1
|
Chhetri G, Ke Y, Wang P, Usman M, Li Y, Sapp E, Wang J, Ghosh A, Islam MA, Wang X, Boudi A, DiFiglia M, Li X. Impaired XK recycling for importing manganese underlies striatal vulnerability in Huntington's disease. J Cell Biol 2022; 221:213461. [PMID: 36099524 PMCID: PMC9475296 DOI: 10.1083/jcb.202112073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023] Open
Abstract
Mutant huntingtin, which causes Huntington's disease (HD), is ubiquitously expressed but induces preferential loss of striatal neurons by unclear mechanisms. Rab11 dysfunction mediates homeostatic disturbance of HD neurons. Here, we report that Rab11 dysfunction also underscores the striatal vulnerability in HD. We profiled the proteome of Rab11-positive endosomes of HD-vulnerable striatal cells to look for protein(s) linking Rab11 dysfunction to striatal vulnerability in HD and found XK, which triggers the selective death of striatal neurons in McLeod syndrome. XK was trafficked together with Rab11 and was diminished on the surface of immortalized HD striatal cells and striatal neurons in HD mouse brains. We found that XK participated in transporting manganese, an essential trace metal depleted in HD brains. Introducing dominantly active Rab11 into HD striatal cells improved XK dynamics and increased manganese accumulation in an XK-dependent manner. Our study suggests that impaired Rab11-based recycling of XK onto cell surfaces for importing manganese is a driver of striatal dysfunction in Huntington's disease.
Collapse
Affiliation(s)
- Gaurav Chhetri
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Ke
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Ping Wang
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA.,Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Jing Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Arabinda Ghosh
- Department of Botany, Microbiology Division, Gauhati University, Guwahati, Assam, India
| | - Md Ariful Islam
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Xueyi Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| |
Collapse
|
2
|
Xie S, Xu B, Tang R, Chen S, Lei C, Nie Z. Kinetics Accelerated CRISPR-Cas12a Enabling Live-Cell Monitoring of Mn 2+ Homeostasis. Anal Chem 2022; 94:10159-10167. [PMID: 35786883 DOI: 10.1021/acs.analchem.2c01461] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The CRISPR/Cas12a system has been repurposed as a versatile nuclei acid bio-imaging tool, but its utility in sensing non-nucleic acid analytes in living cells has been less exploited. Herein, we demonstrated the ability of Mn2+ to accelerate cleavage kinetics of Cas12a and deployed for live-cell Mn2+ sensing by leveraging the accelerated trans-cleavage for signal reporting. In this work, we found that Mn2+ could significantly boost both the cis-cleavage and trans-cleavage activities of Cas12a. On the basis of this phenomenon, we harnessed CRISPR-Cas12a as a direct sensing system for Mn2+, which achieved robust Mn2+ detection in the concentration range of 0.5-700 μM within 15 min in complex biological samples. Furthermore, we also demonstrated the versatility of this system to sense Mn2+ in the cytoplasm of living cells. With the usage of a conditional guide RNA, this Cas12a-based sensing method was applied to study the cytotoxicity of Mn2+ in living nerve cells, offering a valuable tool to reveal the cellular response of nerve cells to Mn2+ disorder and homeostasis.
