1
|
Kolba N, Cheng J, Jackson CD, Tako E. Intra-Amniotic Administration-An Emerging Method to Investigate Necrotizing Enterocolitis, In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14224795. [PMID: 36432481 PMCID: PMC9696943 DOI: 10.3390/nu14224795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in premature infants and a leading cause of death in neonates (1-7% in the US). NEC is caused by opportunistic bacteria, which cause gut dysbiosis and inflammation and ultimately result in intestinal necrosis. Previous studies have utilized the rodent and pig models to mimic NEC, whereas the current study uses the in vivo (Gallus gallus) intra-amniotic administration approach to investigate NEC. On incubation day 17, broiler chicken (Gallus gallus) viable embryos were injected intra-amniotically with 1 mL dextran sodium sulfate (DSS) in H2O. Four treatment groups (0.1%, 0.25%, 0.5%, and 0.75% DSS) and two controls (H2O/non-injected controls) were administered. We observed a significant increase in intestinal permeability and negative intestinal morphological changes, specifically, decreased villus surface area and goblet cell diameter in the 0.50% and 0.75% DSS groups. Furthermore, there was a significant increase in pathogenic bacterial (E. coli spp. and Klebsiella spp.) abundances in the 0.75% DSS group compared to the control groups, demonstrating cecal microbiota dysbiosis. These results demonstrate significant physiopathology of NEC and negative bacterial-host interactions within a premature gastrointestinal system. Our present study demonstrates a novel model of NEC through intra-amniotic administration to study the effects of NEC on intestinal functionality, morphology, and gut microbiota in vivo.
Collapse
Affiliation(s)
| | | | | | - Elad Tako
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
2
|
Narushin VG, Griffin AW, Romanov MN, Griffin DK. Measurement of the neutral axis in avian eggshells reveals which species conform to the golden ratio. Ann N Y Acad Sci 2022; 1517:143-153. [PMID: 36052445 PMCID: PMC9826523 DOI: 10.1111/nyas.14895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Avian eggs represent a striking evolutionary adaptation for which shell thickness is crucial. An understudied eggshell property includes the neutral axis, a line that is drawn through any bent structure and whose precise location is characterized by the k-factor. Previous studies have established that, for chicken eggs, mean k corresponds to the golden ratio (Φ = 1.618, or 0.618 in its reciprocal form). We hypothesized whether such an arrangement of the neutral axis conforms to the eggshell of any bird or only to eggshells with a certain set of geometric parameters. Implementing a suite of innovative methodological approaches, we investigated variations in k of 435 avian species, exploring which correspond to Φ. We found that mean k is highly variable among birds and does not always conform to Φ, being much lower in spherical and ellipsoid eggs and higher in pyriform eggs. While 21 species had k values within 0.618 ± 0.02 (including four falcon species) and the Falconinae subfamily (six species) revealed a mean of 0.618, it is predominantly domesticated species (chicken, ducks, and geese) that lay eggs whose neutral axis corresponds to the golden ratio. Thus, the study of the mathematical secrets of the eggshell related to the golden ratio of its neutral axis suggests its species-specific signatures in birds.
Collapse
Affiliation(s)
- Valeriy G. Narushin
- Research Institute for Environment TreatmentZaporozhyeUkraine,Vita‐Market LtdZaporozhyeUkraine
| | | | | | | |
Collapse
|
3
|
Kharrati-Koopaee H, Ebrahimie E, Dadpasand M, Niazi A, Tian R, Esmailizadeh A. Gene network analysis to determine the effect of hypoxia-associated genes on brain damages and tumorigenesis using an avian model. J Genet Eng Biotechnol 2021; 19:100. [PMID: 34236536 PMCID: PMC8266987 DOI: 10.1186/s43141-021-00184-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hypoxia refers to the condition of low oxygen pressure in the atmosphere and characterization of response to hypoxia as a biological complex puzzle, is challenging. Previously, we carried out a comparative genomic study by whole genome resequencing of highland and lowland Iranian native chickens to identify genomic variants associated with hypoxia conditions. Based on our previous findings, we used chicken as a model and the identified hypoxia-associated genes were converted to human's orthologs genes to construct the informative gene network. The main goal of this study was to visualize the features of diseases due to hypoxia-associated genes by gene network analysis. RESULTS It was found that hypoxia-associated genes contained several gene networks of disorders such as Parkinson, Alzheimer, cardiomyopathy, drug toxicity, and cancers. We found that biological pathways are involved in mitochondrion dysfunctions including peroxynitrous acid production denoted in brain injuries. Lewy body and neuromelanin were reported as key symptoms in Parkinson disease. Furthermore, calmodulin, and amyloid precursor protein were detected as leader proteins in Alzheimer's diseases. Dexamethasone was reported as the candidate toxic drug under the hypoxia condition that implicates diabetes, osteoporosis, and neurotoxicity. Our results suggested DNA damages caused by the high doses of UV radiation in high-altitude conditions, were associated with breast cancer, ovarian cancer, and colorectal cancer. CONCLUSIONS Our results showed that hypoxia-associated genes were enriched in several gene networks of disorders including Parkinson, Alzheimer, cardiomyopathy, drug toxicity, and different types of cancers. Furthermore, we suggested, UV radiation and low oxygen conditions in high-altitude regions may be responsible for the variety of human diseases.
