gyrus (IFG) to right superior temporal gyrus (STG), along with differences in intrinsic connectivity within primary auditory cortex (A1). Critically, the 2 high-risk groups differed in intrinsic connectivity in left STG and IFG as well as effective connectivity from right A1 to right STG. Results persisted even when controlling for past or present psychiatric diagnoses. CONCLUSIONS We provide novel evidence that connectivity underlying MMN responses in children at FHR for schizophrenia and bipolar disorder is altered at the age of 11-12, echoing findings that have been found in individuals with manifest schizophrenia.
Collapse
Affiliation(s)
- Kit Melissa Larsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Anna Hester Ver Loren van Themaat
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Anne Amalie Elgaard Thorup
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Hellerup, Denmark
- Copenhagen Research Centre for Mental Health - CORE, Mental Health Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - Kerstin Jessica Plessen
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Hellerup, Denmark
- Department of Psychiatry, Service of Child and Adolescent Psychiatry, University Medical Center, University of Lausanne, Switzerland
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health - CORE, Mental Health Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
21
|
O'Donnell P, Buhl DL, Johannesen J, Lijffijt M. Neural Circuitry-Related Biomarkers for Drug Development in Psychiatry: An Industry Perspective. ADVANCES IN NEUROBIOLOGY 2024; 40:45-65. [PMID: 39562440 DOI: 10.1007/978-3-031-69491-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Drug development in psychiatry has been hampered by the lack of reliable ways to determine the neurobiological effects of the assets tested, difficulties in identifying patient subsets more amenable to benefit from a given asset, and issues with executing trials in a manner that would convincingly provide answers. An emerging idea in many companies is to validate tools to address changes in neural circuits by pharmacological tools as a key piece in quantifying the effects of our drugs. Here, we review past, present, and emerging approaches to capture the outcome of the modulation of brain circuits. The field is now ripe for implementing these approaches in drug development.
Collapse
Affiliation(s)
| | - Derek L Buhl
- Precision Medicine, Abbvie, Inc, Cambridge, MA, USA
| | | | | |
Collapse
|
22
|
Hamilton HK, Mathalon DH. Neurophysiological Models in Individuals at Clinical High Risk for Psychosis: Using Translational EEG Paradigms to Forecast Psychosis Risk and Resilience. ADVANCES IN NEUROBIOLOGY 2024; 40:385-410. [PMID: 39562452 DOI: 10.1007/978-3-031-69491-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Over the last several decades, there have been major research efforts to improve the identification of youth and young adults at clinical high-risk for psychosis (CHR-P). Among individuals identified as CHR-P based on clinical criteria, approximately 20% progress to full-blown psychosis over 2-3 years and 30% achieve remission. In more recent years, neurophysiological measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its range of clinical outcomes, with the goal of identifying specific biomarkers that precede psychosis onset that 7 chapter, we review studies examining several translational electroencephalography (EEG) and event-related potential (ERP) measures, which have known sensitivity to schizophrenia and reflect abnormal sensory, perceptual, and cognitive processing of task stimuli, as predictors of future clinical outcomes in CHR-P individuals. We discuss the promise of these EEG/ERP biomarkers of psychosis risk, including their potential to provide (a) translational bridges between human studies and animal models focused on drug development for early psychosis, (b) target engagement measures for clinical trials, and (c) prognostic indicators that could enhance personalized treatment planning.