Collapse
Affiliation(s)
- Shiyi Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Benfeng Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Siyu Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
3
|
Horning KJ, Tang X, Thomas MG, Aschner M, Bowman AB. Identification of Three Small Molecules That Can Selectively Influence Cellular Manganese Levels in a Mouse Striatal Cell Model. Molecules 2021; 26:molecules26041175. [PMID: 33671818 PMCID: PMC7931103 DOI: 10.3390/molecules26041175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/03/2022] Open
Abstract
Manganese (Mn) is a biologically essential metal, critical as a cofactor for numerous enzymes such a glutamine synthetase and kinases such as ataxia-telangiectasia mutated (ATM). Similar to other essential metals such as iron and zinc, proper levels of Mn need to be achieved while simultaneously being careful to avoid excess levels of Mn that can be neurotoxic. A lifetime of occupational exposure to Mn can often lead to a Parkinsonian condition, also known as “manganism”, characterized by impaired gait, muscle spasms, and tremors. Despite the importance of its regulation, the mechanisms underlying the transport and homeostasis of Mn are poorly understood. Rather than taking a protein or gene-targeted approach, our lab recently took a high-throughput-screening approach to identify 41 small molecules that could significantly increase or decrease intracellular Mn in a neuronal cell model. Here, we report characterization of these small molecules, which we refer to as the “Mn toolbox”. We adapted a Fura-2-based assay for measuring Mn concentration and for measuring relative concentrations of other divalent metals: nickel, copper, cobalt, and zinc. Of these 41 small molecules, we report here the identification of three that selectively influence cellular Mn but do not influence the other divalent metals tested. The patterns of activity across divalent metals and the discovery of Mn-selective small molecules has potential pharmacological and scientific utility.
Collapse
Affiliation(s)
- Kyle J. Horning
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
| | - Xueqi Tang
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA; (X.T.); (M.G.T.)
| | - Morgan G. Thomas
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA; (X.T.); (M.G.T.)
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, New York, NY 10461, USA
- Correspondence: (M.A.); (A.B.B.)
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA; (X.T.); (M.G.T.)
- Correspondence: (M.A.); (A.B.B.)
| |
Collapse
|
4
|
Warren EB, Bryan MR, Morcillo P, Hardeman KN, Aschner M, Bowman AB. Manganese-induced Mitochondrial Dysfunction Is Not Detectable at Exposures Below the Acute Cytotoxic Threshold in Neuronal Cell Types. Toxicol Sci 2020; 176:446-459. [PMID: 32492146 PMCID: PMC7416316 DOI: 10.1093/toxsci/kfaa079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Manganese (Mn) is an essential metal, but excessive exposures have been well-documented to culminate in neurotoxicity. Curiously, the precise mechanisms of Mn neurotoxicity are still unknown. One hypothesis suggests that Mn exerts its toxicity by inhibiting mitochondrial function, which then (if exposure levels are high and long enough) leads to cell death. Here, we used a Huntington's disease cell model with known differential sensitivities to manganese-STHdhQ7/Q7 and STHdhQ111/Q111 cells-to examine the effects of acute Mn exposure on mitochondrial function. We determined toxicity thresholds for each cell line using both changes in cell number and caspase-3/7 activation. We used a range of acute Mn exposures (0-300 µM), both above and below the cytotoxic threshold, to evaluate mitochondria-associated metabolic balance, mitochondrial respiration, and substrate dependence. In both cell lines, we observed no effect on markers of mitochondrial function at subtoxic Mn exposures (below detectable levels of cell death), yet at supratoxic exposures (above detectable levels of cell death) mitochondrial function significantly declined. We validated these findings in primary striatal neurons. In cell lines, we further observed that subtoxic Mn concentrations do not affect glycolytic function or major intracellular metabolite quantities. These data suggest that in this system, Mn exposure impairs mitochondrial function only at concentrations coincident with or above the initiation of cell death and is not consistent with the hypothesis that mitochondrial dysfunction precedes or induces Mn cytotoxicity.