Collapse
Affiliation(s)
- Hamed Kharrati-Koopaee
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Mohammad Dadpasand
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Rugang Tian
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
4
|
Dakhel S, Davies WIL, Joseph JV, Tomar T, Remeseiro S, Gunhaga L. Chick fetal organ spheroids as a model to study development and disease. BMC Mol Cell Biol 2021; 22:37. [PMID: 34225662 PMCID: PMC8256237 DOI: 10.1186/s12860-021-00374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Organ culture models have been used over the past few decades to study development and disease. The in vitro three-dimensional (3D) culture system of organoids is well known, however, these 3D systems are both costly and difficult to culture and maintain. As such, less expensive, faster and less complex methods to maintain 3D cell culture models would complement the use of organoids. Chick embryos have been used as a model to study human biology for centuries, with many fundamental discoveries as a result. These include cell type induction, cell competence, plasticity and contact inhibition, which indicates the relevance of using chick embryos when studying developmental biology and disease mechanisms. RESULTS Here, we present an updated protocol that enables time efficient, cost effective and long-term expansion of fetal organ spheroids (FOSs) from chick embryos. Utilizing this protocol, we generated FOSs in an anchorage-independent growth pattern from seven different organs, including brain, lung, heart, liver, stomach, intestine and epidermis. These three-dimensional (3D) structures recapitulate many cellular and structural aspects of their in vivo counterpart organs and serve as a useful developmental model. In addition, we show a functional application of FOSs to analyze cell-cell interaction and cell invasion patterns as observed in cancer. CONCLUSION The establishment of a broad ranging and highly effective method to generate FOSs from different organs was successful in terms of the formation of healthy, proliferating 3D organ spheroids that exhibited organ-like characteristics. Potential applications of chick FOSs are their use in studies of cell-to-cell contact, cell fusion and tumor invasion under defined conditions. Future studies will reveal whether chick FOSs also can be applicable in scientific areas such as viral infections, drug screening, cancer diagnostics and/or tissue engineering.
Collapse
Affiliation(s)
- Soran Dakhel
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Wayne I L Davies
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Justin V Joseph
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Tushar Tomar
- PamGene International B.V, Wolvenhoek 10, 5211 HH, 's-Hertogenbosch, The Netherlands
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
5
|
He W, Furukawa K, Toyomizu M, Nochi T, Bailey CA, Wu G. Interorgan Metabolism, Nutritional Impacts, and Safety of Dietary L-Glutamate and L-Glutamine in Poultry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:107-128. [PMID: 34251641 DOI: 10.1007/978-3-030-74180-8_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
L-glutamine (Gln) is the most abundant amino acid (AA) in the plasma and skeletal muscle of poultry, and L-glutamate (Glu) is among the most abundant AAs in the whole bodies of all avian tissues. During the first-pass through the small intestine into the portal circulation, dietary Glu is extensively oxidized to CO2, but dietary Gln undergoes limited catabolism in birds. Their extra-intestinal tissues (e.g., skeletal muscle, kidneys, and lymphoid organs) have a high capacity to degrade Gln. To maintain Glu and Gln homeostasis in the body, they are actively synthesized from branched-chain AAs (abundant AAs in both plant and animal proteins) and glucose via interorgan metabolism involving primarily the skeletal muscle, heart, adipose tissue, and brain. In addition, ammonia (produced from the general catabolism of AAs) and α-ketoglutarate (α-KG, derived primarily from glucose) serve as substrates for the synthesis of Glu and Gln in avian tissues, particularly the liver. Over the past 20 years, there has been growing interest in Glu and Gln metabolism in the chicken, which is an agriculturally important species and also a useful model for studying some aspects of human physiology and diseases. Increasing evidence shows that the adequate supply of dietary Glu and Gln is crucial for the optimum growth, anti-oxidative responses, productivity, and health of chickens, ducklings, turkeys, and laying fowl, particularly under stress conditions. Like mammals, poultry have dietary requirements for both Glu and Gln. Based on feed intake, tissue integrity, growth performance, and health status, birds can tolerate up to 12% Glu and 3.5% Gln in diets (on the dry matter basis). Glu and Gln are quantitatively major nutrients for chickens and other avian species to support their maximum growth, production, and feed efficiency, as well as their optimum health and well-being.
