1
|
Redox balance during exercise in the heat in healthy adults: A systematic review. J Therm Biol 2021; 99:102943. [PMID: 34420607 DOI: 10.1016/j.jtherbio.2021.102943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hyperthermia, induced by exercise in the heat, alters the redox status. The physiological significance of these observations remains uncertain but may justify why the consequences of exercising in the heat span from positive health adaptations to negative and even lethal outcomes. Here, we conducted a systematic review to investigate the redox responses during acute exercise in the heat in healthy adults. METHODS We searched MEDLINE, Cochrane Wiley, ClinicalTrials.gov, PEDRO and LILACS for clinical trials investigating pro- and antioxidant responses to exercise associated with hyperthermia and/or sweat-induced dehydration in healthy young individuals. Two independent reviewers extracted data and assessed the quality of the included studies. RESULTS A total of 1,014 records were selected, nine full papers were evaluated for eligibility, and eight studies met the inclusion criteria. Overall, results show that hyperthermia promotes oxidative stress both at the tissue level and in the circulation. Exercising in the heat heightens endogenous antioxidant defense systems, attenuating the negative effects of hyperthermia on oxidative damage. Studies also indicate that sweat-induced dehydration promotes oxidative stress, which is attenuated by rehydration. CONCLUSION These findings suggest that changes in redox status play a role in determining whether an acute bout of exercise in the heat lead to adaptive or maladaptive outcomes.
Collapse
|
2
|
Tejchman K, Kotfis K, Sieńko J. Biomarkers and Mechanisms of Oxidative Stress-Last 20 Years of Research with an Emphasis on Kidney Damage and Renal Transplantation. Int J Mol Sci 2021; 22:ijms22158010. [PMID: 34360776 PMCID: PMC8347360 DOI: 10.3390/ijms22158010] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between pro- and antioxidants that adversely influences the organism in various mechanisms and on many levels. Oxidative damage occurring concomitantly in many cellular structures may cause a deterioration of function, including apoptosis and necrosis. The damage leaves a molecular “footprint”, which can be detected by specific methodology, using certain oxidative stress biomarkers. There is an intimate relationship between oxidative stress, inflammation, and functional impairment, resulting in various diseases affecting the entire human body. In the current narrative review, we strengthen the connection between oxidative stress mechanisms and their active compounds, emphasizing kidney damage and renal transplantation. An analysis of reactive oxygen species (ROS), antioxidants, products of peroxidation, and finally signaling pathways gives a lot of promising data that potentially will modify cell responses on many levels, including gene expression. Oxidative damage, stress, and ROS are still intensively exploited research subjects. We discuss compounds mentioned earlier as biomarkers of oxidative stress and present their role documented during the last 20 years of research. The following keywords and MeSH terms were used in the search: oxidative stress, kidney, transplantation, ischemia-reperfusion injury, IRI, biomarkers, peroxidation, and treatment.
Collapse
Affiliation(s)
- Karol Tejchman
- Department of General and Transplantation Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.T.); (J.S.)
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48914661144
| | - Jerzy Sieńko
- Department of General and Transplantation Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.T.); (J.S.)
