1
|
Lok IM, Wever KE, Vliegenthart RJS, Onland W, van Kaam AH, van Tuyl M. Effects of postnatal corticosteroids on lung development in newborn animals. A systematic review. Pediatr Res 2024; 96:1141-1152. [PMID: 38493255 PMCID: PMC11522003 DOI: 10.1038/s41390-024-03114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Postnatal systemic corticosteroids reduce the risk of bronchopulmonary dysplasia but the effect depends on timing, dosing, and type of corticosteroids. Animal studies may provide valuable information on these variable effects. This systematic review summarizes the effects of postnatal systemic corticosteroids on lung development in newborn animals. METHODS A systematic search was performed in PubMed and Embase in December 2022. The protocol was published on PROSPERO (CRD42021177701). RESULTS Of the 202 eligible studies, 51 were included. Only newborn rodent studies met the inclusion criteria. Most studies used dexamethasone (98%). There was huge heterogeneity in study outcome measures and corticosteroid treatment regimens. Reporting of study quality indicators was mediocre and risk of bias was unclear due to poor reporting of study methodology. Meta-analysis showed that postnatal corticosteroids caused a decrease in body weight as well as persistent alveolar simplification. Subgroup analyses revealed that healthy animals were most affected. CONCLUSION In newborn rodents, postnatal systemic corticosteroids have a persistent negative effect on body weight and lung development. There was huge heterogeneity in experimental models, mediocre study quality, unclear risk of bias, and very small subgroups for meta-analysis which limited firm conclusions. IMPACT Postnatal corticosteroids reduce the risk of bronchopulmonary dysplasia but the effect depends on timing, dosing, and type of corticosteroids while the underlying mechanism of this variable effect is unknown. This is the first systematic review and meta-analysis of preclinical newborn animal studies reviewing the effect of postnatal systemic corticosteroids on lung development. In newborn rodent models, postnatal corticosteroids have a persistent negative effect on body weight and lung alveolarization, especially in healthy animals.
Collapse
Affiliation(s)
- Irene M Lok
- Department of Neonatology, Emma Children's Hospital Amsterdam UMC, location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Kimberley E Wever
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Wes Onland
- Department of Neonatology, Emma Children's Hospital Amsterdam UMC, location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Anton H van Kaam
- Department of Neonatology, Emma Children's Hospital Amsterdam UMC, location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Minke van Tuyl
- Department of Neonatology, Emma Children's Hospital Amsterdam UMC, location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Dini G, Ceccarelli S, Celi F. Strategies for the prevention of bronchopulmonary dysplasia. Front Pediatr 2024; 12:1439265. [PMID: 39114855 PMCID: PMC11303306 DOI: 10.3389/fped.2024.1439265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common morbidity affecting preterm infants and is associated with substantial long-term disabilities. The pathogenesis of BPD is multifactorial, and the clinical phenotype is variable. Extensive research has improved the current understanding of the factors contributing to BPD pathogenesis. However, effectively preventing and managing BPD remains a challenge. This review aims to provide an overview of the current evidence regarding the prevention of BPD in preterm infants, offering practical insights for clinicians.
Collapse
Affiliation(s)
- Gianluca Dini
- Neonatal Intensive Care Unit, Santa Maria Hospital, Terni, Italy
| | | | | |
Collapse
|
3
|
Oluwole-Ojo T, Harris C, Greenough A. Advances in the pharmacological management of bronchopulmonary dysplasia: an update of the literature. Expert Opin Pharmacother 2024; 25:1349-1358. [PMID: 39041726 DOI: 10.1080/14656566.2024.2383628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Bronchopulmonary dysplasia (BPD) is the commonest adverse outcome of extremely prematurely born infants, and its incidence is increasing. Affected infants suffer chronic respiratory morbidity and are at risk of early onset of chronic obstructive pulmonary disease. It is, therefore, important that these infants are appropriately managed, with efficacious pharmacological treatments. AREAS COVERED Searches were made on Embase, PubMed, and the Cochrane database for ('treatment' or 'drug therapy/') and ('bronchopulmonary dysplasia' or 'chronic lung disease') and ('neonatology' or 'newborn' or 'prematurity' or 'baby') between 2019 and 2024. Corticosteroids, diuretics, caffeine, anti-asthmatics, nutritional supplements, and medications treating patent ductus arteriosus and pulmonary hypertension are discussed. EXPERT OPINION Dexamethasone is associated with adverse neurodevelopmental outcomes and impairment of adult lung function. Inhaled corticosteroids have not resulted in significant effects on BPD. Diuretics only result in short-term improvements in lung function and have side-effects. Evidence suggests it is better to wait and see than aggressively treat PDA; inhaled nitric oxide and sildenafil can improve oxygenation, but whether they improve long-term outcomes remains to be tested. Stem cells are a promising therapy, but further research is required. Appropriately designed trials are required to identify efficacious treatments for infants with BPD.