Collapse
Affiliation(s)
- Emily B Warren
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Miles R Bryan
- Departments of Pediatrics and Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Keisha N Hardeman
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Aaron B Bowman
- Departments of Pediatrics and Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
5
|
Horning KJ, Joshi P, Nitin R, Balachandran RC, Yanko FM, Kim K, Christov P, Aschner M, Sulikowski GA, Weaver CD, Bowman AB. Identification of a selective manganese ionophore that enables nonlethal quantification of cellular manganese. J Biol Chem 2020; 295:3875-3890. [PMID: 32047113 PMCID: PMC7086026 DOI: 10.1074/jbc.ra119.009781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
Available assays for measuring cellular manganese (Mn) levels require cell lysis, restricting longitudinal experiments and multiplexed outcome measures. Conducting a screen of small molecules known to alter cellular Mn levels, we report here that one of these chemicals induces rapid Mn efflux. We describe this activity and the development and implementation of an assay centered on this small molecule, named manganese-extracting small molecule (MESM). Using inductively-coupled plasma-MS, we validated that this assay, termed here "manganese-extracting small molecule estimation route" (MESMER), can accurately assess Mn in mammalian cells. Furthermore, we found evidence that MESM acts as a Mn-selective ionophore, and we observed that it has increased rates of Mn membrane transport, reduced cytotoxicity, and increased selectivity for Mn over calcium compared with two established Mn ionophores, calcimycin (A23187) and ionomycin. Finally, we applied MESMER to test whether prior Mn exposures subsequently affect cellular Mn levels. We found that cells receiving continuous, elevated extracellular Mn accumulate less Mn than cells receiving equally-elevated Mn for the first time for 24 h, indicating a compensatory cellular homeostatic response. Use of the MESMER assay versus a comparable detergent lysis-based assay, cellular Fura-2 Mn extraction assay, reduced the number of cells and materials required for performing a similar but cell lethality-based experiment to 25% of the normally required sample size. We conclude that MESMER can accurately quantify cellular Mn levels in two independent cells lines through an ionophore-based mechanism, maintaining cell viability and enabling longitudinal assessment within the same cultures.
Collapse
Affiliation(s)
- Kyle J. Horning
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Piyush Joshi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Rachana Nitin
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Frank M. Yanko
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235
| | - Plamen Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Gary A. Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212
| | - C. David Weaver
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212
| | - Aaron B. Bowman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232,School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, To whom correspondence should be addressed:
Purdue University, 550 Stadium Mall Dr., HAMP 1173A, West Lafayette, IN 47907-2051. E-mail:
| |
Collapse
|
6
|
Huntington's disease associated resistance to Mn neurotoxicity is neurodevelopmental stage and neuronal lineage dependent. Neurotoxicology 2019; 75:148-157. [PMID: 31545971 DOI: 10.1016/j.neuro.2019.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Manganese (Mn) is essential for neuronal health but neurotoxic in excess. Mn levels vary across brain regions and neurodevelopment. While Mn requirements during infanthood and childhood are significantly higher than in adulthood, the relative vulnerability to excess extracellular Mn across human neuronal developmental time and between distinct neural lineages is unknown. Neurological disease is associated with changes in brain Mn homeostasis and pathology associated with Mn neurotoxicity is not uniform across brain regions. For example, mutations associated with Huntington's disease (HD) decrease Mn bioavailability and increase resistance to Mn cytotoxicity in human and mouse striatal neuronal progenitors. Here, we sought to compare the differences in Mn cytotoxicity between control and HD human-induced pluripotent stem cells (hiPSCs)-derived neuroprogenitor cells (NPCs) and maturing neurons. We hypothesized that there would be differences in Mn sensitivity between lineages and developmental stages. However, we found that the different NPC lineage specific media substantially influenced Mn cytotoxicity in the hiPSC derived human NPCs and did so consistently even in a non-human cell line. This limited the ability to determine which human neuronal sub-types were more sensitive to Mn. Nonetheless, we compared within neuronal subtypes and developmental stage the sensitivity to Mn cytotoxicity between control and HD patient derived neuronal lineages. Consistent with studies in other striatal model systems the HD genotype was associated with resistance to Mn cytotoxicity in human striatal NPCs. In addition, we report an HD genotype-dependent resistance to Mn cytotoxicity in cortical NPCs and hiPSCs. Unexpectedly, the HD genotype conferred increased sensitivity to Mn in early post-mitotic midbrain neurons but had no effect on Mn sensitivity in midbrain NPCs or post-mitotic cortical neurons. Overall, our data suggest that sensitivity to Mn cytotoxicity is influenced by HD genotype in a human neuronal lineage type and stage of development dependent manner.