| |
Collapse
|
3
|
Chang MC, Chen YJ, Lian YC, Chang BE, Huang CC, Huang WL, Pan YH, Jeng JH. Butyrate Stimulates Histone H3 Acetylation, 8-Isoprostane Production, RANKL Expression, and Regulated Osteoprotegerin Expression/Secretion in MG-63 Osteoblastic Cells. Int J Mol Sci 2018; 19:4071. [PMID: 30562925 PMCID: PMC6321057 DOI: 10.3390/ijms19124071] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022] Open
Abstract
Butyric acid as a histone deacetylase (HDAC) inhibitor is produced by a number of periodontal and root canal microorganisms (such as Porphyromonas, Fusobacterium, etc.). Butyric acid may affect the biological activities of periodontal/periapical cells such as osteoblasts, periodontal ligament cells, etc., and thus affect periodontal/periapical tissue destruction and healing. The purposes of this study were to study the toxic effects of butyrate on the matrix and mineralization marker expression in MG-63 osteoblasts. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cellular apoptosis and necrosis were analyzed by propidium iodide/annexin V flow cytometry. The protein and mRNA expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) were analyzed by Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR). OPG, soluble RANKL (sRANKL), 8-isoprostane, pro-collagen I, matrix metalloproteinase-2 (MMP-2), osteonectin (SPARC), osteocalcin and osteopontin (OPN) secretion into culture medium were measured by enzyme-linked immunosorbant assay. Alkaline phosphatase (ALP) activity was checked by ALP staining. Histone H3 acetylation levels were evaluated by immunofluorescent staining (IF) and Western blot. We found that butyrate activated the histone H3 acetylation of MG-63 cells. Exposure of MG-63 cells to butyrate partly decreased cell viability with no marked increase in apoptosis and necrosis. Twenty-four hours of exposure to butyrate stimulated RANKL protein expression, whereas it inhibited OPG protein expression. Butyrate also inhibited the secretion of OPG in MG-63 cells, whereas the sRANKL level was below the detection limit. However, 3 days of exposure to butyrate (1 to 8 mM) or other HDAC inhibitors such as phenylbutyrate, valproic acid and trichostatin stimulated OPG secretion. Butyrate stimulated 8-isoprostane, MMP-2 and OPN secretion, but not procollagen I, or osteocalcin in MG-63 cells. Exposure to butyrate (2⁻4 mM) for 3 days markedly stimulated osteonectin secretion and ALP activity. In conclusion, higher concentrations of butyric acid generated by periodontal and root canal microorganisms may potentially induce bone destruction and impair bone repair by the alteration of OPG/RANKL expression/secretion, 8-isoprostane, MMP-2 and OPN secretion, and affect cell viability. However, lower concentrations of butyrate (1⁻4 mM) may stimulate ALP, osteonectin and OPG. These effects are possibly related to increased histone acetylation. These events are important in the pathogenesis and repair of periodontal and periapical destruction.
Collapse
Grants
- NSC102-2314-B-255-003-MY2, NSC102-2628-B-255-001-MY3, NSC101-2320-B-255-002, NSC-100-2314-B-002-094, NSC-101-2320- B-255-002, MOST104-2314-B-255-010-MY3, MOST106-2314-B-002-034-MY2, and MOST106- 2314-B-002-033-MY2 Ministry of Science and Technology, Taiwan
- CMRPF1H0061, CMRPF1F0071, CMRPF1G0101, CMRPF1G0102, CMRPF3E0021, CMRPF3E0022, CMRPF3E0023, NMRPF3C0091, NMRPF3C0061, CMRPG1B0031, CMRPF170053, NMRPF370033, CMRPF3E0021, NMRPF3B0071, NMRPF3E0041, NMRPF3E0042, NMRPF3E0043, NMRPF3C0093, NMRPF3H0071, NMRPF3H0 Chang Gung Memorial Hospital
- NTUH 101-001937, NTUH102-002259, NTUH101-S1862 & NTUH102-S2180, NTUH103-S2368, NTUH104-S2658, NTUH106-S3467, NTUH106-UN-001 National Taiwan University Hospital
Collapse
Affiliation(s)
- Mei-Chi Chang
- Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan 333, Taiwan.
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei Branch, 6th Floor, 199, Tung-Hwa North Road, Taipei 105, Taiwan.
| | - Yunn-Jy Chen
- School of Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei 100, Taiwan.
| | - Yun-Chia Lian
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei Branch, 6th Floor, 199, Tung-Hwa North Road, Taipei 105, Taiwan.
| | - Bei-En Chang
- Graduate Institute of Oral Biology, National Taiwan University Medical College, Taipei 100, Taiwan.
| | - Chih-Chia Huang
- Department of Dentistry, Cardinal Tien Hospital, New Taipei City 234, Taiwan.
| | - Wei-Ling Huang
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei Branch, 6th Floor, 199, Tung-Hwa North Road, Taipei 105, Taiwan.