Collapse
Affiliation(s)
- Holly K Hamilton
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| |
Collapse
|
23
|
Salisbury DF. Mismatch Negativity to Pitch and Duration Deviants Is Not a Biomarker of Psychosis Risk. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:8-9. [PMID: 38185487 DOI: 10.1016/j.bpsc.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/09/2024]
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
24
|
Dheerendra P, Grent-'t-Jong T, Gajwani R, Gross J, Gumley AI, Krishnadas R, Lawrie SM, Schwannauer M, Schultze-Lutter F, Uhlhaas PJ. Intact Mismatch Negativity Responses in Clinical High Risk for Psychosis and First-Episode Psychosis: Evidence From Source-Reconstructed Event-Related Fields and Time-Frequency Data. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:121-131. [PMID: 37778724 DOI: 10.1016/j.bpsc.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND This study examined whether mismatch negativity (MMN) responses are impaired in participants at clinical high risk for psychosis (CHR-P) and patients with first-episode psychosis (FEP) and whether MMN deficits predict clinical outcomes in CHR-Ps. METHODS Magnetoencephalography data were collected during a duration-deviant MMN paradigm for a group of 116 CHR-P participants, 33 FEP patients (15 antipsychotic-naïve), clinical high risk negative group (n = 38) with substance abuse and affective disorder, and 49 healthy control participants. Analysis of group differences of source-reconstructed event-related fields as well as time-frequency and intertrial phase coherence focused on the bilateral Heschl's gyri and bilateral superior temporal gyri. RESULTS Significant magnetic MMN responses were found across participants in the bilateral Heschl's gyri and bilateral superior temporal gyri. However, MMN amplitude as well as time-frequency and intertrial phase coherence responses were intact in CHR-P participants and FEP patients compared with healthy control participants. Furthermore, MMN deficits were not related to persistent attenuated psychotic symptoms or transitions to psychosis in CHR-P participants. CONCLUSIONS Our data suggest that magnetic MMN responses in magnetoencephalography data are not impaired in early-stage psychosis and may not predict clinical outcomes in CHR-P participants.
Collapse
Affiliation(s)
- Pradeep Dheerendra
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Tineke Grent-'t-Jong
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Ruchika Gajwani
- Mental Health and Wellbeing, Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Muenster, Germany
| | - Andrew I Gumley
- Mental Health and Wellbeing, Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Rajeev Krishnadas
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Stephen M Lawrie
- Department of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthias Schwannauer
- Department of Clinical Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Peter J Uhlhaas
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
25
|
Mamah D, Mutiso V, Musyimi C, Harms MP, Anokhin AP, Chen S, Torous J, Muyela L, Nashed J, Al-Hosni Y, Odera A, Yarber A, Golosheykin S, Faghankhani M, Sneed M, Ndetei DM. Kenya Psychosis-Risk Outcomes Study (KePROS): Development of an Accelerated Medicine Partnership Schizophrenia-Aligned Project in Africa. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae009. [PMID: 39144113 PMCID: PMC11207935 DOI: 10.1093/schizbullopen/sgae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis The Accelerating Medicines Partnership Schizophrenia (AMP SCZ) funds a longitudinal study of 43 research sites across 5 continents to develop tools to stratify developmental trajectories of youth at clinical high risk for psychosis (CHR) and identify homogenous targets for future clinical trials. However, there are no sites in Africa, leaving a critical gap in our knowledge of clinical and biological outcomes among CHR individuals. Study Design We describe the development of the Kenya Psychosis-Risk Outcomes Study (KePROS), a 5-year NIH-funded project in Kenya designed to harmonize with AMP SCZ. The study will recruit over 100 CHR and 50 healthy participants and conduct multiple clinical and biomarker assessments over 2 years. Capacity building is a key component of the study, including the construction of an electroencephalography (EEG) laboratory and the upgrading of a local 3 T magnetic resonance imaging (MRI) machine. We detail community recruitment, study methodologies and protocols, and unique challenges with this pioneering research in Africa. Study Results This paper is descriptive only. Planned future analyses will investigate possible predictors of clinical outcomes and will be compared to results from other global populations. Conclusions KePROS will provide the research community with a rich longitudinal clinical and biomarker dataset from an African country in the developing Global South, which can be used alongside AMP SCZ data to delineate CHR outcome groups for future treatment development. Training in mental health assessment and investment in cutting-edge biomarker assessment and other technologies is needed to facilitate the inclusion of African countries in large-scale research consortia.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Victoria Mutiso
