1
|
Grosu GF, Hopp AV, Moca VV, Bârzan H, Ciuparu A, Ercsey-Ravasz M, Winkel M, Linde H, Mureșan RC. The fractal brain: scale-invariance in structure and dynamics. Cereb Cortex 2023; 33:4574-4605. [PMID: 36156074 PMCID: PMC10110456 DOI: 10.1093/cercor/bhac363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
The past 40 years have witnessed extensive research on fractal structure and scale-free dynamics in the brain. Although considerable progress has been made, a comprehensive picture has yet to emerge, and needs further linking to a mechanistic account of brain function. Here, we review these concepts, connecting observations across different levels of organization, from both a structural and functional perspective. We argue that, paradoxically, the level of cortical circuits is the least understood from a structural point of view and perhaps the best studied from a dynamical one. We further link observations about scale-freeness and fractality with evidence that the environment provides constraints that may explain the usefulness of fractal structure and scale-free dynamics in the brain. Moreover, we discuss evidence that behavior exhibits scale-free properties, likely emerging from similarly organized brain dynamics, enabling an organism to thrive in an environment that shares the same organizational principles. Finally, we review the sparse evidence for and try to speculate on the functional consequences of fractality and scale-freeness for brain computation. These properties may endow the brain with computational capabilities that transcend current models of neural computation and could hold the key to unraveling how the brain constructs percepts and generates behavior.
Collapse
Affiliation(s)
- George F Grosu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | | | - Vasile V Moca
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| | - Harald Bârzan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Maria Ercsey-Ravasz
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, Str. Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Mathias Winkel
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Helmut Linde
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Time-dependent branching processes: a model of oscillating neuronal avalanches. Sci Rep 2020; 10:13678. [PMID: 32792658 PMCID: PMC7426838 DOI: 10.1038/s41598-020-69705-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/15/2020] [Indexed: 11/08/2022] Open
Abstract
Recently, neuronal avalanches have been observed to display oscillations, a phenomenon regarded as the co-existence of a scale-free behaviour (the avalanches close to criticality) and scale-dependent dynamics (the oscillations). Ordinary continuous-time branching processes with constant extinction and branching rates are commonly used as models of neuronal activity, yet they lack any such time-dependence. In the present work, we extend a basic branching process by allowing the extinction rate to oscillate in time as a new model to describe cortical dynamics. By means of a perturbative field theory, we derive relevant observables in closed form. We support our findings by quantitative comparison to numerics and qualitative comparison to available experimental results.
Collapse
|
3
|
Suresh J, Radojicic M, Pesce LL, Bhansali A, Wang J, Tryba AK, Marks JD, van Drongelen W. Network burst activity in hippocampal neuronal cultures: the role of synaptic and intrinsic currents. J Neurophysiol 2016; 115:3073-89. [PMID: 26984425 DOI: 10.1152/jn.00995.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
The goal of this work was to define the contributions of intrinsic and synaptic mechanisms toward spontaneous network-wide bursting activity, observed in dissociated rat hippocampal cell cultures. This network behavior is typically characterized by short-duration bursts, separated by order of magnitude longer interburst intervals. We hypothesize that while short-timescale synaptic processes modulate spectro-temporal intraburst properties and network-wide burst propagation, much longer timescales of intrinsic membrane properties such as persistent sodium (Nap) currents govern burst onset during interburst intervals. To test this, we used synaptic receptor antagonists picrotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (CPP) to selectively block GABAA, AMPA, and NMDA receptors and riluzole to selectively block Nap channels. We systematically compared intracellular activity (recorded with patch clamp) and network activity (recorded with multielectrode arrays) in eight different synaptic connectivity conditions: GABAA + NMDA + AMPA, NMDA + AMPA, GABAA + AMPA, GABAA + NMDA, AMPA, NMDA, GABAA, and all receptors blocked. Furthermore, we used mixed-effects modeling to quantify the aforementioned independent and interactive synaptic receptor contributions toward spectro-temporal burst properties including intraburst spike rate, burst activity index, burst duration, power in the local field potential, network connectivity, and transmission delays. We found that blocking intrinsic Nap currents completely abolished bursting activity, demonstrating their critical role in burst onset within the network. On the other hand, blocking different combinations of synaptic receptors revealed that spectro-temporal burst properties are uniquely associated with synaptic functionality and that excitatory connectivity is necessary for the presence of network-wide bursting. In addition to confirming the critical contribution of direct excitatory effects, mixed-effects modeling also revealed distinct combined (nonlinear) contributions of excitatory and inhibitory synaptic activity to network bursting properties.
