1
|
Abdelrahman RS, Shawky NM. Trimetazidine, a metabolic modulator, attenuates silica-induced pulmonary fibrosis and decreases lactate levels and LDH activity in rats. J Biochem Mol Toxicol 2022; 36:e23071. [PMID: 35403780 DOI: 10.1002/jbt.23071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/06/2022]
Abstract
Pulmonary fibrosis has been recently linked to metabolic dysregulation. Silica-induced pulmonary fibrosis in rats was employed by the current study to explore the effects of trimetazidine (a metabolic modulator-antianginal drug; TMZ) on silica-induced pulmonary fibrosis. Pulmonary fibrosis was induced by intranasal instillation of silica (50 mg/100 µl/rat) in TMZ versus vehicle-treated rats. Body weights of rats, weights of lungs, and wet-to-dry lung weights were determined. Various parameters were also measured in serum, bronchoalveolar lavage fluid (BALF) in addition to lung tissue homogenates. Moreover, histopathological examination of sectioned lungs for lesion score and distribution and histochemical detection of myeloperoxidase (MPO) in lung tissues were also performed. No significant differences were observed in body weight gains, lung coefficients, lung weights, and wet-to-dry lung weight in silica versus control rats. Elevated lactate levels in serum and lung homogenates were significantly attenuated by TMZ. In addition, lactate dehydrogenase activity, transforming growth factor-β, and total proteins in BALF were significantly normalized with TMZ. Moreover, TMZ significantly increased reduced glutathione and adenosine triphosphate levels and decreased nitrate/nitrite and hydroxyproline content in lungs of silica-treated rats. Histopathological examination of lungs revealed more than 56% reduction in lesion score and distribution by TMZ. MPO expression in lungs of silica-treated rats was also significantly attenuated by TMZ. TMZ attenuates silica-induced pulmonary fibrosis, an effect that could be mediated by suppressing anaerobic glycolysis-induced excessive lactate production. Regulation of oxidative stress could also play a role in TMZ-promoted protective effects.
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha M Shawky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Da Silva E, Vogel U, Hougaard KS, Pérez-Gil J, Zuo YY, Sørli JB. An adverse outcome pathway for lung surfactant function inhibition leading to decreased lung function. Curr Res Toxicol 2021; 2:225-236. [PMID: 34345865 PMCID: PMC8320609 DOI: 10.1016/j.crtox.2021.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Inhaled substances, such as consumer products, chemicals at the workplace, and nanoparticles, can affect the lung function in several ways. In this paper, we explore the adverse outcome pathway (AOP) that starts when inhaled substances that reach the alveoli inhibit the function of the lung surfactant, and leads to decreased lung function. Lung surfactant covers the inner surface of the alveoli, and regulates the surface tension at the air-liquid interface during breathing. The inhibition of the lung surfactant function leads to alveolar collapse because of the resulting high surface tension at the end of expiration. The collapsed alveoli can be re-opened by inspiration, but this re-opening causes shear stress on cells covering the alveoli. This can damage the alveolar-capillary membrane integrity, allowing blood components to enter the alveolar airspace. Blood components, such as albumin, can interact with the lung surfactant and further inhibit its function. The collapse of the alveoli is responsible for a decrease in the surface area available for blood oxygenation, and it reduces the volume of air that can be inhaled and exhaled. These different key events lead to decreased lung function, characterized by clinical signs of respiratory toxicity and reduced blood oxygenation. Here we present the weight of evidence that supports the AOP, and we give an overview of the methods available in vitro and in vivo to measure each key event of the pathway, and how this AOP can potentially be used in screening for inhalation toxicity.