Collapse
Affiliation(s)
- Wenliang He
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Kyohei Furukawa
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA.,Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Christopher A Bailey
- Departments of Poultry Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Abstract
The chicken model organism has advanced the areas of developmental biology, virology, immunology, oncology, epigenetic regulation of gene expression, conservation biology, and genomics of domestication. Further, the chicken model organism has aided in our understanding of human disease. Through the recent advances in high-throughput sequencing and bioinformatic tools, researchers have successfully identified sequences in the chicken genome that have human orthologs, improving mammalian genome annotation. In this review, we highlight the importance of chicken as an animal model in basic and pre-clinical research. We will present the importance of chicken in poultry epigenetics and in genomic studies that trace back to their ancestor, the last link between human and chicken in the tree of life. There are still many genes of unknown function in the chicken genome yet to be characterized. By taking advantage of recent sequencing technologies, it is possible to gain further insight into the chicken epigenome.
Collapse
Affiliation(s)
- Tasnim H Beacon
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
7
|
Albawaneh Z, Ali R, Abramyan J. Novel insights into the development of the avian nasal cavity. Anat Rec (Hoboken) 2020; 304:247-257. [PMID: 31872940 DOI: 10.1002/ar.24349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
Abstract
In embryonic amniotes, patterning of the oral and nasal cavities requires bilateral fusion between craniofacial prominences, ensuring an intact primary palate and upper jaw. After fusion has taken place, the embryonic nasal cavities open anteriorly through paired external nares positioned directly above the fusion zones and bordered by the medial nasal and lateral nasal prominences. In this study, we show that in the chicken embryo, the external nares initially form as patent openings but only remain so for a short period of time. Soon after the nasal cavities form, the medial nasal and lateral nasal prominences fuse together in stage 29 embryos, entirely closing off the external nares for a substantial portion of embryonic and fetal development. The epithelium between the fused prominences is then retained and eventually develops into a nasal plug that obstructs the nasal vestibule through the majority of the fetal period. At stage 40, the nasal plug begins to break down through a combination of cellular remodeling, apoptosis, as well as non-apoptotic necrosis, leading to completely patent nasal cavities at hatching. These findings place chickens in a category with several species of nonavian reptiles and mammals (including humans) that have been found to develop a transient embryonic nasal plug. Our findings are discussed in the context of previously reported cases of nasal plugs as part of normal embryonic development and provide novel insight into the craniofacial development of a key model organism in developmental biology.