- African Mental Health Research and Training Foundation, Nairobi, Kenya
| | - Christine Musyimi
- African Mental Health Research and Training Foundation, Nairobi, Kenya
| | - Michael P Harms
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Andrey P Anokhin
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - ShingShiun Chen
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - John Torous
- Department of Psychiatry, Beth Israel Deaconess Medical Center at Harvard Medical School, Boston, MA, USA
| | - Levi Muyela
- African Mental Health Research and Training Foundation, Nairobi, Kenya
| | - Jerome Nashed
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Yazen Al-Hosni
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Arthur Odera
- African Mental Health Research and Training Foundation, Nairobi, Kenya
| | - Alaina Yarber
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Semyon Golosheykin
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Masoomeh Faghankhani
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Megan Sneed
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - David M Ndetei
- African Mental Health Research and Training Foundation, Nairobi, Kenya
- Department of Psychiatry, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
26
|
Hua JPY, Roach BJ, Ford JM, Mathalon DH. Mismatch Negativity and Theta Oscillations Evoked by Auditory Deviance in Early Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1186-1196. [PMID: 36931469 DOI: 10.1016/j.bpsc.2023.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Amplitude reduction of mismatch negativity (MMN), an event-related potential component indexing NMDA receptor-dependent auditory echoic memory and predictive coding, is widely replicated in schizophrenia. Time-frequency analyses of single-trial electroencephalography epochs suggest that theta oscillation abnormalities underlie MMN deficits in schizophrenia. However, this has received less attention in early schizophrenia (ESZ). METHODS Patients with ESZ (n = 89), within 5 years of illness onset, and healthy control subjects (n = 105) completed an electroencephalography MMN paradigm (duration-deviant, pitch-deviant, duration + pitch double-deviant). Repeated measures analyses of variance assessed group differences in MMN, theta intertrial phase coherence (ITC), and theta total power from frontocentral electrodes, after normal age adjustment. Group differences were retested after covarying MMN and theta measures. RESULTS Relative to healthy control subjects, patients with ESZ showed auditory deviance deficits. Patients with ESZ had MMN deficits for duration-deviants (p = .041), pitch-deviants (ps = .007), and double-deviants (ps < .047). Patients with ESZ had reduced theta ITC for standards (ps < .040) and duration-deviants (ps < .030). Furthermore, patients with ESZ had reduced theta power across deviants at central electrodes (p = .013). MMN group deficits were not fully accounted for by theta ITC and power, and neither were theta ITC group deficits fully accounted for by MMN. Group differences in theta total power were no longer significant after covarying for MMN. CONCLUSIONS Patients with ESZ showed reduced MMN and theta total power for all deviant types. Theta ITC showed a relatively specific reduction for duration-deviants. Although MMN and theta ITC were correlated in ESZ, covarying for one did not fully account for deficits in the other, raising the possibility of their sensitivity to dissociable pathophysiological processes.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco, California; San Francisco VA Medical Center, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Brian J Roach
- San Francisco VA Medical Center, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Judith M Ford
- San Francisco VA Medical Center, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Daniel H Mathalon
- San Francisco VA Medical Center, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California.
