1
|
Roqué PJ, Barria A, Zhang X, Costa LG, Guizzetti M. Synaptogenesis by Cholinergic Stimulation of Astrocytes. RESEARCH SQUARE 2023:rs.3.rs-2566078. [PMID: 36824819 PMCID: PMC9949182 DOI: 10.21203/rs.3.rs-2566078/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Astrocytes release numerous factors known to contribute to the process of synaptogenesis, yet knowledge about the signals that control their release is limited. We hypothesized that neuron-derived signals stimulate astrocytes, which respond by signaling back to neurons through the modulation of astrocyte-released synaptogenic factors. Here we investigate the effect of cholinergic stimulation of astrocytes on synaptogenesis in co-cultured neurons. Using a culture system where primary rat astrocytes and primary rat neurons are first grown separately allowed us to independently manipulate astrocyte cholinergic signaling. Subsequent co-culture of pre-stimulated astrocytes with naïve neurons enabled us to assess how prior stimulation of astrocyte acetylcholine receptors uniquely modulates neuronal synapse formation. Pre-treatment of astrocytes with the acetylcholine receptor agonist carbachol increased the expression of synaptic proteins, the number of pre- and postsynaptic puncta, and the number of functional synapses in hippocampal neurons after 24 hours in co-culture. Astrocyte secretion of the synaptogenic protein thrombospondin-1 increased after cholinergic stimulation and the inhibition of the target receptor for thrombospondins prevented the observed increase in neuronal synaptic structures. Thus, we identified a novel mechanism of neuron-astrocyte-neuron communication, i.e. , neuronal release of acetylcholine stimulates astrocytes to release synaptogenic proteins leading to increased synaptogenesis in neurons. This study provides new insights into the role of neurotransmitter receptors in developing astrocytes and into our understanding of the modulation of astrocyte-induced synaptogenesis.
Collapse
|
2
|
Petukhova EO, Mukhamedshina YO, Salafutdinov II, Garanina EE, Kaligin MS, Leushina AV, Rizvanov AA, Reis HJ, Palotás A, Zefirov AL, Mukhamedyarov MA. Effects of Transplanted Umbilical Cord Blood Mononuclear Cells Overexpressing GDNF on Spatial Memory and Hippocampal Synaptic Proteins in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 69:443-453. [PMID: 30958382 DOI: 10.3233/jad-190150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND/OBJECTIVE Alzheimer's disease (AD) is a progressive incurable neurodegenerative disorder. Glial cell line-derived neurotrophic factor (GDNF) is a prominent regulator of brain tissue and has an impressive potential for use in AD therapy. While its metabolism is still not fully understood, delivering neuropeptides such as GDNF via umbilical cord blood mononuclear cells (UCBMCs) to the sites of neurodegeneration is a promising approach in the development of innovative therapeutic avenues. METHODS UCBMCs were transduced with adenoviral vectors expressing GDNF and injected into AD transgenic mice. Various parameters including homing and survival of transplanted cells, expression of GDNF and synaptic proteins, as well as spatial memory were evaluated. RESULTS UCBMCs were observed in the hippocampus and cortex several weeks after transplantation, and their long-term presence was associated with improved spatial memory. Post-synaptic density protein 95 (PSD-95) and synaptophysin levels in the hippocampus were also effectively restored following the procedure in AD mice. CONCLUSIONS Our data indicate that gene-cell therapy with GDNF-overexpressing UCBMCs may produce long-lasting neuroprotection and stimulation of synaptogenesis. Such adenoviral constructs could potentially possess a high therapeutic potential for the treatment of AD.
Collapse
Affiliation(s)
| | - Yana O Mukhamedshina
- Kazan State Medical University, Kazan, Russia.,Kazan Federal University, Kazan, Russia
| | - Ilnur I Salafutdinov
- Kazan State Medical University, Kazan, Russia.,Kazan Federal University, Kazan, Russia
| | | | | | | | | | - Helton J Reis
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - András Palotás
- Kazan Federal University, Kazan, Russia.,Asklepios-Med, Szeged, Hungary
| | | | | |
Collapse
|
3
|
Baecker J, Wartchow K, Sehm T, Ghoochani A, Buchfelder M, Kleindienst A. Treatment with the Neurotrophic Protein S100B Increases Synaptogenesis after Traumatic Brain Injury. J Neurotrauma 2020; 37:1097-1107. [DOI: 10.1089/neu.2019.6475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Justus Baecker
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany
| | - Krista Wartchow
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tina Sehm
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany
| | - Ali Ghoochani
- Department of Radiology, Canary Center, Stanford University School of Medicine, Palo Alto, California
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany
| | - Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany
- Department of Spine Surgery, Klinikum Rummelsberg, Schwarzenbruck, Germany
| |
Collapse
|
4
|
Wegner SH, Park JJ, Workman T, Hermsen SAB, Wallace J, Stanaway IB, Kim HY, Griffith WC, Hong S, Faustman EM. Anchoring a dynamic in vitro model of human neuronal differentiation to key processes of early brain development in vivo. Reprod Toxicol 2020; 91:116-130. [PMID: 31740287 PMCID: PMC6980388 DOI: 10.1016/j.reprotox.2019.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 01/04/2023]
Abstract
We characterize temporal pathway dynamics of differentiation in an in vitro neurotoxicity model with the aim of informing design and interpretation of toxicological assays. Human neural progenitor cells (hNPCs) were cultured in differentiation conditions up to 21 days. Genes significantly changed through time were identified and grouped according to temporal dynamics. Quantitative pathway analysis identified gene ontology (GO) terms enriched among significantly changed genes and provided a temporal roadmap of pathway trends in vitro. Gene expression in hNPCs was compared with publicly available gene expression data from developing human brain tissue in vivo. Quantitative pathway analysis of significantly changed genes and targeted analysis of specific pathways of interest identified concordance between in vivo and in vitro expression associated with proliferation, migration, differentiation, synapse formation, and neurotransmission. Our analysis anchors gene expression patterns in vitro to sensitive windows of in vivo development, helping to define appropriate applications of the model.