Collapse
Affiliation(s)
- Zahra Albawaneh
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan
| | - Raana Ali
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan
| | - John Abramyan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan
| |
Collapse
|
8
|
Noorai RE, Shankar V, Freese NH, Gregorski CM, Chapman SC. Discovery of genomic variations by whole-genome resequencing of the North American Araucana chicken. PLoS One 2019; 14:e0225834. [PMID: 31821332 PMCID: PMC6903725 DOI: 10.1371/journal.pone.0225834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Gallus gallus (chicken) is phenotypically diverse, with over 60 recognized breeds, among the myriad species within the Aves lineage. Domestic chickens have been under artificial selection by humans for thousands of years for agricultural purposes. The North American Araucana (NAA) breed arose as a cross between the Chilean “Collonocas” that laid blue eggs and was rumpless and the “Quetros” that had unusual tufts but with tail. NAAs were introduced from South America in the 1940s and have been kept as show birds by enthusiasts since then due to several distinctive traits: laying eggs with blue eggshells, characteristic ear-tufts, a pea comb, and rumplessness. The population has maintained variants for clean-faced and tufted, as well as tailed and rumplessness traits making it advantageous for genetic studies. Genome resequencing of six NAA chickens with a mixture of these traits was done to 71-fold coverage using Illumina HiSeq 2000 paired-end reads. Trimmed and concordant reads were mapped to the Gallus_gallus-5.0 reference genome (galGal5), generated from a female Red Junglefowl (UCD001). To identify candidate genes that are associated with traits of the NAA, their genome was compared with the Korean Araucana, Korean Domestic and White Leghorn breeds. Genomic regions with significantly reduced levels of heterogeneity were detected on five different chromosomes in NAA. The sequence data generated confirm the identity of variants responsible for the blue eggshells, pea comb, and rumplessness traits of NAA and propose one for ear-tufts.
Collapse
Affiliation(s)
- Rooksana E. Noorai
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| | - Vijay Shankar
- Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Nowlan H. Freese
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Christopher M. Gregorski
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Susan C. Chapman
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
9
|
Kharrati-Koopaee H, Ebrahimie E, Dadpasand M, Niazi A, Esmailizadeh A. Genomic analysis reveals variant association with high altitude adaptation in native chickens. Sci Rep 2019; 9:9224. [PMID: 31239472 PMCID: PMC6592930 DOI: 10.1038/s41598-019-45661-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 03/12/2019] [Indexed: 01/10/2023] Open
Abstract
Native chickens are endangered genetic resources that are kept by farmers for different purposes. Native chickens distributed in a wide range of altitudes, have developed adaptive mechanisms to deal with hypoxia. For the first time, we report variants associated with high-altitude adaptation in Iranian native chickens by whole genome sequencing of lowland and highland chickens. We found that these adaptive variants are involved in DNA repair, organs development, immune response and histone binding. Amazingly, signature selection analysis demonstrated that differential variants are adaptive in response to hypoxia and are not due to other evolutionary pressures. Cellular component analysis of variants showed that mitochondrion is the most important organelle for hypoxia adaptation. A total of 50 variants was detected in mtDNA for highland and lowland chickens. High-altitude associated with variant discovery highlighted the importance of COX3, a gene involved in cell respiration, in hypoxia adaptation. The results of study suggest that MIR6644-2 is involved in hypoxia and high-altitude adaptations by regulation of embryo development. Finally, 3877 novel SNVs including the mtDNA ones, were submitted to EBI (PRJEB24944). Whole-genome sequencing and variant discovery of native chickens provided novel insights about adaptation mechanisms and highlights the importance of valuable genomic variants in chickens.
Collapse
Affiliation(s)
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran.
- The University of Adelaide, School of Animal and Veterinary Sciences, Adelaide, South Australia, Australia.
- School of Information Technology and Mathematical Science, Division of Information Technology, Engineering and the Environment, University of South Australia, South Australia, Adelaide, Australia.
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia.
| | - Mohammad Dadpasand
- Department of Animal science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences No. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, P.R. China.
- Department of Animal science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
10
|
Woodcock ME, Idoko-Akoh A, McGrew MJ. Gene editing in birds takes flight. Mamm Genome 2017; 28:315-323. [PMID: 28612238 PMCID: PMC5569130 DOI: 10.1007/s00335-017-9701-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022]
Abstract
The application of gene editing (GE) technology to create precise changes to the genome of bird species will provide new and exciting opportunities for the biomedical, agricultural and biotechnology industries, as well as providing new approaches for producing research models. Recent advances in modifying both the somatic and germ cell lineages in chicken indicate that this species, and conceivably soon other avian species, has joined a growing number of model organisms in the gene editing revolution.