| |
Collapse
|
27
|
Forsyth JK, Bearden CE. Rethinking the First Episode of Schizophrenia: Identifying Convergent Mechanisms During Development and Moving Toward Prediction. Am J Psychiatry 2023; 180:792-804. [PMID: 37908094 DOI: 10.1176/appi.ajp.20230736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| | - Carrie E Bearden
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| |
Collapse
|
28
|
Pentz AB, Timpe CMF, Normann EM, Slapø NB, Melle I, Lagerberg TV, Steen NE, Westlye LT, Jönsson EG, Haukvik UK, Moberget T, Andreassen OA, Elvsåshagen T. Mismatch negativity in schizophrenia spectrum and bipolar disorders: Group and sex differences and associations with symptom severity. Schizophr Res 2023; 261:80-93. [PMID: 37716205 DOI: 10.1016/j.schres.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Research increasingly implicates glutamatergic dysfunction in the pathophysiologies of psychotic disorders. Auditory mismatch negativity (MMN) is an electroencephalography (EEG) waveform linked to glutamatergic neurotransmission and is consistently attenuated in schizophrenia (SCZ). MMN consists of two subcomponents, the repetition positivity (RP) and deviant negativity (DN) possibly reflecting different neural mechanisms. However, whether MMN reduction is present across different psychotic disorders, linked to distinct symptom clusters, or related to sex remain to be clarified. METHODS Four hundred participants including healthy controls (HCs; n = 296) and individuals with SCZ (n = 39), bipolar disorder (BD) BD typeI (n = 35), or BD type II (n = 30) underwent a roving MMN paradigm and clinical evaluation. MMN, RP and DN as well their memory traces were recorded at the FCZ electrode. Analyses of variance and linear regression models were used both transdiagnostically and within clinical groups. RESULTS MMN was reduced in SCZ compared to BD (p = 0.006, d = 0.55) and to HCs (p < 0.001, d = 0.63). There was a significant group × sex interaction (p < 0.003) and the MMN impairment was only detected in males with SCZ. MMN amplitude correlated positively with Positive and Negative Syndrome Scale total score and negatively with Global Assessment of Functioning Scale score. The deviant negativity was impaired in males with SCZ. No group differences in memory trace indices of the MMN, DN, or RP. CONCLUSION MMN was attenuated in SCZ and correlated with greater severity of psychotic symptoms and lower level of functioning. Our results may indicate sex-dependent differences of glutamatergic function in SCZ.
Collapse
Affiliation(s)
- Atle Bråthen Pentz
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway.
| | - Clara Maria Fides Timpe
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Nora Berz Slapø
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Unn K Haukvik
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Norway; Department of Forensic Psychiatry Research, Oslo University Hospital, Norway
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
29
|
Caballero N, Machiraju S, Diomino A, Kennedy L, Kadivar A, Cadenhead KS. Recent Updates on Predicting Conversion in Youth at Clinical High Risk for Psychosis. Curr Psychiatry Rep 2023; 25:683-698. [PMID: 37755654 PMCID: PMC10654175 DOI: 10.1007/s11920-023-01456-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW This review highlights recent advances in the prediction and treatment of psychotic conversion. Over the past 25 years, research into the prodromal phase of psychotic illness has expanded with the promise of early identification of individuals at clinical high risk (CHR) for psychosis who are likely to convert to psychosis. RECENT FINDINGS Meta-analyses highlight conversion rates between 20 and 30% within 2-3 years using existing clinical criteria while research into more specific risk factors, biomarkers, and refinement of psychosis risk calculators has exploded, improving our ability to predict psychotic conversion with greater accuracy. Recent studies highlight risk factors and biomarkers likely to contribute to earlier identification and provide insight into neurodevelopmental abnormalities, CHR subtypes, and interventions that can target specific risk profiles linked to neural mechanisms. Ongoing initiatives that assess longer-term (> 5-10 years) outcome of CHR participants can provide valuable information about predictors of later conversion and diagnostic outcomes while large-scale international biomarker studies provide hope for precision intervention that will alter the course of early psychosis globally.
Collapse
Affiliation(s)
- Noe Caballero
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Siddharth Machiraju
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Anthony Diomino
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Leda Kennedy
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Armita Kadivar
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA.