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei Branch, 6th Floor, 199, Tung-Hwa North Road, Taipei 105, Taiwan.
- Graduate Department of Craniofacial Dentistry, Chang-Gung University Medical College, Taoyuan 333, Taiwan.
| | - Jiiang-Huei Jeng
- School of Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei 100, Taiwan.
| |
Collapse
|
4
|
Di Stefano A, Coccini T, Roda E, Signorini C, Balbi B, Brunetti G, Ceriana P. Blood MCP-1 levels are increased in chronic obstructive pulmonary disease patients with prevalent emphysema. Int J Chron Obstruct Pulmon Dis 2018; 13:1691-1700. [PMID: 29872287 PMCID: PMC5973466 DOI: 10.2147/copd.s159915] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background and aims Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by different phenotypes with either bronchial airways alterations or emphysema prevailing. As blood biomarkers could be clinically useful for COPD stratification, we aimed at investigating the levels of blood biomarkers in COPD patients differentiated by phenotype: prevalent chronic airway disease versus emphysema. Methods In 23 COPD patients with prevalent airway disease (COPD-B), 22 COPD patients with prevalent emphysema (COPD-E), 9 control smokers (CSs), and 18 control nonsmokers (CNSs), we analyzed the expression levels of interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, epidermal growth factor (EGF), monocyte chemotactic protein (MCP)-1, and vascular endothelial growth factor by enzyme-linked immunosorbent assay in plasma/serum; glutathione peroxidase and superoxide dismutase (SOD)-1 by immunochemical kits in plasma; and free F2-isoprostanes (F2-IsoPs) by gas chromatography in plasma. Results F2-IsoPs level was increased in COPD-B and COPD-E compared with CSs and CNSs; in addition, CS showed higher levels than CNSs; SOD1 level was lower in COPD-B and COPD-E than that in CNSs. Interestingly, MCP-1 level was higher only in COPD-E versus CSs and CNSs; EGF and IL-8 levels were higher in COPD-B and COPD-E versus CNSs; IL-6 level was increased in all three smoking groups (COPD-B, COPD-E, and CSs) versus CNS; IFN-γ and IL-1α levels were higher in CSs than in CNSs; and IL-1α level was also higher in CSs versus COPD-B and COPD-E. In all subjects, F2-IsoPs level correlated positively and significantly with MCP-1, IL-2, IL-1β, IFN-γ, and TNF-α and negatively with SOD1. When correlations were restricted to COPD-E and COPD-B groups, F2-IsoPs maintained the positive associations with IFN-γ, TNF-α, and IL-2. Conclusion We did not find any specific blood biomarkers that could differentiate COPD patients with prevalent airway disease from those with prevalent emphysema. The MCP-1 increase in COPD-E, associated with the imbalance of oxidant/antioxidant markers, may play a role in inducing emphysema.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Pulmonary Rehabilitation Unit and Laboratory of Cytoimmunopathology of the Heart and Lung, Istituti Clinici Scientifici Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Veruno, Italy
| | - Teresa Coccini
- Laboratory of Experimental and Clinical Toxicology, Toxicology Unit, ICS Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| | - Elisa Roda
- Laboratory of Experimental and Clinical Toxicology, Toxicology Unit, ICS Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Bruno Balbi
- Pulmonary Rehabilitation Unit and Laboratory of Cytoimmunopathology of the Heart and Lung, Istituti Clinici Scientifici Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Veruno, Italy
| | - Giuseppe Brunetti
- Pulmonary Rehabilitation Unit, Istituti Clinici Scientifici Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| | - Piero Ceriana
- Pulmonary Rehabilitation Unit, Istituti Clinici Scientifici Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| |
Collapse
|
5
|
Increased F 2-Isoprostane Levels in Semen and Immunolocalization of the 8-Iso Prostaglandin F 2α in Spermatozoa from Infertile Patients with Varicocele. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7508014. [PMID: 29682163 PMCID: PMC5846461 DOI: 10.1155/2018/7508014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/06/2017] [Indexed: 01/26/2023]