Collapse
Affiliation(s)
- Tolu Oluwole-Ojo
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, London, UK
| | - Christopher Harris
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, London, UK
- Department of Women and Children's Health, Life Sciences and Medicine, King's College London, London, UK
| | - Anne Greenough
- Department of Women and Children's Health, Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
4
|
Hillman NH, Jobe AH. Preterm lung and brain responses to mechanical ventilation and corticosteroids. J Perinatol 2023; 43:1222-1229. [PMID: 37169913 DOI: 10.1038/s41372-023-01692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Mechanical ventilation is necessary to maintain oxygenation and ventilation in many preterm infants. Unfortunately, even short periods of mechanical ventilation can cause lung and airway injury, and initiate the lung inflammation that contributes to the development of bronchopulmonary dysplasia (BPD). The mechanical stretch leads to airway cell differentiation and simplification of the alveoli, and releases cytokines that cause systemic response in other organs. Mechanical ventilation also leads to brain injury (IVH, white and gray matter) and neuronal inflammation that can affect the neurodevelopment of preterm infants. In efforts to decrease BPD, corticosteroids have been used for both prevention and treatment of lung inflammation. Corticosteroids have also been demonstrated to cause neuronal injury, so the clinician must balance the negative effects of both mechanical ventilation and steroids on the brain and lungs. Predictive models for BPD can help assess the infants who will benefit most from corticosteroid exposure. This review describes the lung and brain injury from mechanical ventilation in the delivery room and chronic mechanical ventilation in animal models. It provides updates on the current guidelines for use of postnatal corticosteroids (dexamethasone, hydrocortisone, budesonide, budesonide with surfactant) for the prevention and treatment of BPD, and the effects the timing of each steroid regimen has on neurodevelopment.
Collapse
Affiliation(s)
- Noah H Hillman
- Division of Neonatology, SSM Health Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, MO, 63104, USA.
| | - Alan H Jobe
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
5
|
Iacobelli S, Allamèle-Moutama K, Lorrain S, Gouyon B, Gouyon JB, Bonsante F. Postnatal corticosteroid exposure in very preterm infants: A French cohort study. Front Pharmacol 2023; 14:1170842. [PMID: 37089932 PMCID: PMC10113548 DOI: 10.3389/fphar.2023.1170842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Background: Postnatal corticosteroids (PC) are widely used in very preterm infants. International reports and national multicenter trials describe a marked variability across countries and inter-sites, in the use of PC. Few information is available on therapeutic indications and prescription characteristics of PC.Aim: The main objective of this study was to describe the exposure to PC in a large cohort of preterm infants born at less than 32 weeks of gestation, according to the prescription data of 41 tertiary-care NICUs in France. Secondary objectives were to describe therapeutic indications, day of life (DOL) of the first exposure, route of administration, duration, cumulative dose for each drug, and differences in exposure rates across centers.Methods: We conducted a prospective observational cohort analysis from January 2017 to December 2021, in 41 French tertiary-care NICUs using the same computerized order-entry system.Results: In total, 13,913 infants [birth weight 1144.8 (±365.6) g] were included. Among them, 3633 (26.1%) were exposed to PC, 21.8% by systemic and 10.1% by inhaled route. Within the study population, 1,992 infants (14.3%) received the first corticosteroid treatment in the first week of life and 1641 (11.8%) after DOL 7. The more frequent indications were prevention and/or treatment of bronchopulmonary dysplasia, and arterial hypotension. Hydrocortisone was the more often prescribed molecule. For systemic PC the first exposure occurred in mean at DOL 9.4 (±13.5), mean duration of treatment was 10.3 (±14.3) days, and the cumulative dose (expressed as the equivalent dose of hydrocortisone) was in median [IQR] 9.0 [5.5–28.8] mg/kg. For inhaled PC, the first exposure occurred in mean at DOL 34.1 (±19.7), and mean duration of treatment 28.5 (±24.4) days. The exposure rate ranged from a minimum of 5% to a maximum of 56% among centers, and significantly increased over the study period (p < 0.0001).Conclusion: In this French cohort of very preterm infants, around one patient out to five was exposed to PC during hospital stay in the NICU. The exposure occurred early, starting from the first week of life. Exposure rate widely varied among centers. Pharmacoepidemiology studies are useful to increase knowledge on corticosteroid utilization patterns in preterm infants.
Collapse
Affiliation(s)
- Silvia Iacobelli
- Néonatologie, Réanimation Néonatale et Pédiatrique, CHU Saint Pierre, Saint Pierre, France
- Centre d'Etudes Périnatales de l'Océan Indien (UR 7388), Université de la Réunion, Saint Pierre, France
| | - Käliani Allamèle-Moutama
- Centre d'Etudes Périnatales de l'Océan Indien (UR 7388), Université de la Réunion, Saint Pierre, France
| | - Simon Lorrain
- Centre d'Etudes Périnatales de l'Océan Indien (UR 7388), Université de la Réunion, Saint Pierre, France
| | - Béatrice Gouyon
- Centre d'Etudes Périnatales de l'Océan Indien (UR 7388), Université de la Réunion, Saint Pierre, France
| | - Jean-Bernard Gouyon
- Centre d'Etudes Périnatales de l'Océan Indien (UR 7388), Université de la Réunion, Saint Pierre, France
| | - Francesco Bonsante
- Néonatologie, Réanimation Néonatale et Pédiatrique, CHU Saint Pierre, Saint Pierre, France
- Centre d'Etudes Périnatales de l'Océan Indien (UR 7388), Université de la Réunion, Saint Pierre, France
| |
Collapse
|
6
|
Razak A, Alhaidari OI, Ahmed J. Interventions for reducing late-onset sepsis in neonates: an umbrella review. J Perinat Med 2023; 51:403-422. [PMID: 36303465 DOI: 10.1515/jpm-2022-0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Neonatal sepsis is one of the leading causes of neonatal deaths in neonatal intensive care units. Hence, it is essential to review the evidence from systematic reviews on interventions for reducing late-onset sepsis (LOS) in neonates. METHODS PubMed and the Cochrane Central were searched from inception through August 2020 without any language restriction. Cochrane reviews of randomized clinical trials (RCTs) assessing any intervention in the neonatal period and including one or more RCTs reporting LOS. Two authors independently performed screening, data extraction, assessed the quality of evidence using Cochrane Grading of Recommendations Assessment, Development and Evaluation, and assessed the quality of reviews using a measurement tool to assess of multiple systematic reviews 2 tool. RESULTS A total of 101 high-quality Cochrane reviews involving 612 RCTs and 193,713 neonates, evaluating 141 interventions were included. High-quality evidence showed a reduction in any or culture-proven LOS using antibiotic lock therapy for neonates with central venous catheters (CVC). Moderate-quality evidence showed a decrease in any LOS with antibiotic prophylaxis or vancomycin prophylaxis for neonates with CVC, chlorhexidine for skin or cord care, and kangaroo care for low birth weight babies. Similarly, moderate-quality evidence showed reduced culture-proven LOS with intravenous immunoglobulin prophylaxis for preterm infants and probiotic supplementation for very low birth weight (VLBW) infants. Lastly, moderate-quality evidence showed a reduction in fungal LOS with the use of systemic antifungal prophylaxis in VLBW infants. CONCLUSIONS The overview summarizes the evidence from the Cochrane reviews assessing interventions for reducing LOS in neonates, and can be utilized by clinicians, researchers, policymakers, and consumers for decision-making and translating evidence into clinical practice.