Collapse
|
7
|
Levy M, Elkoshi N, Barber-Zucker S, Hoch E, Zarivach R, Hershfinkel M, Sekler I. Zinc transporter 10 (ZnT10)-dependent extrusion of cellular Mn 2+ is driven by an active Ca 2+-coupled exchange. J Biol Chem 2019; 294:5879-5889. [PMID: 30755481 DOI: 10.1074/jbc.ra118.006816] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/30/2019] [Indexed: 01/11/2023] Open
Abstract
Manganese (Mn2+) is extruded from the cell by the zinc transporter 10 (ZnT10). Loss of ZnT10 expression caused by autosomal mutations in the ZnT10 gene leads to hypermanganesemia in multiple organs. Here, combining fluorescent monitoring of cation influx in HEK293-T cells expressing human ZnT10 with molecular modeling of ZnT10 cation selectivity, we show that ZnT10 is exploiting the transmembrane Ca2+ inward gradient for active cellular exchange of Mn2+ In analyzing ZnT10 activity we used the ability of Fura-2 to spectrally distinguish between Mn2+ and Ca2+ fluxes. We found that (a) application of Mn2+-containing Ca2+-free solution to ZnT10-expressing cells triggers an influx of Mn2+, (b) reintroduction of Ca2+ leads to cellular Mn2+ extrusion against an inward Mn2+ gradient, and (c) the cellular transport of Mn2+ by ZnT10 is coupled to a reciprocal movement of Ca2+ Remarkably, replacing a single asparagine residue in ZnT10 (Asp-43) with threonine (ZnT10 N43T) converted the Mn2+/Ca2+ exchange to an uncoupled channel mode, permeable to both Ca2+ and Mn2+ The findings in our study identify the first ion transporter that uses the Ca2+ gradient for active counter-ion exchange. They highlight a remarkable versatility in metal selectivity and mode of transport controlled by the tetrahedral metal transport site of ZnT proteins.
Collapse
Affiliation(s)
- Moshe Levy
- From the Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501 Israel
| | - Nadav Elkoshi
- From the Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501 Israel
| | - Shiran Barber-Zucker
- Department of Life Sciences and The National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501 Israel
| | - Eitan Hoch
- Program in Medical and Population Genetics and Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Raz Zarivach
- Department of Life Sciences and The National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501 Israel
| | - Michal Hershfinkel
- From the Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501 Israel
| | - Israel Sekler
- From the Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501 Israel.
| |
Collapse
|
8
|
Das S, Khatua K, Rakshit A, Carmona A, Sarkar A, Bakthavatsalam S, Ortega R, Datta A. Emerging chemical tools and techniques for tracking biological manganese. Dalton Trans 2019; 48:7047-7061. [DOI: 10.1039/c9dt00508k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This frontier article discusses chemical tools and techniques for tracking and imaging Mn ions in biology.