| |
Collapse
|
30
|
Valt C, Quarto T, Tavella A, Romanelli F, Fazio L, Arcara G, Altamura M, Barrasso G, Bellomo A, Blasi G, Brudaglio F, Carofiglio A, D'Ambrosio E, Padalino FA, Rampino A, Saponaro A, Semisa D, Suma D, Pergola G, Bertolino A. Reduced magnetic mismatch negativity: a shared deficit in psychosis and related risk. Psychol Med 2023; 53:6037-6045. [PMID: 36321391 DOI: 10.1017/s003329172200321x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Abnormal auditory processing of deviant stimuli, as reflected by mismatch negativity (MMN), is often reported in schizophrenia (SCZ). At present, it is still under debate whether this dysfunctional response is specific to the full-blown SCZ diagnosis or rather a marker of psychosis in general. The present study tested MMN in patients with SCZ, bipolar disorder (BD), first episode of psychosis (FEP), and in people at clinical high risk for psychosis (CHR). METHODS Source-based MEG activity evoked during a passive auditory oddball task was recorded from 135 patients grouped according to diagnosis (SCZ, BD, FEP, and CHR) and 135 healthy controls also divided into four subgroups, age- and gender-matched with diagnostic subgroups. The magnetic MMN (mMMN) was analyzed as event-related field (ERF), Theta power, and Theta inter-trial phase coherence (ITPC). RESULTS The clinical group as a whole showed reduced mMMN ERF amplitude, Theta power, and Theta ITPC, without any statistically significant interaction between diagnosis and mMMN reductions. The mMMN subgroup contrasts showed lower ERF amplitude in all the diagnostic subgroups. In the analysis of Theta frequency, SCZ showed significant power and ITPC reductions, while only indications of diminished ITPC were observed in CHR, but no significant decreases characterized BD and FEP. CONCLUSIONS Significant mMMN alterations in people experiencing psychosis, also for diagnoses other than SCZ, suggest that this neurophysiological response may be a feature shared across psychotic disorders. Additionally, reduced Theta ITPC may be associated with risk for psychosis.
Collapse
Affiliation(s)
- Christian Valt
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Tiziana Quarto
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Humanities, University of Foggia, Foggia, Italy
| | | | | | - Leonardo Fazio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | | | - Mario Altamura
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Barrasso
- Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
| | - Flora Brudaglio
- Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
| | | | - Enrico D'Ambrosio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience - King's College London, London, UK
| | | | - Antonio Rampino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
| | | | | | - Domenico Suma
- Department of Mental Health, ASL Brindisi, Brindisi, Italy
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
| |
Collapse
|
31
|
Todd J, Salisbury D, Michie PT. Why mismatch negativity continues to hold potential in probing altered brain function in schizophrenia. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e144. [PMID: 38867817 PMCID: PMC11114358 DOI: 10.1002/pcn5.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
The brain potential known as mismatch negativity (MMN) is one of the most studied indices of altered brain function in schizophrenia. This review looks at what has been learned about MMN in schizophrenia over the last three decades and why the level of interest and activity in this field of research remains strong. A diligent consideration of available evidence suggests that MMN can serve as a biomarker in schizophrenia, but perhaps not the kind of biomarker that early research supposed. This review concludes that MMN measurement is likely to be most useful as a monitoring and response biomarker enabling tracking of an underlying pathology and efficacy of interventions, respectively. The role of, and challenges presented by, pre-clinical models is discussed as well as the merits of different methodologies that can be brought to bear in pursuing a deeper understanding of pathophysiology that might explain smaller MMN in schizophrenia.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychological SciencesUniversity of NewcastleNewcastleNew South WalesAustralia
| | - Dean Salisbury
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Patricia T. Michie
- School of Psychological SciencesUniversity of NewcastleNewcastleNew South WalesAustralia
| |
Collapse
|
32
|
Passiatore R, Antonucci LA, DeRamus TP, Fazio L, Stolfa G, Sportelli L, Kikidis GC, Blasi G, Chen Q, Dukart J, Goldman AL, Mattay VS, Popolizio T, Rampino A, Sambataro F, Selvaggi P, Ulrich W, Apulian Network on Risk for Psychosis, Weinberger DR, Bertolino A, Calhoun VD, Pergola G. Changes in patterns of age-related network connectivity are associated with risk for schizophrenia. Proc Natl Acad Sci U S A 2023; 120:e2221533120. [PMID: 37527347 PMCID: PMC10410767 DOI: 10.1073/pnas.2221533120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/24/2023] [Indexed: 08/03/2023] Open
Abstract