Collapse
Affiliation(s)
- Abdul Razak
- Monash Newborn, Monash Children's Hospital, Department of Paediatrics, Monash University, Clayton, VIC 3168, Australia
- Division of Neonatology, Department of Pediatrics, King Abdullah Bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omar Ibrahim Alhaidari
- Division of Neonatology, Department of Pediatrics, King Abdullah Bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Pediatrics, McMaster Children's Hospital, McMaster University, ON, Canada
| | - Javed Ahmed
- Department of Pediatrics, McMaster Children's Hospital, McMaster University, ON, Canada
| |
Collapse
|
7
|
Dumpa V, Avulakunta I, Bhandari V. Respiratory management in the premature neonate. Expert Rev Respir Med 2023; 17:155-170. [PMID: 36803028 DOI: 10.1080/17476348.2023.2183843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Advances in neonatal care have made possible the increased survival of extremely preterm infants. Even though there is widespread recognition of the harmful effects of mechanical ventilation on the developing lung, its use has become imperative in the management of micro-/nano-preemies. There is an increased emphasis on the use of less-invasive approaches such as minimally invasive surfactant therapy and non-invasive ventilation that have been proven to result in improved outcomes. AREAS COVERED Here, we review the evidence-based practices surrounding the respiratory management of extremely preterm infants including delivery room interventions, invasive and non-invasive ventilation approaches, and specific ventilator strategies in respiratory distress syndrome and bronchopulmonary dysplasia. Adjuvant relevant respiratory pharmacotherapies used in preterm neonates are also discussed. EXPERT OPINION Early use of non-invasive ventilation and use of less invasive surfactant administration are key strategies in the management of respiratory distress syndrome in preterm infants. Ventilator management in bronchopulmonary dysplasia must be tailored according to the individual phenotype. There is strong evidence to start caffeine early to improve respiratory outcomes, but evidence is lacking on the use of other pharmacological agents in preterm neonates, and an individualized approach has to be considered for their use.
Collapse
Affiliation(s)
- Vikramaditya Dumpa
- Division of Neonatology, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Indirapriya Avulakunta
- Division of Neonatology, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Vineet Bhandari
- Division of Neonatology, Department of Pediatrics, Cooper Medical School of Rowan University, the Children's Regional Hospital at Cooper, Camden, NJ, USA
| |
Collapse
|
8
|
Onland W, Offringa M, van Kaam A. Late (≥ 7 days) inhaled corticosteroids to reduce bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 2022; 12:CD002311. [PMID: 36521169 PMCID: PMC9754672 DOI: 10.1002/14651858.cd002311.pub5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD), defined as oxygen dependence at 36 weeks' postmenstrual age (PMA), remains an important complication of prematurity. Pulmonary inflammation plays a central role in the pathogenesis of BPD. Attenuating pulmonary inflammation with postnatal systemic corticosteroids reduces the incidence of BPD in preterm infants but may be associated with an increased risk of adverse neurodevelopmental outcomes. Local administration of corticosteroids via inhalation may be an effective and safe alternative. OBJECTIVES To assess the benefits and harms of inhaled corticosteroids versus placebo, initiated between seven days of postnatal life and 36 weeks' postmenstrual age, to preterm infants at risk of developing bronchopulmonary dysplasia. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, CINAHL, and three trials registries to August 2022. We searched conference proceedings and the reference lists of retrieved articles for additional studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing inhaled corticosteroids to placebo, started between seven days' postnatal age (PNA) and 36 weeks' PMA, in infants at risk of BPD. We excluded trials investigating systemic corticosteroids versus inhaled corticosteroids. DATA COLLECTION AND ANALYSIS We collected data on participant characteristics, trial methodology, and inhalation regimens. The primary outcomes were mortality, BPD, or both at 36 weeks' PMA. Secondary outcomes included short-term respiratory outcomes (mortality or BPD at 28 days' PNA, failure to extubate, total days of mechanical ventilation and oxygen use, and need for systemic corticosteroids) and adverse effects. We contacted the trial authors to verify the validity of extracted data and to request missing data. We analysed