1
|
Ament AL, Heiner M, Hessler MC, Alexopoulos I, Steeg K, Gärtner U, Vazquez-Armendariz AI, Herold S. Endothelialized Bronchioalveolar Lung Organoids Model Endothelial Cell Responses to Injury. Am J Respir Cell Mol Biol 2025; 72:124-132. [PMID: 39226154 DOI: 10.1165/rcmb.2023-0373ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/03/2024] [Indexed: 09/05/2024] Open
Abstract
Organoid three-dimensional systems are powerful platforms to study development and disease. Recently, the complexity of lung organoid models derived from adult mouse and human stem cells has increased substantially in terms of cellular composition and structural complexity. However, a murine lung organoid system with a clear integrated endothelial compartment is still missing. Here, we describe a novel method that adds another level of intricacy to our published bronchioalveolar lung organoid (BALO) model by microinjection of FACS-sorted lung endothelial cells (ECs) into differentiated organoid cultures. Before microinjection, ECs obtained from the lung homogenate of young mice expressed typical EC markers such as CD31 and vascular endothelial cadherin and showed tube formation capacity. Following microinjection, ECs surrounded the BALO's alveolar-like compartment, aligning with type I and type II alveolar epithelial cells, as demonstrated by confocal and electron microscopy. Notably, expression of Car4 and Aplnr was as well detected, suggesting the presence of EC microvascular phenotypes in the cultured ECs. Moreover, upon epithelial cell injury by LPS and influenza A virus, endothelialized BALOs released proinflammatory cytokines, leading to the upregulation ICAM-1 (intercellular adhesion molecule 1) in ECs. In summary, we characterized for the first time an organoid model that incorporates ECs into the alveolar structures of lung organoids, not only increasing our previous model's cellular and structural complexity but also providing a suitable niche to model lung endothelium responses to injury ex vivo.
Collapse
Affiliation(s)
- Anna-Lena Ament
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Organoid Biology, Life & Medical Sciences Institute (LIMES), Transdisciplinary Research Area (TRA) Life and Health, University of Bonn, Bonn, Germany
| | - Monika Heiner
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Marie Christin Hessler
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Institute of Lung Health (ILH), Giessen, Germany
| | - Katharina Steeg
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Giessen, and
| | - Ulrich Gärtner
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Organoid Biology, Life & Medical Sciences Institute (LIMES), Transdisciplinary Research Area (TRA) Life and Health, University of Bonn, Bonn, Germany
| | - Susanne Herold
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Institute of Lung Health (ILH), Giessen, Germany
| |
Collapse
|
2
|
Stepanova V, Jayaraman PS, Zaitsev SV, Lebedeva T, Bdeir K, Kershaw R, Holman KR, Parfyonova YV, Semina EV, Beloglazova IB, Tkachuk VA, Cines DB. Urokinase-type Plasminogen Activator (uPA) Promotes Angiogenesis by Attenuating Proline-rich Homeodomain Protein (PRH) Transcription Factor Activity and De-repressing Vascular Endothelial Growth Factor (VEGF) Receptor Expression. J Biol Chem 2016; 291:15029-45. [PMID: 27151212 DOI: 10.1074/jbc.m115.678490] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 01/09/2023] Open
Abstract
Urokinase-type plasminogen activator (uPA) regulates angiogenesis and vascular permeability through proteolytic degradation of extracellular matrix and intracellular signaling initiated upon its binding to uPAR/CD87 and other cell surface receptors. Here, we describe an additional mechanism by which uPA regulates angiogenesis. Ex vivo VEGF-induced vascular sprouting from Matrigel-embedded aortic rings isolated from uPA knock-out (uPA(-/-)) mice was impaired compared with vessels emanating from wild-type mice. Endothelial cells isolated from uPA(-/-) mice show less proliferation and migration in response to VEGF than their wild type counterparts or uPA(-/-) endothelial cells in which expression of wild type uPA had been restored. We reported previously that uPA is transported from cell surface receptors to nuclei through a mechanism that requires its kringle domain. Intranuclear uPA modulates gene transcription by binding to a subset of transcription factors. Here we report that wild type single-chain uPA, but not uPA variants incapable of nuclear transport, increases the expression of cell surface VEGF receptor 1 (VEGFR1) and VEGF receptor 2 (VEGFR2) by translocating to the nuclei of ECs. Intranuclear single-chain uPA binds directly to and interferes with the function of the transcription factor hematopoietically expressed homeodomain protein or proline-rich homeodomain protein (HHEX/PRH), which thereby lose their physiologic capacity to repress the activity of vehgr1 and vegfr2 gene promoters. These studies identify uPA-dependent de-repression of vegfr1 and vegfr2 gene transcription through binding to HHEX/PRH as a novel mechanism by which uPA mediates the pro-angiogenic effects of VEGF and identifies a potential new target for control of pathologic angiogenesis.
Collapse
Affiliation(s)
| | - Padma-Sheela Jayaraman
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B152TT, United Kingdom
| | - Sergei V Zaitsev
- Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Khalil Bdeir
- From the Departments of Pathology and Laboratory Medicine and
| | - Rachael Kershaw
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B152TT, United Kingdom
| | - Kelci R Holman
- College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | - Yelena V Parfyonova
- Russian Cardiology Research Center, Moscow 121552, Russia, School (Faculty) of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 117192, Russia, and
| | - Ekaterina V Semina
- Russian Cardiology Research Center, Moscow 121552, Russia, School (Faculty) of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 117192, Russia, and
| | | | - Vsevolod A Tkachuk
- Russian Cardiology Research Center, Moscow 121552, Russia, School (Faculty) of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 117192, Russia, and
| | - Douglas B Cines
- From the Departments of Pathology and Laboratory Medicine and
| |
Collapse
|