1
|
Shimamoto S, Mitsuoka N, Takahashi S, Kawakami T, Hidaka Y. Chemical Digestion of the -Asp-Cys- Sequence for Preparation of Post-translationally Modified Proteins. Protein J 2020; 39:711-716. [PMID: 33175310 DOI: 10.1007/s10930-020-09940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 11/26/2022]
Abstract
Numerous studies of native proteins have been reported on protein folding in this half century. Recently, post-translationally modified proteins are also focused on protein folding. However, it is still difficult to prepare such types of proteins because it requires not only the chemical but also the recombinant techniques. Native chemical ligation (NCL) is a powerful technique for producing target proteins when combined with recombinant techniques, such as expressed protein ligation (EPL). NCL basically requires an N-terminal peptide with a thioester and a C-terminal peptide which should possess a Cys residue at the N-terminus. Numerous efforts have been made to prepare N-terminal peptides carrying a thioester or a derivative thereof. However, a method for preparing C-terminal Cys-peptides with post-translational modifications has not been well developed, making it difficult to prepare such C-terminal Cys-peptides, except for chemical syntheses or enzymatic digestion. We report here on the development of a convenient technique that involves acid hydrolysis at the -Asp-Cys- sequence, to effectively obtain a C-terminal peptide fragment that can be used for any protein synthesis when combined with EPL, even under denatured conditions. Thus, this chemical digestion strategy permits the NCL strategy to be dramatically accelerated for protein syntheses in which post-translational modifications, such as glycosylation, phosphorylation, etc. are involved. In addition, this method should be useful to prepare the post-translationally modified proteins for protein folding.
Collapse
Affiliation(s)
- Shigeru Shimamoto
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| | - Natsumi Mitsuoka
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Saki Takahashi
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Hidaka
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
Bäuml CA, Paul George AA, Schmitz T, Sommerfeld P, Pietsch M, Podsiadlowski L, Steinmetzer T, Biswas A, Imhof D. Distinct 3-disulfide-bonded isomers of tridegin differentially inhibit coagulation factor XIIIa: The influence of structural stability on bioactivity. Eur J Med Chem 2020; 201:112474. [PMID: 32698061 DOI: 10.1016/j.ejmech.2020.112474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
Tridegin is a 66mer cysteine-rich coagulation factor XIIIa (FXI-IIa) inhibitor from the giant amazon leech Haementeria ghilianii of yet unknown disulfide connectivity. This study covers the structural and functional characterization of five different 3-disulfide-bonded tridegin isomers. In addition to three previously identified isomers, one isomer containing the inhibitory cystine knot (ICK, knottin) motif, and one isomer with the leech antihemostatic protein (LAP) motif were synthesized in a regioselective manner. A fluorogenic enzyme activity assay revealed a positive correlation between the constriction of conformational flexibility in the N-terminal part of the peptide and the inhibitory potential towards FXI-IIa with clear differences between the isomers. This observation was supported by molecular dynamics (MD) simulations and subsequent molecular docking studies. The presented results provide detailed structure-activity relationship studies of different tridegin disulfide isomers towards FXI-IIa and reveal insights into the possibly existing native linkage compared to non-native disulfide tridegin species.
Collapse
Affiliation(s)
- Charlotte A Bäuml
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Thomas Schmitz
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Paul Sommerfeld
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, D-53113, Bonn, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, D-35032, Marburg, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| |
Collapse
|
3
|
Patil NA, Tailhades J, Hughes RA, Separovic F, Wade JD, Hossain MA. Cellular disulfide bond formation in bioactive peptides and proteins. Int J Mol Sci 2015; 16:1791-805. [PMID: 25594871 PMCID: PMC4307334 DOI: 10.3390/ijms16011791] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/02/2015] [Indexed: 11/16/2022] Open
Abstract
Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes--a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor--that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery.
Collapse
Affiliation(s)
- Nitin A Patil
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Julien Tailhades
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Richard Anthony Hughes
- Department of Pharmacology and Therapeutics, the University of Melbourne, Victoria 3010, Australia.
| | - Frances Separovic
- School of Chemistry, the University of Melbourne, Victoria 3010, Australia.
| | - John D Wade
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|