all data using Review Manager 5. Where possible, we reported the results of meta-analyses using risk ratios (RRs) and risk differences (RDs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes, along with their 95% confidence intervals (CIs). We analysed ventilated and non-ventilated participants separately. We used the GRADE approach to assess the certainty of the evidence. MAIN RESULTS We included seven trials involving 218 preterm infants in this review. We identified no new eligible studies in this update. The evidence is very uncertain regarding whether inhaled corticosteroids affects the combined outcome of mortality or BPD at 36 weeks' PMA (RR 1.10, 95% CI 0.74 to 1.63; RD 0.07, 95% CI -0.21 to 0.34; 1 study, 30 infants; very low-certainty) or its separate components: mortality (RR 3.00, 95% CI 0.35 to 25.78; RD 0.07, 95% CI -0.08 to 0.21; 3 studies, 61 infants; very low-certainty) and BPD (RR 1.00, 95% CI 0.59 to 1.70; RD 0.00, 95% CI -0.31 to 0.31; 1 study, 30 infants; very low-certainty) at 36 weeks' PMA. Inhaled corticosteroids may reduce the need for systemic corticosteroids, but the evidence is very uncertain (RR 0.51, 95% CI 0.26 to 1.00; RD -0.22, 95% CI -0.42 to -0.02; number needed to treat for an additional beneficial outcome 5, 95% CI 2 to 115; 4 studies, 74 infants; very low-certainty). There was a paucity of data on short-term and long-term adverse effects. Despite a low risk of bias in the individual studies, we considered the certainty of the evidence for all comparisons discussed above to be very low, because the studies had few participants, there was substantial clinical heterogeneity between studies, and only three studies reported the primary outcome of this review. AUTHORS' CONCLUSIONS Based on the available evidence, we do not know if inhaled corticosteroids initiated from seven days of life in preterm infants at risk of developing BPD reduces mortality or BPD at 36 weeks' PMA. There is a need for larger randomised placebo-controlled trials to establish the benefits and harms of inhaled corticosteroids.
Collapse
Affiliation(s)
- Wes Onland
- Department of Neonatology, Emma Children's Hospital Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Martin Offringa
- Child Health Evaluative Sciences, Hospital for Sick Children, Toronto, Canada
| | - Anton van Kaam
- Department of Neonatology, Emma Children's Hospital Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Yao S, Uthaya S, Gale C, Modi N, Battersby C. Postnatal corticosteroid use for prevention or treatment of bronchopulmonary dysplasia in England and Wales 2012-2019: a retrospective population cohort study. BMJ Open 2022; 12:e063835. [PMID: 36396314 PMCID: PMC9676997 DOI: 10.1136/bmjopen-2022-063835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Describe the population of babies who do and do not receive postnatal corticosteroids for prevention or treatment of bronchopulmonary dysplasia (BPD). DESIGN Retrospective cohort study using data held in the National Neonatal Research Database. SETTING National Health Service neonatal units in England and Wales. PATIENTS Babies born less than 32 weeks gestation and admitted to neonatal units from 1 January 2012 to 31 December 2019. MAIN OUTCOMES Proportion of babies given postnatal corticosteroid; type of corticosteroid; age at initiation and duration, trends over time. SECONDARY OUTCOMES Survival to discharge, treatment for retinopathy of prematurity, BPD, brain injury, severe necrotising enterocolitis, gastrointestinal perforation. RESULTS 8% (4713/62019) of babies born <32 weeks and 26% (3525/13527) born <27 weeks received postnatal corticosteroids for BPD. Dexamethasone was predominantly used 5.3% (3309/62019), followed by late hydrocortisone 1.5%, inhaled budesonide 1.5%. prednisolone 0.8%, early hydrocortisone 0.3% and methylprednisolone 0.05%. Dexamethasone use increased over time (2012: 4.5 vs 2019: 5.8%, p=0.04). Median postnatal age of initiation of corticosteroid course was around 3 weeks for late hydrocortisone, 4 weeks for dexamethasone, 6 weeks for inhaled budesonide, 12 weeks for prednisolone and 16 weeks for methylprednisolone. Babies who received postnatal corticosteroids were born more prematurely, had a higher incidence of comorbidities and a longer length of stay. CONCLUSIONS In England and Wales, around 1 in 12 babies born less than 32 weeks and 1 in 4 born less than 27 weeks receive postnatal corticosteroids to prevent or treat BPD. Given the lack of convincing evidence of efficacy, challenges of recruiting to and length of time taken to conduct randomised controlled trial, our data highlight the need to monitor long-term outcomes in children who received neonatal postnatal corticosteroids.