Collapse
Affiliation(s)
- Susanna H Wegner
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Julie Juyoung Park
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Tomomi Workman
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Sanne A B Hermsen
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Jim Wallace
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Ian B Stanaway
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Hee Yeon Kim
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - William C Griffith
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Sungwoo Hong
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Elaine M Faustman
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States.
| |
Collapse
|
5
|
Shen J, Xiao R, Bair J, Wang F, Vandenberghe LH, Dartt D, Baranov P, Ng YSE. Novel engineered, membrane-localized variants of vascular endothelial growth factor (VEGF) protect retinal ganglion cells: a proof-of-concept study. Cell Death Dis 2018; 9:1018. [PMID: 30282966 PMCID: PMC6170416 DOI: 10.1038/s41419-018-1049-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/19/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Endogenous vascular endothelial growth factor (VEGF-A) can protect retinal ganglion cells (RGC) from stress-induced cell death in ocular hypertensive glaucoma. To exploit the neuroprotective function of VEGF-A for therapeutic application in ocular disorders such as glaucoma while minimizing unwanted vascular side effects, we engineered two novel VEGF variants, eVEGF-38 and eVEGF-53. These variants of the diffusible VEGF-A isoform VEGF121 are expressed as dimeric concatamers and remain tethered to the cell membrane, thus restricting the effects of the engineered VEGF to the cells expressing the protein. For comparison, we tested a Myc-tagged version of VEGF189, an isoform that binds tightly to the extracellular matrix and heparan sulfate proteoglycans at the cell surface, supporting only autocrine and localized juxtacrine signaling. In human retinal endothelial cells (hREC), expression of eVEGF-38, eVEGF-53, or VEGF189 increased VEGFR2 phosphorylation without increasing expression of pro-inflammatory markers, relative to VEGF165 protein and vector controls. AAV2-mediated transduction of eVEGF-38, eVEGF-53, or VEGF189 into primary mouse RGC promoted synaptogenesis and increased the average total length of neurites and axons per RGC by ~ 12-fold, an increase that was mediated by VEGFR2 and PI3K/AKT signaling. Expression of eVEGF-38 in primary RGC enhanced expression of genes associated with neuritogenesis, axon outgrowth, axon guidance, and cell survival. Transduction of primary RGC with any of the membrane-associated VEGF constructs increased survival both under normal culture conditions and in the presence of the cytotoxic chemicals H2O2 (via VEGFR2/PI3K/AKT signaling) and N-methyl-d-aspartate (via reduced Ca2+ influx). Moreover, RGC number was increased in mouse embryonic stem cell-derived retinal organoid cultures transduced with the eVEGF-53 construct. The novel, engineered VEGF variants eVEGF-38 and eVEGF-53 show promise as potential therapeutics for retinal RGC neuroprotection when delivered using a gene therapy approach.
Collapse
Affiliation(s)
- Junhui Shen
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.,Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Eye Center of the 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ru Xiao
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Jeffrey Bair
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luk H Vandenberghe
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.,Grousbeck Gene Therapy Center, Ocular Genomics Institute, Mass Eye and Ear, Boston, MA, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Darlene Dartt
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Petr Baranov
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Yin Shan Eric Ng
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.
| |
Collapse
|
6
|
Roqué PJ, Costa LG. Co-Culture of Neurons and Microglia. CURRENT PROTOCOLS IN TOXICOLOGY 2017; 74:11.24.1-11.24.17. [PMID: 29117434 PMCID: PMC5774987 DOI: 10.1002/cptx.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microglia, the resident immune cells of the brain, have been implicated in numerous neurodegenerative and neurodevelopmental diseases. Activation of microglia by a variety of stimuli induces the release of factors, including pro- and anti-inflammatory cytokines and reactive oxygen species, that contribute to modulating neuro-inflammation and oxidative stress, two crucial processes linked to disorders of the central nervous system. The in vitro techniques described here will provide a set of protocols for the isolation and plating of primary cerebellar granule neurons, primary cortical microglia from a mixed glia culture, and methods for co-culturing both cell types. These methods allow the study of how microglia and the factors they release in this shared environment mediate the effects of toxicants on neuronal function and survival. The protocols presented here allow for flexibility in experimental design, the study of numerous toxicological endpoints, and the opportunity to explore neuroprotective strategies. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Lucio G. Costa
- University of Washington, Seattle, WA
- University of Parma, Parma, Italy
| |
Collapse
|