Alterations in fMRI-based brain functional network connectivity (FNC) are associated with schizophrenia (SCZ) and the genetic risk or subthreshold clinical symptoms preceding the onset of SCZ, which often occurs in early adulthood. Thus, age-sensitive FNC changes may be relevant to SCZ risk-related FNC. We used independent component analysis to estimate FNC from childhood to adulthood in 9,236 individuals. To capture individual brain features more accurately than single-session fMRI, we studied an average of three fMRI scans per individual. To identify potential familial risk-related FNC changes, we compared age-related FNC in first-degree relatives of SCZ patients mostly including unaffected siblings (SIB) with neurotypical controls (NC) at the same age stage. Then, we examined how polygenic risk scores for SCZ influenced risk-related FNC patterns. Finally, we investigated the same risk-related FNC patterns in adult SCZ patients (oSCZ) and young individuals with subclinical psychotic symptoms (PSY). Age-sensitive risk-related FNC patterns emerge during adolescence and early adulthood, but not before. Young SIB always followed older NC patterns, with decreased FNC in a cerebellar-occipitoparietal circuit and increased FNC in two prefrontal-sensorimotor circuits when compared to young NC. Two of these FNC alterations were also found in oSCZ, with one exhibiting reversed pattern. All were linked to polygenic risk for SCZ in unrelated individuals (R2 varied from 0.02 to 0.05). Young PSY showed FNC alterations in the same direction as SIB when compared to NC. These results suggest that age-related neurotypical FNC correlates with genetic risk for SCZ and is detectable with MRI in young participants.
Collapse
Affiliation(s)
- Roberta Passiatore
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, 30303Atlanta, GA
- Institute of Neuroscience and Medicine, Brain and Behavior, Research Centre Jülich, 52428Jülich, Germany
| | - Linda A. Antonucci
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
| | - Thomas P. DeRamus
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, 30303Atlanta, GA
| | - Leonardo Fazio
- Department of Medicine and Surgery, Libera Università Mediterranea Giuseppe Degennaro, 70010Casamassima, Italy
| | - Giuseppe Stolfa
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
| | - Leonardo Sportelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
| | - Gianluca C. Kikidis
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
| | - Giuseppe Blasi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Psychiatric Unit, University Hospital, 70124Bari, Italy
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behavior, Research Centre Jülich, 52428Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Aaron L. Goldman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
| | - Venkata S. Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
- Department of Neurology and Radiology, Johns Hopkins Medical Campus, 21287Baltimore, MD
| | - Teresa Popolizio
- Neuroradiology Unit, Scientific Institute for Research, Hospitalization and Health Care, Casa Sollievo della Sofferenza, 71013San Giovanni Rotondo, Foggia, Italy
| | - Antonio Rampino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Psychiatric Unit, University Hospital, 70124Bari, Italy
| | - Fabio Sambataro
- Section of Psychiatry, Department of Neuroscience, University of Padova, 35121Padua, Italy
| | - Pierluigi Selvaggi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Psychiatric Unit, University Hospital, 70124Bari, Italy
| | - William Ulrich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
| | - Apulian Network on Risk for Psychosis
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Department of Mental Health, Azienda Sanitaria Locale Foggia, 71121Foggia, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, 71122Foggia, Italy
- Department of Mental Health, Azienda Sanitaria Locale Barletta-Andria-Trani, 76123Andria, Italy
- Department of Mental Health, Azienda Sanitaria Locale Bari, 70132Bari, Italy
- Department of Mental Health, Azienda Sanitaria Locale Brindisi, 72100Brindisi, Italy
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
- Department of Neurology and Radiology, Johns Hopkins Medical Campus, 21287Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 21205Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, 21287Baltimore, MD
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 21287Baltimore, MD
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Psychiatric Unit, University Hospital, 70124Bari, Italy
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, 30303Atlanta, GA
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 21205Baltimore, MD
| |
Collapse
|
33
|