Collapse
Affiliation(s)
- Sijia Yao
- Neonatal Medicine, Imperial College London, London, UK
| | - Sabita Uthaya
- Neonatal Medicine, School of Public Health, Imperial College London, London, UK
| | - Chris Gale
- Neonatal Medicine, School of Public Health, Imperial College London, London, UK
| | - Neena Modi
- Neonatal Medicine, School of Public Health, Imperial College London, London, UK
| | - Cheryl Battersby
- Neonatal Medicine, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
10
|
Abiramalatha T, Ramaswamy VV, Bandyopadhyay T, Somanath SH, Shaik NB, Pullattayil AK, Weiner GM. Interventions to Prevent Bronchopulmonary Dysplasia in Preterm Neonates: An Umbrella Review of Systematic Reviews and Meta-analyses. JAMA Pediatr 2022; 176:502-516. [PMID: 35226067 DOI: 10.1001/jamapediatrics.2021.6619] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IMPORTANCE Bronchopulmonary dysplasia (BPD) has multifactorial etiology and long-term adverse consequences. An umbrella review enables the evaluation of multiple proposed interventions for the prevention of BPD. OBJECTIVE To summarize and assess the certainty of evidence of interventions proposed to decrease the risk of BPD from published systematic reviews. DATA SOURCES MEDLINE, Cochrane Central Register of Controlled Trials, EMBASE, and Web of Science were searched from inception until November 9, 2020. STUDY SELECTION Meta-analyses of randomized clinical trials comparing interventions in preterm neonates that included BPD as an outcome. DATA EXTRACTION AND SYNTHESIS Data extraction was performed in duplicate. Quality of systematic reviews was evaluated using Assessment of Multiple Systematic Reviews version 2, and certainty of evidence was assessed using Grading of Recommendation, Assessment, Development, and Evaluation. MAIN OUTCOMES AND MEASURES (1) BPD or mortality at 36 weeks' postmenstrual age (PMA) and (2) BPD at 36 weeks' PMA. RESULTS A total of 154 systematic reviews evaluating 251 comparisons were included, of which 110 (71.4%) were high-quality systematic reviews. High certainty of evidence from high-quality systematic reviews indicated that delivery room continuous positive airway pressure compared with intubation with or without routine surfactant (relative risk [RR], 0.80 [95% CI, 0.68-0.94]), early selective surfactant compared with delayed selective surfactant (RR, 0.83 [95% CI, 0.75-0.91]), early inhaled corticosteroids (RR, 0.86 [95% CI, 0.75-0.99]), early systemic hydrocortisone (RR, 0.90 [95% CI, 0.82-0.99]), avoiding endotracheal tube placement with delivery room continuous positive airway pressure and use of less invasive surfactant administration (RR, 0.90 [95% CI, 0.82-0.99]), and volume-targeted compared with pressure-limited ventilation (RR, 0.73 [95% CI, 0.59-0.89]) were associated with decreased risk of BPD or mortality at 36 weeks' PMA. Moderate to high certainty of evidence showed that inhaled nitric oxide, lower saturation targets (85%-89%), and vitamin A supplementation are associated with decreased risk of BPD at 36 weeks' PMA but not the competing outcome of BPD or mortality, indicating they may be associated with increased mortality. CONCLUSIONS AND RELEVANCE A multipronged approach of delivery room continuous positive airway pressure, early selective surfactant administration with less invasive surfactant administration, early hydrocortisone prophylaxis in high-risk neonates, inhaled corticosteroids, and volume-targeted ventilation for preterm neonates requiring invasive ventilation may decrease the combined risk of BPD or mortality at 36 weeks' PMA.
Collapse
Affiliation(s)
- Thangaraj Abiramalatha
- Department of Neonatology, Kovai Medical Center and Hospital (KMCH) & KMCH Institute of Health Sciences and Research, Coimbatore, India
| | | | - Tapas Bandyopadhyay
- Department of Neonatology, Dr Ram Manohar Lohia Hospital & Post Graduate Institute of Medical Education and Research, New Delhi, India
| | | | | | | | - Gary M Weiner
- Department of Pediatrics-Neonatology, University of Michigan, Ann Arbor
| |
Collapse
|
11
|
Sakaria RP, Dhanireddy R. Pharmacotherapy in Bronchopulmonary Dysplasia: What Is the Evidence? Front Pediatr 2022; 10:820259. [PMID: 35356441 PMCID: PMC8959440 DOI: 10.3389/fped.2022.820259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary Dysplasia (BPD) is a multifactorial disease affecting over 35% of extremely preterm infants born each year. Despite the advances made in understanding the pathogenesis of this disease over the last five decades, BPD remains one of the major causes of morbidity and mortality in this population, and the incidence of the disease increases with decreasing gestational age. As inflammation is one of the key drivers in the pathogenesis, it has been targeted by majority of pharmacological and non-pharmacological methods to prevent BPD. Most extremely premature infants receive a myriad of medications during their stay in the neonatal intensive care unit in an effort to prevent or manage BPD, with corticosteroids, caffeine, and diuretics being the most commonly used medications. However, there is no consensus regarding their use and benefits in this population. This review summarizes the available literature regarding these medications and aims to provide neonatologists and neonatal providers with evidence-based recommendations.
Collapse
Affiliation(s)
- Rishika P. Sakaria
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramasubbareddy Dhanireddy
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
12
|
Naples R, Ramaiah S, Rankin J, Berrington J, Harigopal S. Life-threatening bronchopulmonary dysplasia: a British Paediatric Surveillance Unit Study. Arch Dis Child Fetal Neonatal Ed 2022; 107:13-19. [PMID: 34183433 PMCID: PMC8685630 DOI: 10.1136/archdischild-2021-322001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022]
Abstract
OBJECTIVES To assess the minimum incidence of life-threatening bronchopulmonary dysplasia (BPD), defined as need for positive pressure respiratory support or pulmonary vasodilators at 38 weeks corrected gestational age (CGA), in infants born <32 weeks gestation in the UK and Ireland; and to describe patient characteristics, management and outcomes to 1 year. METHODS Prospective national surveillance study performed via the British Paediatric Surveillance Unit from June 2017 to July 2018. Data were collected in a series of three questionnaires from notification to 1 year of age. RESULTS 153 notifications met the case definition, giving a minimum incidence of 13.9 (95% CI: 11.8 to 16.3) per 1000 live births <32 weeks' gestation. Median gestation was 26.1 (IQR 24.6-28) weeks, and birth weight 730 g (IQR 620-910 g). More affected infants were male (95 of 153, 62%; p<0.05). Detailed management and outcome data were provided for 94 infants. Fifteen died at median age 159 days (IQR 105-182) or 49.6 weeks CGA (IQR 43-53). Median age last receiving invasive ventilation was 50 days (IQR 22-98) and total duration of pressure support for surviving infants 103 (IQR 87-134) days. Fifty-seven (60.6%) received postnatal steroids and 22 (23.4%) pulmonary vasodilators. Death (16%) and/or major neurodevelopmental impairment (37.3%) or long-term ventilation (23.4%) were significantly associated with need for invasive ventilation near term and pulmonary hypertension. CONCLUSIONS This definition of life-threatening BPD identified an extremely high-risk subgroup, associated with serious morbidity and mortality. Wide variability in management was demonstrated, and future prospective study, particularly in key areas of postnatal steroid use and pulmonary hypertension management, is required.