Collapse
Affiliation(s)
- Sayani Das
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| | - Kaustav Khatua
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| | - Ananya Rakshit
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| | - Asuncion Carmona
- Chemical Imaging and Speciation
- CENBG
- University of Bordeaux
- UMR 5797
- 33175 Gradignan
| | - Anindita Sarkar
- Department of Biological Chemistry
- University of Michigan
- Ann Arbor
- USA
| | | | - Richard Ortega
- Chemical Imaging and Speciation
- CENBG
- University of Bordeaux
- UMR 5797
- 33175 Gradignan
| | - Ankona Datta
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Colaba
- India
| |
Collapse
|
9
|
Zhang B, Naik JS, Jernigan NL, Walker BR, Resta TC. Reduced membrane cholesterol after chronic hypoxia limits Orai1-mediated pulmonary endothelial Ca 2+ entry. Am J Physiol Heart Circ Physiol 2017; 314:H359-H369. [PMID: 29101179 DOI: 10.1152/ajpheart.00540.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endothelial dysfunction in chronic hypoxia (CH)-induced pulmonary hypertension is characterized by reduced store-operated Ca2+ entry (SOCE) and diminished Ca2+-dependent production of endothelium-derived vasodilators. We recently reported that SOCE in pulmonary arterial endothelial cells (PAECs) is tightly regulated by membrane cholesterol and that decreased membrane cholesterol is responsible for impaired SOCE after CH. However, the ion channels involved in cholesterol-sensitive SOCE are unknown. We hypothesized that cholesterol facilitates SOCE in PAECs through the interaction of Orai1 and stromal interaction molecule 1 (STIM1). The role of cholesterol in Orai1-mediated SOCE was initially assessed using CH exposure in rats (4 wk, 380 mmHg) as a physiological stimulus to decrease PAEC cholesterol. The effects of Orai1 inhibition with AnCoA4 on SOCE were examined in isolated PAEC sheets from control and CH rats after cholesterol supplementation, substitution of endogenous cholesterol with epicholesterol (Epichol), or vehicle treatment. Whereas cholesterol restored endothelial SOCE in CH rats, both Epichol and AnCoA4 attenuated SOCE only in normoxic controls. The Orai1 inhibitor had no further effect in cells pretreated with Epichol. Using cultured pulmonary endothelial cells to allow better mechanistic analysis of the molecular components of cholesterol-regulated SOCE, we found that Epichol, AnCoA4, and Orai1 siRNA each inhibited SOCE compared with their respective controls. Epichol had no additional effect after knockdown of Orai1. Furthermore, Epichol substitution significantly reduced STIM1-Orai1 interactions as assessed by a proximity ligation assay. We conclude that membrane cholesterol is required for the STIM1-Orai1 interaction necessary to elicit endothelial SOCE. Furthermore, reduced PAEC membrane cholesterol after CH limits Orai1-mediated SOCE. NEW & NOTEWORTHY This research demonstrates a novel contribution of cholesterol to regulate the interaction of Orai1 and stromal interaction molecule 1 required for pulmonary endothelial store-operated Ca2+ entry. The results provide a mechanistic basis for impaired pulmonary endothelial Ca2+ influx after chronic hypoxia that may contribute to pulmonary hypertension.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| |
Collapse
|
10
|
Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation 2017; 14:99. [PMID: 28476157 PMCID: PMC5418760 DOI: 10.1186/s12974-017-0871-0] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/22/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As the primary immune response cell in the central nervous system, microglia constantly monitor the microenvironment and respond rapidly to stress, infection, and injury, making them important modulators of neuroinflammatory responses. In diseases such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and human immunodeficiency virus-induced dementia, activation of microglia precedes astrogliosis and overt neuronal loss. Although microgliosis is implicated in manganese (Mn) neurotoxicity, the role of microglia and glial crosstalk in Mn-induced neurodegeneration is poorly understood. METHODS Experiments utilized immunopurified murine microglia and astrocytes using column-free magnetic separation. The effect of Mn on microglia was investigated using gene expression analysis, Mn uptake measurements, protein production, and changes in morphology. Additionally, gene expression analysis was used to determine the effect Mn-treated microglia had on inflammatory responses in Mn-exposed astrocytes. RESULTS Immunofluorescence and flow cytometric analysis of immunopurified microglia and astrocytes indicated cultures were 97 and 90% pure, respectively. Mn treatment in microglia resulted in a dose-dependent increase in pro-inflammatory gene expression, transition to a mixed M1/M2 phenotype, and a de-ramified morphology. Conditioned media from Mn-exposed microglia (MCM) dramatically enhanced expression of mRNA for Tnf, Il-1β, Il-6, Ccl2, and Ccl5 in astrocytes, as did exposure to Mn in the presence of co-cultured microglia. MCM had increased levels of cytokines and chemokines including IL-6, TNF, CCL2, and CCL5. Pharmacological inhibition of NF-κB in microglia using Bay 11-7082 completely blocked microglial-induced astrocyte activation, whereas siRNA knockdown of Tnf in primary microglia only partially inhibited neuroinflammatory responses in astrocytes. CONCLUSIONS These results provide evidence that NF-κB signaling in microglia plays an essential role in inflammatory responses in Mn toxicity by regulating cytokines and chemokines that amplify the activation of astrocytes.