Collapse
Affiliation(s)
- Mark E Woodcock
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Alewo Idoko-Akoh
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Michael J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
11
|
Luo W, Lin S, Li G, Nie Q, Zhang X. Integrative Analyses of miRNA-mRNA Interactions Reveal let-7b, miR-128 and MAPK Pathway Involvement in Muscle Mass Loss in Sex-Linked Dwarf Chickens. Int J Mol Sci 2016; 17:276. [PMID: 26927061 PMCID: PMC4813140 DOI: 10.3390/ijms17030276] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 01/21/2023] Open
Abstract
The sex-linked dwarf (SLD) chicken is an ideal model system for understanding growth hormone (GH)-action and growth hormone receptor (GHR) function because of its recessive mutation in the GHR gene. Skeletal muscle mass is reduced in the SLD chicken with a smaller muscle fiber diameter. Our previous study has presented the mRNA and miRNA expression profiles of the SLD chicken and normal chicken between embryo day 14 and seven weeks of age. However, the molecular mechanism of GHR-deficient induced muscle mass loss is still unclear, and the key molecules and pathways underlying the GHR-deficient induced muscle mass loss also remain to be illustrated. Here, by functional network analysis of the differentially expressed miRNAs and mRNAs between the SLD and normal chickens, we revealed that let-7b, miR-128 and the MAPK pathway might play key roles in the GHR-deficient induced muscle mass loss, and that the reduced cell division and growth are potential cellular processes during the SLD chicken skeletal muscle development. Additionally, we also found some genes and miRNAs involved in chicken skeletal muscle development, through the MAPK, PI3K-Akt, Wnt and Insulin signaling pathways. This study provides new insights into the molecular mechanism underlying muscle mass loss in the SLD chickens, and some regulatory networks that are crucial for chicken skeletal muscle development.
Collapse
Affiliation(s)
- Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Shumao Lin
- College of Life Science, Foshan University, Foshan 528231, Guangdong, China.
| | - Guihuan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
12
|
Zhang Z, Nie C, Jia Y, Jiang R, Xia H, Lv X, Chen Y, Li J, Li X, Ning Z, Xu G, Chen J, Yang N, Qu L. Parallel Evolution of Polydactyly Traits in Chinese and European Chickens. PLoS One 2016; 11:e0149010. [PMID: 26859147 PMCID: PMC4747547 DOI: 10.1371/journal.pone.0149010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/26/2016] [Indexed: 12/26/2022] Open
Abstract
Polydactyly is one of the most common hereditary congenital limb malformations in chickens and other vertebrates. The zone of polarizing activity regulatory sequence (ZRS) is critical for the development of polydactyly. The causative mutation of polydactyly in the Silkie chicken has been mapped to the ZRS; however, the causative mutations of other chicken breeds are yet to be established. To understand whether the same mutation decides the polydactyly phenotype in other chicken breeds, we detected the single-nucleotide polymorphism in 26 different chicken breeds, specifically, 24 Chinese indigenous breeds and 2 European breeds. The mutation was found to have fully penetrated chickens with polydactyly in China, indicating that it is causative for polydactyly in Chinese indigenous chickens. In comparison, the mutation showed no association with polydactyly in Houdan chickens, which originate from France, Europe. Based on the different morphology of polydactyly in Chinese and European breeds, we assumed that the trait might be attributable to different genetic foundations. Therefore, we subsequently performed genome-wide association analysis (GWAS) to locate the region associated with polydactyly. As a result, a ~0.39 Mb genomic region on GGA2p was identified. The region contains six candidate genes, with the causative mutation found in Chinese indigenous breeds also being located in this region. Our results demonstrate that polydactyly in chickens from China and Europe is caused by two independent mutation events that are closely located in the chicken genome.