Collapse
Affiliation(s)
- Rebecca Naples
- Neonatology, Royal Victoria Infirmary, Newcastle upon Tyne, UK,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sridhar Ramaiah
- Neonatology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Judith Rankin
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Janet Berrington
- Neonatology, Royal Victoria Infirmary, Newcastle upon Tyne, UK,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
13
|
Rocha G. Inhaled Pharmacotherapy for Neonates: A Narrative Review. Turk Arch Pediatr 2022; 57:5-17. [PMID: 35110073 PMCID: PMC8867519 DOI: 10.5152/turkarchpediatr.2021.21125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022]
Abstract
The inhaled route for drug administration in neonates offers several advantages over the systemic routes, since it delivers medications directly to the diseased organ, enabling higher doses locally with less systemic toxicity. Respiratory drugs can be administered in both ventilated and non-ventilated term and preterm infants. This review was carried out using selected literature, with a focus on the most used inhaled pharmacological agents in neonatal care, summarizing, with levels of evidence (LoE), their indications, doses, administration schedules, and main adverse effects. Information is given on several inhaled drugs, namely albuterol, budesonide, ipratropium bromide, sodium cromoglycate, racemic epinephrine, nitric oxide, treprostinil, iloprost, epoprostenol, colistin, rhDNase, hypertonic saline, and calfactant. A summary of the main and most recent published studies on each of these inhaled pharmacological agents is also presented.
Collapse
Affiliation(s)
- Gustavo Rocha
- Department of Neonatology, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
14
|
Doyle LW, Cheong JL, Hay S, Manley BJ, Halliday HL. Late (≥ 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 2021; 11:CD001145. [PMID: 34758507 PMCID: PMC8580679 DOI: 10.1002/14651858.cd001145.pub5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Many infants born preterm develop bronchopulmonary dysplasia (BPD), with lung inflammation playing a role. Corticosteroids have powerful anti-inflammatory effects and have been used to treat individuals with established BPD. However, it is unclear whether any beneficial effects outweigh the adverse effects of these drugs. OBJECTIVES To examine the relative benefits and adverse effects of late (starting at seven or more days after birth) systemic postnatal corticosteroid treatment for preterm infants with evolving or established BPD. SEARCH METHODS We ran an updated search on 25 September 2020 of the following databases: CENTRAL via CRS Web and MEDLINE via OVID. We also searched clinical trials databases and reference lists of retrieved articles for randomised controlled trials (RCTs). We did not include quasi-RCTs. SELECTION CRITERIA We selected for inclusion in this review RCTs comparing systemic (intravenous or oral) postnatal corticosteroid treatment versus placebo or no treatment started at seven or more days after birth for preterm infants with evolving or established BPD. We did not include trials of inhaled corticosteroids. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. We extracted and analysed data regarding clinical outcomes that included mortality, BPD, and cerebral palsy. We used the GRADE approach to assess the certainty of evidence. MAIN RESULTS Use of the GRADE approach revealed that the certainty of evidence was high for most of the major outcomes considered, except for BPD at 36 weeks for all studies combined and for the dexamethasone subgroup, which were downgraded one level to moderate because of evidence of publication bias, and for the combined outcome of mortality or BPD at 36 weeks for all studies combined and for the dexamethasone subgroup, which were downgraded one level to moderate because of evidence of substantial heterogeneity. We included 23 RCTs (1817 infants); 21 RCTS (1382 infants) involved dexamethasone (one also included hydrocortisone) and two RCTs (435 infants) involved hydrocortisone only. The overall risk of bias of included studies was low; all were RCTs and most trials used rigorous methods. Late systemic corticosteroids overall reduce mortality to the latest reported age (risk ratio (RR) 0.81, 95% confidence interval (CI) 0.66 to 0.99; 21 studies, 1428 infants; high-certainty evidence). Within the subgroups by drug, neither dexamethasone (RR 0.85, 95% CI 0.66 to 1.11; 19 studies, 993 infants; high-certainty evidence) nor hydrocortisone (RR 0.74, 95% CI 0.54 to 1.02; 2 studies, 435 infants; high-certainty evidence) alone clearly reduce mortality to the latest reported age. We found little evidence for statistical heterogeneity between the dexamethasone and hydrocortisone subgroups (P = 0.51 for subgroup interaction). Late systemic corticosteroids overall probably reduce BPD at 36 weeks' postmenstrual age (PMA) (RR 0.89, 95% CI 0.80 to 0.99; 14 studies, 988 infants; moderate-certainty evidence). Dexamethasone probably reduces BPD at 36 weeks' PMA (RR 0.76, 95% CI 0.66 to 0.87; 12 studies, 553 infants; moderate-certainty evidence), but hydrocortisone does not (RR 1.10, 95% CI 0.92 to 1.31; 2 studies, 435 infants; high-certainty evidence) (P < 0.001 for subgroup interaction). Late systemic corticosteroids overall probably reduce the combined outcome of mortality or BPD at 36 weeks' PMA (RR 0.85, 95% CI 0.79 to 0.92; 14 studies, 988 infants; moderate-certainty evidence). Dexamethasone probably reduces the combined outcome of mortality or BPD at 36 weeks' PMA (RR 0.75, 95% CI 0.67 to 0.84; 12 studies, 553 infants; moderate-certainty evidence), but hydrocortisone does not (RR 0.98, 95% CI 0.88 to 1.09; 2 studies, 435 infants; high-certainty evidence) (P < 0.001 for subgroup interaction). Late systemic corticosteroids overall have little to no effect on cerebral palsy (RR 1.17, 95% CI 0.84 to 