Collapse
|
11
|
Smith MR, Fernandes J, Go YM, Jones DP. Redox dynamics of manganese as a mitochondrial life-death switch. Biochem Biophys Res Commun 2017; 482:388-398. [PMID: 28212723 PMCID: PMC5382988 DOI: 10.1016/j.bbrc.2016.10.126] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022]
Abstract
Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca+2-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause "manganism", a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H2O2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
12
|
Manganese-Induced Parkinsonism and Parkinson's Disease: Shared and Distinguishable Features. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7519-40. [PMID: 26154659 PMCID: PMC4515672 DOI: 10.3390/ijerph120707519] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/12/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
Manganese (Mn) is an essential trace element necessary for physiological processes that support development, growth and neuronal function. Secondary to elevated exposure or decreased excretion, Mn accumulates in the basal ganglia region of the brain and may cause a parkinsonian-like syndrome, referred to as manganism. The present review discusses the advances made in understanding the essentiality and neurotoxicity of Mn. We review occupational Mn-induced parkinsonism and the dynamic modes of Mn transport in biological systems, as well as the detection and pharmacokinetic modeling of Mn trafficking. In addition, we review some of the shared similarities, pathologic and clinical distinctions between Mn-induced parkinsonism and Parkinson’s disease. Where possible, we review the influence of Mn toxicity on dopamine, gamma aminobutyric acid (GABA), and glutamate neurotransmitter levels and function. We conclude with a survey of the preventive and treatment strategies for manganism and idiopathic Parkinson’s disease (PD).
Collapse
|
13
|
Farina M, Avila DS, da Rocha JBT, Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 2012; 62:575-94. [PMID: 23266600 DOI: 10.1016/j.neuint.2012.12.006] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 02/08/2023]
Abstract
Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This review focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as -SH and -SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
14
|
Kumar KK, Aboud AA, Patel DK, Aschner M, Bowman AB. Optimization of fluorescence assay of cellular manganese status for high throughput screening. J Biochem Mol Toxicol 2012; 27:42-9. [PMID: 23169769 DOI: 10.1002/jbt.21457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/29/2012] [Accepted: 10/13/2012] [Indexed: 11/05/2022]
Abstract
The advent of high throughput screening (HTS) technology permits identification of compounds that influence various cellular phenotypes. However, screening for small molecule chemical modifiers of neurotoxicants has been limited by the scalability of existing phenotyping assays. Furthermore, the adaptation of existing cellular assays to HTS format requires substantial modification of experimental parameters and analysis methodology to meet the necessary statistical requirements. Here we describe the successful optimization of the Cellular Fura-2 Manganese Extraction Assay (CFMEA) for HTS. By optimizing cellular density, manganese (Mn) exposure conditions, and extraction parameters, the sensitivity and dynamic range of the fura-2 Mn response was enhanced to permit detection of positive and negative modulators of cellular manganese status. Finally, we quantify and report strategies to control sources of intra- and interplate variability by batch level and plate-geometric level analysis. Our goal is to enable HTS with the CFMEA to identify novel modulators of Mn transport.