Collapse
Key Words
- AO, adverse outcome
- AOP, adverse outcome pathway
- ARDS, acute respiratory distress syndrome
- Adverse outcome pathway
- Alternative method
- EAGMST, Extended Advisory Group on Molecular Screening and Toxicogenomics
- GHS, Globally Harmonized System of Classification and Labelling of Chemicals
- Inhalation
- KE, key event
- Lung surfactant
- MIE, molecular initiating event
- Nanomaterials
- New approach methodology
- OECD, Organisation for Economic Cooperation and Development
- OI, oxygenation index
- PaO2, dissolved oxygen in the plasma
- SaO2, percentage of hemoglobin saturated with oxygen
- Spray products
- TEER, trans epithelial electrical resistance
Collapse
Affiliation(s)
- Emilie Da Silva
- National Research Centre for the Working Environment, Copenhagen, Denmark
- DTU Environment, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
- DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Karin S. Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Denmark
| | - Jesus Pérez-Gil
- Faculty of Biology and Research Institute “12 de Octubre (imas12)”, Complutense University, Madrid, Spain
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Jorid B. Sørli
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
3
|
Ba F, Zhou X, Zhang Y, Wu C, Xu S, Wu L, Li J, Yin Y, Gu X. Lipoxin A4 ameliorates alveolar fluid clearance disturbance in lipopolysaccharide-induced lung injury via aquaporin 5 and MAPK signaling pathway. J Thorac Dis 2019; 11:3599-3608. [PMID: 31559067 DOI: 10.21037/jtd.2019.08.86] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background A characteristic of acute lung injury (ALI) is the inflammatory damage of alveolar fluid transport. Lipoxins are endogenous lipids involving in the resolution of inflammation. It is found that lipoxin A4 (LXA4) has the distinct properties to improve the anti-edema and pro-resolution function in inflammation. Since aquaporins (AQPs) have essential roles in the integrity of barrier function during fluid transport, especially AQP5 in the maintaining of the epithelium permeability, the current study is aimed to evaluate the potential role of LXA4 in regulating alveolar fluid clearance (AFC) during fluid transport and the corresponding change of AQP5 in the lung. Methods ALI was induced by the lipopolysaccharide (LPS) intraperitoneal injection, and LXA4 treatment was given 8 hours after LPS administration. We investigated changes in the capacity of AFC, pro-inflammatory cytokine concentrations in bronchoalveolar lavage fluid (BALF) and the severity of ALI. Then AQP5 expression in lung tissue and potential regulatory pathways in LPS-induced ALI was explored. Results LXA4 treatment was found to inhibit AFC capacity, inflammatory cytokine release, partially, alleviate ALI severity, and restored AQP5 expression partially. Additionally, we found that LXA4 played a protective role by the inhibition of the phosphorylation of p38 and JNK. Conclusions In summary, our results suggest that LXA4 plays a protective role in lipopolysaccharide-induced ALI by restoring AFC capacity and upregulating AQP5 expression and inhibiting the phosphorylation of p38 and JNK. These findings suggest potential new mechanism of LXA4 as anti-inflammation therapy for the impairment of alveolar fluid transport in ALI.
Collapse
Affiliation(s)
- Fang Ba
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaoming Zhou
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yingqi Zhang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Cen Wu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shenqian Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liqin Wu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jiayang Li
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yan Yin
- Institute of Respiratory Disease, First Hospital of China Medical University, Shenyang 110004, China
| | - Xiu Gu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
4
|
Henderson MW, Madenspacher JH, Whitehead GS, Thomas SY, Aloor JJ, Gowdy KM, Fessler MB. Effects of Orally Ingested Arsenic on Respiratory Epithelial Permeability to Bacteria and Small Molecules in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:097024. [PMID: 28960179 PMCID: PMC5915208 DOI: 10.1289/ehp1878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND Arsenic exposure via drinking water impacts millions of people worldwide. Although arsenic has been associated epidemiologically with increased lung infections, the identity of the lung cell types targeted by peroral arsenic and the associated immune mechanisms remain poorly defined. OBJECTIVES We aimed to determine the impact of peroral arsenic on pulmonary antibacterial host defense. METHODS Female C57BL/6 mice were administered drinking water with 0, 250 ppb, or 25 ppm sodium arsenite for 5 wk and then challenged intratracheally with Klebsiella pneumoniae, Streptococcus pneumoniae, or lipopolysaccharide. Bacterial clearance and immune responses were profiled. RESULTS Arsenic had no effect on bacterial clearance in the lung or on the intrapulmonary innate immune response to bacteria or lipopolysaccharide, as assessed by neutrophil recruitment to, and cytokine induction in, the airspace. Alveolar macrophage TNFα production was unaltered. By contrast, arsenic-exposed mice had significantly reduced plasma TNFα in response to systemic lipopolysaccharide challenge, together suggesting that the local airway innate immune response may be relatively preserved from arsenic intoxication. Despite intact intrapulmonary bacterial clearance during pneumonia, arsenic-exposed mice suffered dramatically increased bacterial dissemination to the bloodstream. Mechanistically, this was linked to increased respiratory epithelial permeability, as revealed by intratracheal FITC-dextran tracking, serum Club Cell protein 16 measurement, and other approaches. Consistent with barrier disruption at the alveolar level, arsenic-exposed mice had evidence for alveolar epithelial type 1 cell injury. CONCLUSIONS Peroral arsenic has little effect on local airway immune responses to bacteria but compromises respiratory epithelial barrier integrity, increasing systemic translocation of inhaled pathogens and small molecules. https://doi.org/10.1289/EHP1878.
Collapse
Affiliation(s)
- Michael W Henderson
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Jennifer H Madenspacher
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Gregory S Whitehead
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Seddon Y Thomas
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Jim J Aloor
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University , Greenville, North Carolina, USA
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| |
Collapse
|