Collapse
Affiliation(s)
- Zebin Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Changsheng Nie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yaxiong Jia
- Beijing Municipal General Station of Animal Science, Beijing, 100107, China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Haijian Xia
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing, 100107, China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing, 100107, China
| | - Junying Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xianyao Li
- College of Animal Science, Shandong Agricultural University, Taian, 271018, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiyun Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jilan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- * E-mail:
| |
Collapse
|
13
|
Yu P, Lu Y, Jordan BJ, Liu Y, Yang JY, Hutcheson JM, Ethridge CL, Mumaw JL, Kinder HA, Beckstead RB, Stice SL, West FD. Nonviral minicircle generation of induced pluripotent stem cells compatible with production of chimeric chickens. Cell Reprogram 2014; 16:366-78. [PMID: 25084370 DOI: 10.1089/cell.2014.0028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chickens are vitally important in numerous countries as a primary food source and a major component of economic development. Efforts have been made to produce transgenic birds through pluripotent stem cell [primordial germ cells and embryonic stem cells (ESCs)] approaches to create animals with improved traits, such as meat and egg production or even disease resistance. However, these cell types have significant limitations because they are hard to culture long term while maintaining developmental plasticity. Induced pluripotent stem cells (iPSCs) are a novel class of stem cells that have proven to be robust, leading to the successful development of transgenic mice, rats, quail, and pigs and may potentially overcome the limitations of previous pluripotent stem cell systems in chickens. In this study we generated chicken (c) iPSCs from fibroblast cells for the first time using a nonviral minicircle reprogramming approach. ciPSCs demonstrated stem cell morphology and expressed key stem cell markers, including alkaline phosphatase, POU5F1, SOX2, NANOG, and SSEA-1. These cells were capable of rapid growth and expressed high levels of telomerase. Late-passage ciPSCs transplanted into stage X embryos were successfully incorporated into tissues of all three germ layers, and the gonads demonstrated significant cellular plasticity. These cells provide an exciting new tool to create transgenic chickens with broad implications for agricultural and transgenic animal fields at large.
Collapse
Affiliation(s)
- Ping Yu
- 1 Regenerative Bioscience Center, University of Georgia , Athens, GA, 30602
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Physiological Properties and Salmonella Growth Inhibition of Probiotic Bacillus Strains Isolated from Environmental and Poultry Sources. INTERNATIONAL JOURNAL OF BACTERIOLOGY 2013; 2013:958408. [PMID: 26904728 PMCID: PMC4745483 DOI: 10.1155/2013/958408] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/10/2013] [Indexed: 12/29/2022]
Abstract
The objective of the present study was to describe the physiological properties of seven potential probiotic strains of Bacillus spp. Isolates were characterized morphologically, biochemically, and by 16S rRNA sequence analyses for identification. Tolerance to acidic pH, high osmotic concentrations of NaCl, and bile salts were tested. Isolates were also evaluated for their ability to metabolize different carbohydrates sources. The antimicrobial sensitivity profiles were determined. Inhibition of gastrointestinal Salmonella colonization in an avian model was also evaluated. Five strains of Bacillus were tolerant to acidic conditions (pH 2.0) and all strains were tolerant to a high osmotic pressure (NaCl at 6.5%). Moreover, all strains were able to tolerate concentration of 0.037% bile salts after 24 h of incubation. Three strains were able to significantly reduce Salmonella Typhimurium levels in the crop and in the ceca of broiler-type chickens. Among the 12 antibiotics tested for antibiotic resistance, all strains were resistant to bacitracin and susceptible to gentamycin, neomycin, ormethoprim, triple sulfa, and spectinomycin. Bacterial spore formers have been shown to prevent gastrointestinal diseases in animals and humans. The results obtained in this study show important characteristics to be evaluated when selecting Bacillus spp. candidates to be used as probiotics.
Collapse
|
15
|
Abstract
The chicken coloboma mutation exhibits features similar to human congenital developmental malformations such as ocular coloboma, cleft-palate, dwarfism, and polydactyly. The coloboma-associated region and encoded genes were investigated using advanced genomic, genetic, and gene expression technologies. Initially, the mutation was linked to a 990 kb region encoding 11 genes; the application of the genetic and genomic tools led to a reduction of the linked region to 176 kb and the elimination of 7 genes. Furthermore, bioinformatics analyses of capture array-next generation sequence data identified genetic elements including SNPs, insertions, deletions, gaps, chromosomal rearrangements, and miRNA binding sites within the introgressed causative region relative to the reference genome sequence. Coloboma-specific variants within exons, UTRs, and splice sites were studied for their contribution to the mutant phenotype. Our compiled results suggest three genes for future studies. The three candidate genes, SLC30A5 (a zinc transporter), CENPH (a centromere protein), and CDK7 (a cyclin-dependent kinase), are differentially expressed (compared to normal embryos) at stages and in tissues affected by the coloboma mutation. Of these genes, two (SLC30A5 and CENPH) are considered high-priority candidate based upon studies in other vertebrate model systems.
Collapse
Affiliation(s)
- Elizabeth A. Robb
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Parker B. Antin
- Department of Molecular and Cellular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Mary E. Delany
- Department of Animal Science, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|