Collapse
Affiliation(s)
- Jyothsna Suresh
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Committee on Computational Neuroscience, The University of Chicago, Chicago, Illinois;
| | - Mihailo Radojicic
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Lorenzo L Pesce
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; The Computation Institute, The University of Chicago, Chicago, Illinois; and
| | - Anita Bhansali
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Janice Wang
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Andrew K Tryba
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Jeremy D Marks
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| | - Wim van Drongelen
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Committee on Computational Neuroscience, The University of Chicago, Chicago, Illinois; The Computation Institute, The University of Chicago, Chicago, Illinois; and Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
4
|
Bai R, Klaus A, Bellay T, Stewart C, Pajevic S, Nevo U, Merkle H, Plenz D, Basser PJ. Simultaneous calcium fluorescence imaging and MR of ex vivo organotypic cortical cultures: a new test bed for functional MRI. NMR IN BIOMEDICINE 2015; 28:1726-1738. [PMID: 26510537 DOI: 10.1002/nbm.3424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
Recently, several new functional (f)MRI contrast mechanisms including diffusion, phase imaging, proton density, etc. have been proposed to measure neuronal activity more directly and accurately than blood-oxygen-level dependent (BOLD) fMRI. However, these approaches have proved difficult to reproduce, mainly because of the dearth of reliable and robust test systems to vet and validate them. Here we describe the development and testing of such a test bed for non-BOLD fMRI. Organotypic cortical cultures were used as a stable and reproducible biological model of neuronal activity that shows spontaneous activity similar to that of in vivo brain cortex without any hemodynamic confounds. An open-access, single-sided magnetic resonance (MR) "profiler" consisting of four permanent magnets with magnetic field of 0.32 T was used in this study to perform MR acquisition. A fluorescence microscope with long working distance objective was mounted on the top of a custom-designed chamber that keeps the organotypic culture vital, and the MR system was mounted on the bottom of the chamber to achieve real-time simultaneous calcium fluorescence optical imaging and MR acquisition on the same specimen. In this study, the reliability and performance of the proposed test bed were demonstrated by a conventional CPMG MR sequence acquired simultaneously with calcium imaging, which is a well-characterized measurement of neuronal activity. This experimental design will make it possible to correlate directly the other candidate functional MR signals to the optical indicia of neuronal activity in the future.
Collapse
Affiliation(s)
- Ruiliang Bai
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, Maryland, USA
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, USA
| | - Andreas Klaus
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Tim Bellay
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Craig Stewart
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Sinisa Pajevic
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, NIH, Bethesda, Maryland, USA
| | - Uri Nevo
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Hellmut Merkle
- Laboratory for Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter J Basser
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Humpel C. Organotypic brain slice cultures: A review. Neuroscience 2015; 305:86-98. [PMID: 26254240 PMCID: PMC4699268 DOI: 10.1016/j.neuroscience.2015.07.086] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/27/2022]
Abstract
In vitro cell cultures are an important tool for obtaining insights into cellular processes in an isolated system and a supplement to in vivo animal experiments. While primary dissociated cultures permit a single homogeneous cell population to be studied, there is a clear need to explore the function of brain cells in a three-dimensional system where the main architecture of the cells is preserved. Thus, organotypic brain slice cultures have proven to be very useful in investigating cellular and molecular processes of the brain in vitro. This review summarizes (1) the historical development of organotypic brain slices focusing on the membrane technology, (2) methodological aspects regarding culturing procedures, age of donors or media, (3) whether the cholinergic neurons serve as a model of neurodegeneration in Alzheimer’s disease, (4) or the nigrostriatal dopaminergic neurons as a model of Parkinson’s disease and (5) how the vascular network can be studied, especially with regard to a synthetic blood–brain barrier. This review will also highlight some limits of the model and give an outlook on future applications.