Aeberli T, Müller M, Theodoridou A, Hagenmuller F, Seifritz E, Walitza S, Rössler W, Kawohl W, Heekeren K. Mismatch negativity generation in subjects at risk for psychosis: source analysis is more sensitive than surface electrodes in risk prediction. Front Psychiatry 2023; 14:1130809. [PMID: 37539328 PMCID: PMC10394234 DOI: 10.3389/fpsyt.2023.1130809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Background Deficits of mismatch negativity (MMN) in patients with schizophrenia have been demonstrated many times and there is growing evidence that alterations of MMN already exist in individuals at risk for psychosis. The present study examines differences in MMN between subjects fulfilling ultra-high risk (UHR) or only basic symptoms criteria and it addresses the question, if MMN source analysis can improve prediction of transition to psychosis. Methods The MMN to duration, frequency, and intensity deviants was recorded in 50 healthy controls and 161 individuals at risk for psychosis classified into three subgroups: only basic symptoms (n = 74), only ultra-high risk (n = 13) and persons who fulfill both risk criteria (n = 74). Based on a three-source model of MMN generation, we conducted an MMN source analysis and compared the amplitudes of surface electrodes and sources among the three groups. Results Significant differences in MMN generation among the four groups were revealed at surface electrodes Cz and C4 (p < 0.05) and at the frontal source (p < 0.001) for duration deviant stimuli. The 15 subjects from the risk groups who subsequently developed a manifest psychosis had a significantly lower MMN amplitude at frontal source (p = 0.019) without showing significant differences at surface electrodes. Low activity at frontal MMN source increased the risk of transition to manifest disease by the factor 3.12 in UHR subjects. Conclusion MMN activity differed significantly between subjects presenting only basic symptoms and subjects which additionally meet UHR criteria. The largest differences between groups as well as between individuals with and without transition were observed at the frontal source. The present results suggest that source analysis is more sensitive than surface electrodes in psychosis risk prediction by MMN.
Collapse
Affiliation(s)
- Tina Aeberli
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
| | - Mario Müller
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
| | - Florence Hagenmuller
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany
| | - Wolfram Kawohl
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Clienia Schlössli AG, Oetwil am See, Zurich, Switzerland
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Karsten Heekeren
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy I, LVR-Hospital Cologne, Cologne, Germany
| |
Collapse
|
34
|
Joshi YB, Molina JL, Braff DL, Green MF, Gur RC, Gur RE, Nuechterlein KH, Stone WS, Greenwood TA, Lazzeroni LC, Radant AD, Silverman JM, Sprock J, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Swerdlow NR, Light GA. Sensitivity of Schizophrenia Endophenotype Biomarkers to Anticholinergic Medication Burden. Am J Psychiatry 2023; 180:519-523. [PMID: 37038743 DOI: 10.1176/appi.ajp.20220649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Affiliation(s)
- Yash B Joshi
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Juan L Molina
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - David L Braff
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Michael F Green
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Ruben C Gur
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Raquel E Gur
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Keith H Nuechterlein
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - William S Stone
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Tiffany A Greenwood
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Laura C Lazzeroni
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Allen D Radant
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Jeremy M Silverman
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Joyce Sprock
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Catherine A Sugar
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Debby W Tsuang
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Ming T Tsuang
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Bruce I Turetsky
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Neal R Swerdlow
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Gregory A Light
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| |
Collapse
|
35
|
Dondé C, Kantrowitz JT, Medalia A, Saperstein AM, Balla A, Sehatpour P, Martinez A, O'Connell MN, Javitt DC. Early auditory processing dysfunction in schizophrenia: Mechanisms and implications. Neurosci Biobehav Rev 2023; 148:105098. [PMID: 36796472 PMCID: PMC10106448 DOI: 10.1016/j.neubiorev.2023.105098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Schizophrenia is a major mental disorder that affects approximately 1% of the population worldwide. Cognitive deficits are a key feature of the disorder and a primary cause of long-term disability. Over the past decades, significant literature has accumulated demonstrating impairments in early auditory perceptual processes in schizophrenia. In this review, we first describe early auditory dysfunction in schizophrenia from both a behavioral and neurophysiological perspective and examine their interrelationship with both higher order cognitive constructs and social cognitive processes. Then, we provide insights into underlying pathological processes, especially in relationship to glutamatergic and N-methyl-D-aspartate receptor (NMDAR) dysfunction models. Finally, we discuss the utility of early auditory measures as both treatment targets for precision intervention and as translational biomarkers for etiological investigation. Altogether, this review points out the crucial role of early auditory deficits in the pathophysiology of schizophrenia, in addition to major implications for early intervention and auditory-targeted approaches.