Collapse
Affiliation(s)
- Kevin K Kumar
- Department of Neurology, Vanderbilt University Medical Center, Nashville TN 37232, USA
| | | | | | | | | |
Collapse
|
15
|
Neely MD, Litt MJ, Tidball AM, Li GG, Aboud AA, Hopkins CR, Chamberlin R, Hong CC, Ess KC, Bowman AB. DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction. ACS Chem Neurosci 2012; 3:482-91. [PMID: 22860217 DOI: 10.1021/cn300029t] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 12/25/2022] Open
Abstract
Recent successes in deriving human-induced pluripotent stem cells (hiPSCs) allow for the possibility of studying human neurons derived from patients with neurological diseases. Concomitant inhibition of the BMP and TGF-β1 branches of the TGF-β signaling pathways by the endogenous antagonist, Noggin, and the small molecule SB431542, respectively, induces efficient neuralization of hiPSCs, a method known as dual-SMAD inhibition. The use of small molecule inhibitors instead of their endogenous counterparts has several advantages including lower cost, consistent activity, and the maintenance of xeno-free culture conditions. We tested the efficacy of DMH1, a highly selective small molecule BMP-inhibitor for its potential to replace Noggin in the neuralization of hiPSCs. We compare Noggin and DMH1-induced neuralization of hiPSCs by measuring protein and mRNA levels of pluripotency and neural precursor markers over a period of seven days. The regulation of five of the six markers assessed was indistinguishable in the presence of concentrations of Noggin or DMH1 that have been shown to effectively inhibit BMP signaling in other systems. We observed that by varying the DMH1 or Noggin concentration, we could selectively modulate the number of SOX1 expressing cells, whereas PAX6, another neural precursor marker, remained the same. The level and timing of SOX1 expression have been shown to affect neural induction as well as neural lineage. Our observations, therefore, suggest that BMP-inhibitor concentrations need to be carefully monitored to ensure appropriate expression levels of all transcription factors necessary for the induction of a particular neuronal lineage. We further demonstrate that DMH1-induced neural progenitors can be differentiated into β3-tubulin expressing neurons, a subset of which also express tyrosine hydroxylase. Thus, the combined use of DMH1, a highly specific BMP-pathway inhibitor, and SB431542, a TGF-β1-pathway specific inhibitor, provides us with the tools to independently regulate these two pathways through the exclusive use of small molecule inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Reed Chamberlin
- Genetics Associates Inc., Nashville, Tennessee 37203, United States
| | | | | | | |
Collapse
|
16
|
Bowman AB, Kwakye GF, Herrero Hernández E, Aschner M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 2011; 25:191-203. [PMID: 21963226 PMCID: PMC3230726 DOI: 10.1016/j.jtemb.2011.08.144] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/16/2011] [Indexed: 12/17/2022]
Abstract
Manganese (Mn) is an essential ubiquitous trace element that is required for normal growth, development and cellular homeostasis. Exposure to high Mn levels causes a clinical disease characterized by extrapyramidal symptom resembling idiopathic Parkinson's disease (IPD). The present review focuses on the role of various transporters in maintaining brain Mn homeostasis along with recent methodological advances in real-time measurements of intracellular Mn levels. We also provide an overview on the role for Mn in IPD, discussing the similarities (and differences) between manganism and IPD, and the relationship between α-synuclein and Mn-related protein aggregation, as well as mitochondrial dysfunction, Mn and PD. Additional sections of the review discuss the link between Mn and Huntington's disease (HD), with emphasis on huntingtin function and the potential role for altered Mn homeostasis and toxicity in HD. We conclude with a brief survey on the potential role of Mn in the etiologies of Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and prion disease. Where possible, we discuss the mechanistic commonalities inherent to Mn-induced neurotoxicity and neurodegenerative disorders.
Collapse
Affiliation(s)
- Aaron B Bowman
- Department of Neurology, Vanderbilt Kennedy Center, Center for Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232-8552, United States
| | | | | | | |
Collapse
|