Collapse
Affiliation(s)
- C Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
6
|
Plenz D, Stewart CV, Shew W, Yang H, Klaus A, Bellay T. Multi-electrode array recordings of neuronal avalanches in organotypic cultures. J Vis Exp 2011:2949. [PMID: 21841767 PMCID: PMC3211128 DOI: 10.3791/2949] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cortex is spontaneously active, even in the absence of any particular input or motor output. During development, this activity is important for the migration and differentiation of cortex cell types and the formation of neuronal connections1. In the mature animal, ongoing activity reflects the past and the present state of an animal into which sensory stimuli are seamlessly integrated to compute future actions. Thus, a clear understanding of the organization of ongoing i.e. spontaneous activity is a prerequisite to understand cortex function. Numerous recording techniques revealed that ongoing activity in cortex is comprised of many neurons whose individual activities transiently sum to larger events that can be detected in the local field potential (LFP) with extracellular microelectrodes, or in the electroencephalogram (EEG), the magnetoencephalogram (MEG), and the BOLD signal from functional magnetic resonance imaging (fMRI). The LFP is currently the method of choice when studying neuronal population activity with high temporal and spatial resolution at the mesoscopic scale (several thousands of neurons). At the extracellular microelectrode, locally synchronized activities of spatially neighbored neurons result in rapid deflections in the LFP up to several hundreds of microvolts. When using an array of microelectrodes, the organizations of such deflections can be conveniently monitored in space and time. Neuronal avalanches describe the scale-invariant spatiotemporal organization of ongoing neuronal activity in the brain2,3. They are specific to the superficial layers of cortex as established in vitro4,5, in vivo in the anesthetized rat 6, and in the awake monkey7. Importantly, both theoretical and empirical studies2,8-10 suggest that neuronal avalanches indicate an exquisitely balanced critical state dynamics of cortex that optimizes information transfer and information processing. In order to study the mechanisms of neuronal avalanche development, maintenance, and regulation, in vitro preparations are highly beneficial, as they allow for stable recordings of avalanche activity under precisely controlled conditions. The current protocol describes how to study neuronal avalanches in vitro by taking advantage of superficial layer development in organotypic cortex cultures, i.e. slice cultures, grown on planar, integrated microelectrode arrays (MEA; see also 11-14).
Collapse
Affiliation(s)
- Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, USA
| | | | | | | | | | | |
Collapse
|
7
|
Homeostasis of neuronal avalanches during postnatal cortex development in vitro. J Neurosci Methods 2007; 169:405-16. [PMID: 18082894 DOI: 10.1016/j.jneumeth.2007.10.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/24/2007] [Accepted: 10/28/2007] [Indexed: 11/23/2022]
Abstract
Cortical networks in vivo and in vitro are spontaneously active in the absence of inputs, generating highly variable bursts of neuronal activity separated by up to seconds of quiescence. Previous measurements in adult rat cortex revealed an intriguing underlying organization of these dynamics, termed neuronal avalanches, which is indicative of a critical network state. Here we demonstrate that neuronal avalanches persist throughout development in cortical slice cultures from newborn rats. More specifically, we find that in spite of large variations of average rate in activity, spontaneous bursts occur with power-law distributed sizes (exponent -1.5) and a critical branching parameter close to 1. Our findings suggest that cortical networks homeostatically regulate a critical state during postnatal maturation.
Collapse
|