Collapse
Affiliation(s)
- Clément Dondé
- Univ. Grenoble Alpes, F-38000 Grenoble, France; INSERM, U1216, F-38000 Grenoble, France; Psychiatry Department, CHU Grenoble Alpes, F-38000 Grenoble, France; Psychiatry Department, CH Alpes-Isère, F-38000 Saint-Egrève, France.
| | - Joshua T Kantrowitz
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States; Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Alice Medalia
- New York State Psychiatric Institute, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian, New York, NY 10032, United States
| | - Alice M Saperstein
- New York State Psychiatric Institute, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian, New York, NY 10032, United States
| | - Andrea Balla
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Pejman Sehatpour
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Antigona Martinez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Monica N O'Connell
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
36
|
Kandilarova S, Riečanský I. QEEG and ERP Biomarkers of Psychotic and Mood Disorders and Their Treatment Response. NEUROMETHODS 2023:93-106. [DOI: 10.1007/978-1-0716-3230-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Hansen NC, Højlund A, Møller C, Pearce M, Vuust P. Musicians show more integrated neural processing of contextually relevant acoustic features. Front Neurosci 2022; 16:907540. [PMID: 36312026 PMCID: PMC9612920 DOI: 10.3389/fnins.2022.907540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Little is known about expertise-related plasticity of neural mechanisms for auditory feature integration. Here, we contrast two diverging hypotheses that musical expertise is associated with more independent or more integrated predictive processing of acoustic features relevant to melody perception. Mismatch negativity (MMNm) was recorded with magnetoencephalography (MEG) from 25 musicians and 25 non-musicians, exposed to interleaved blocks of a complex, melody-like multi-feature paradigm and a simple, oddball control paradigm. In addition to single deviants differing in frequency (F), intensity (I), or perceived location (L), double and triple deviants were included reflecting all possible feature combinations (FI, IL, LF, FIL). Following previous work, early neural processing overlap was approximated in terms of MMNm additivity by comparing empirical MMNms obtained with double and triple deviants to modeled MMNms corresponding to summed constituent single-deviant MMNms. Significantly greater subadditivity was found in musicians compared to non-musicians, specifically for frequency-related deviants in complex, melody-like stimuli. Despite using identical sounds, expertise effects were absent from the simple oddball paradigm. This novel finding supports the integrated processing hypothesis whereby musicians recruit overlapping neural resources facilitating more integrative representations of contextually relevant stimuli such as frequency (perceived as pitch) during melody perception. More generally, these specialized refinements in predictive processing may enable experts to optimally capitalize upon complex, domain-relevant, acoustic cues.
Collapse
Affiliation(s)
- Niels Chr. Hansen
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Dramaturgy and Musicology, School of Communication and Culture, Aarhus University, Aarhus, Denmark
- *Correspondence: Niels Chr. Hansen,
| | - Andreas Højlund
- Department of Linguistics, Cognitive Science, and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Cecilie Møller
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Marcus Pearce
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- School of Electronic Engineering and Computer Science, Cognitive Science Research Group and Centre for Digital Music, Queen Mary University of London, London, United Kingdom
| | - Peter Vuust
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
38
|
Error in Figure 3. JAMA Psychiatry 2022; 79:834. [PMID: 35920828 PMCID: PMC9350716 DOI: 10.1001/jamapsychiatry.2022.2130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|