Abstract
Polyunsaturated fatty acid damages lead to alterations in sperm function. This study aimed to investigate the involvement of F2-isoprostanes (F2-IsoPs), oxidized lipid products from arachidonic acid, in sperm quality impairment. For this purpose, F2-IsoP levels in semen and F2-IsoP localization in spermatozoa were explored in infertile subjects affected by idiopathic infertility or varicocele, as well as in fertile men. As compared to fertile men, in the idiopathic infertility and varicocele groups, sperm concentration, motility, morphology, viability, and fertility index were significantly lower and the mean scores concerning sperm apoptosis, necrosis, and immaturity were significantly higher. The idiopathic infertile group showed a reduction in sperm motility and fertility index, as well as an increase of apoptosis and necrosis percentages, in comparison to the varicocele group. The varicocele group showed the highest levels of F2-IsoPs, a significant increase of sperm immaturity, and a significant correlation between F2-IsoP levels and sperm immaturity. 8-Iso Prostaglandin F2α, biomarker of in vivo F2-IsoP, was clearly localized in sperm midpiece and cytoplasmic residues. Data show that F2-IsoP formation is relevant in semen and sperm from infertile patients with varicocele and high percentage of immaturity, suggesting that a correct fatty acid integrity is needed for sperm maturation.
Collapse
|
6
|
Shi TY, Zhao DQ, Wang HB, Feng S, Liu SB, Xing JH, Qu Y, Gao P, Sun XL, Zhao MG. A new chiral pyrrolyl α-nitronyl nitroxide radical attenuates β-amyloid deposition and rescues memory deficits in a mouse model of Alzheimer disease. Neurotherapeutics 2013; 10:340-53. [PMID: 23212232 PMCID: PMC3625382 DOI: 10.1007/s13311-012-0168-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The generation of reactive oxygen species causes cellular oxidative damage, and has been implicated in the etiology of Alzheimer's disease (AD). L-NNNBP, a new chiral pyrrolyl α-nitronyl nitroxide radical synthesized in our department, shows potential antioxidant effects. The purpose of this study was to investigate the protective effects of L-NNNBP on β-amyloid (Aβ) deposition and memory deficits in an AD model of APP/PS1 mice. In cultured cortical neurons, L-NNNBP acted as an antioxidant by quenching reactive oxygen species, inhibiting lipid peroxidation, nitrosative stress, and stimulating cellular antioxidant defenses. L-NNNBP inhibited cell apoptosis induced by Aβ exposure. In vivo treatment with L-NNNBP for 1 month induced a marked decrease in brain Aβ deposition and tau phosphorylation in the blinded study on APP/PS1 transgenic mice (1 mM in drinking water, initiated when the mice were 6 months old). The L-NNNBP-treated APP/PS1 mice showed decreased astrocyte activation and improved spatial learning and memory compared with the vehicle-treated APP/PS1 mice. These actions were more potent compared with that of curcumin, a natural product, and TEMPO, a nitroxide radical, which are used as free radical scavengers in clinics. These results proved that the newly synthesized L-NNNBP was an effective therapeutic agent for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Tian-yao Shi
- />Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032 China
| | - Da-qing Zhao
- />Department of Otolaryngology Head and Neck Surgery, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032 China
| | - Hai-bo Wang
- />Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032 China
| | - Shufang Feng
- />Department of Psychosomatics, Xijing Hospital, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032 China
| | - Shui-bing Liu
- />Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032 China
| | - Jiang-hao Xing
- />Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032 China
| | - Yang Qu
- />Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032 China
| | - Peng Gao
- />Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032 China
| | - Xiao-li Sun
- />Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032 China
| | - Ming-gao Zhao
- />Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|