1.61; 17 studies, 1290 infants; high-certainty evidence). We found little evidence for statistical heterogeneity between the dexamethasone and hydrocortisone subgroups (P = 0.63 for subgroup interaction). Late systemic corticosteroids overall have little to no effect on the combined outcome of mortality or cerebral palsy (RR 0.90, 95% CI 0.76 to 1.06; 17 studies, 1290 infants; high-certainty evidence). We found little evidence for statistical heterogeneity between the dexamethasone and hydrocortisone subgroups (P = 0.42 for subgroup interaction). Studies had few participants who were not intubated at enrolment; hence, it is not possible to make any meaningful comments on the effectiveness of late corticosteroids in preventing BPD in non-intubated infants, including those who might in the present day be supported by non-invasive techniques such as nasal continuous positive airway pressure or high-flow nasal cannula oxygen/air mixture, but who might still be at high risk of later BPD. Results of two ongoing studies are awaited. AUTHORS' CONCLUSIONS Late systemic postnatal corticosteroid treatment (started at seven days or more after birth) reduces the risks of mortality and BPD, and the combined outcome of mortality or BPD, without evidence of increased cerebral palsy. However, the methodological quality of studies determining long-term outcomes is limited, and no studies were powered to detect increased rates of important adverse long-term neurodevelopmental outcomes. This review supports the use of late systemic corticosteroids for infants who cannot be weaned from mechanical ventilation. The role of late systemic corticosteroids for infants who are not intubated is unclear and needs further investigation. Longer-term follow-up into late childhood is vital for assessment of important outcomes that cannot be assessed in early childhood, such as effects of late systemic corticosteroid treatment on higher-order neurological functions, including cognitive function, executive function, academic performance, behaviour, mental health, motor function, and lung function. Further RCTs of late systemic corticosteroids should include longer-term survival free of neurodevelopmental disability as the primary outcome.
Collapse
Affiliation(s)
- Lex W Doyle
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Australia
| | - Jeanie L Cheong
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Australia
| | - Susanne Hay
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Brett J Manley
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Australia
| | - Henry L Halliday
- Retired Honorary Professor of Child Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
15
|
Doyle LW, Cheong JL, Hay S, Manley BJ, Halliday HL. Early (< 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 2021; 10:CD001146. [PMID: 34674229 PMCID: PMC8530019 DOI: 10.1002/14651858.cd001146.pub6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) remains a major problem for infants born extremely preterm. Persistent inflammation in the lungs is important in its pathogenesis. Systemic corticosteroids have been used to prevent or treat BPD because of their potent anti-inflammatory effects. OBJECTIVES To examine the relative benefits and adverse effects of systemic postnatal corticosteroids commenced within the first six days after birth for preterm infants at risk of developing BPD. SEARCH METHODS We ran an updated search of the following databases on 25 September 2020: CENTRAL via CRS Web and MEDLINE via OVID. We also searched clinical trials databases and reference lists of retrieved articles for randomised controlled trials (RCTs). We did not include cluster randomised trials, cross-over trials, or quasi-RCTs. SELECTION CRITERIA For this review, we selected RCTs examining systemic (intravenous or oral) postnatal corticosteroid treatment started within the first six days after birth (early) in high-risk preterm infants. We included studies that evaluated the use of dexamethasone, as well as studies that assessed hydrocortisone, even when the latter was used primarily for management of hypotension, rather than for treatment of lung problems. We did not include trials of inhaled corticosteroids. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. We extracted and analysed data regarding clinical outcomes that included mortality, BPD, mortality or BPD, failure to extubate, complications during the primary hospitalisation, and long-term health and neurodevelopmental outcomes. We used the GRADE approach to assess the certainty of evidence. MAIN RESULTS Use of the GRADE approach revealed that the certainty of evidence was high for the major outcomes considered, except for BPD at 36 weeks for all studies combined, which was downgraded one level to moderate because of evidence of publication bias. We included 32 RCTs (4395 infants). The overall risk of bias of included studies was low; all were RCTs, and most trials used rigorous methods. Early systemic corticosteroids overall have little or no effect on mortality to the latest reported age (risk ratio (RR) 0.95, 95% confidence interval (CI) 0.85 to 1.06; 31 studies, 4373 infants; high-certainty evidence), but hydrocortisone alone reduces mortality (RR 0.80, 95% CI 0.65 to 0.99; 11 studies, 1433 infants; high-certainty evidence). Early systemic corticosteroids overall probably reduce BPD at 36 weeks' postmenstrual age (PMA) (RR 0.80, 95% CI 0.73 to 0.88; 26 studies, 4167 infants; moderate-certainty evidence), as does dexamethasone (RR 0.72, 95% CI 0.63 to 0.82; 17 studies, 2791 infants; high-certainty evidence), but hydrocortisone has little to no effect (RR 0.92, 95% CI 0.81 to 1.06; 9 studies, 1376 infants; high-certainty evidence). Early systemic corticosteroids overall reduce the combined outcome of mortality or BPD at 36 weeks' PMA (RR 0.89, 95% CI 0.84 to 0.94; 26 studies, 4167 infants; high-certainty evidence), as do both dexamethasone (RR 0.88, 95% CI 0.81 to 0.95; 17 studies, 2791 infants; high-certainty evidence) and hydrocortisone (RR 0.90, 95% CI 0.82 to 0.99; 9 studies, 1376 infants; high-certainty evidence). Early systemic corticosteroids overall increase gastrointestinal perforation (RR 1.84, 95% CI 1.36 to 2.49; 16 studies, 3040 infants; high-certainty evidence), as do both dexamethasone (RR 1.73, 95% CI 1.20 to 2.51; 9 studies, 1936 infants; high-certainty evidence) and hydrocortisone (RR 2.05, 95% CI 1.21 to 3.47; 7 studies, 1104 infants; high-certainty evidence). Early systemic corticosteroids overall increase cerebral palsy (RR 1.43, 95% CI 1.07 to 1.92; 13 studies, 1973 infants; high-certainty evidence), as does dexamethasone (RR 1.77, 95% CI 1.21 to 2.58; 7 studies, 921 infants; high-certainty evidence) but not hydrocortisone (RR 1.05, 95% CI 0.66 to 1.66; 6 studies, 1052 infants; high-certainty evidence). Early systemic corticosteroids overall have little to no effect on the combined outcome of mortality or cerebral palsy (RR 1.03, 95% CI 0.91 to 1.16; 13 studies, 1973 infants; high-certainty evidence), nor does hydrocortisone (RR 0.86, 95% CI 0.71 to 1.05; 6 studies, 1052 infants; high-certainty evidence). However, early dexamethasone probably increases the combined outcome of mortality or cerebral palsy (RR 1.18, 95% CI 1.01 to 1.37; 7 studies, 921 infants; high-certainty evidence), In sensitivity analyses by primary intention for treatment with hydrocortisone (lung problems versus hypotension), there was little evidence of differences in effects on major outcomes of mortality, BPD, or combined mortality or BPD, by indication for the drug. AUTHORS' CONCLUSIONS Early systemic postnatal corticosteroid treatment (started during the first six days after birth) prevents BPD and the combined outcome of mortality or BPD. However, it increases risks of gastrointestinal perforation, cerebral palsy, and the combined outcome of mortality or cerebral palsy. Most beneficial and harmful effects are related to early treatment with dexamethasone, rather than to early treatment with hydrocortisone, but early hydrocortisone may prevent mortality, whereas early dexamethasone does not. Longer-term follow-up into late childhood is vital for assessment of important outcomes that cannot be assessed in early childhood, such as effects of early corticosteroid treatment on higher-order neurological functions, including cognitive function, executive function, academic performance, behaviour, mental health, motor function, and lung function. Further RCTs of early corticosteroids, particularly of hydrocortisone, should include longer-term survival free of neurodevelopmental disability as the primary outcome.
Collapse
Affiliation(s)
- Lex W Doyle
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Australia
| | - Jeanie L Cheong
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Australia
| | - Susanne Hay
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Brett J Manley
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Australia
| | - Henry L Halliday
- Retired Honorary Professor of Child Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
16
|
Wickramasinghe LC, van Wijngaarden P, Tsantikos E, Hibbs ML. The immunological link between neonatal lung and eye disease. Clin Transl Immunology 2021; 10:e1322. [PMID: 34466225 PMCID: PMC8387470 DOI: 10.1002/cti2.1322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/02/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are two neonatal diseases of major clinical importance, arising in large part as a consequence of supplemental oxygen therapy used to promote the survival of preterm infants. The presence of coincident inflammation in the lungs and eyes of neonates receiving oxygen therapy indicates that a dysregulated immune response serves as a potential common pathogenic factor for both diseases. This review examines the current state of knowledge of immunological dysregulation in BPD and ROP, identifying similarities in the cellular subsets and inflammatory cytokines that are found in the alveoli and retina during the active phase of these diseases, indicating possible mechanistic overlap. In addition, we highlight gaps in the understanding of whether these responses emerge independently in the lung and retina as a consequence of oxygen exposure or arise because of inflammatory spill-over from the lung. As BPD and ROP are anatomically distinct, they are often considered discreet disease entities and are therefore treated separately. We propose that an improved understanding of the relationship between BPD and ROP is key to the identification of novel therapeutic targets to treat or prevent both conditions simultaneously.
Collapse
Affiliation(s)
- Lakshanie C Wickramasinghe
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Peter van Wijngaarden
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVICAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalEast MelbourneVICAustralia
| | - Evelyn Tsantikos
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Margaret L Hibbs
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| |
Collapse
|
17
|
Ramaswamy VV, Bandyopadhyay T, Nanda D, Bandiya P, Ahmed J, Garg A, Roehr CC, Nangia S. Assessment of Postnatal Corticosteroids for the Prevention of Bronchopulmonary Dysplasia in Preterm Neonates: A Systematic Review and Network Meta-analysis. JAMA Pediatr 2021; 175:e206826. [PMID: 33720274 PMCID: PMC7961472 DOI: 10.1001/jamapediatrics.2020.6826] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
IMPORTANCE The safety of postnatal corticosteroids used for prevention of bronchopulmonary dysplasia (BPD) in preterm neonates is a controversial matter, and a risk-benefit balance needs to be struck. OBJECTIVE To evaluate 14 corticosteroid regimens used to prevent BPD: moderately early-initiated, low cumulative dose of systemic dexamethasone (MoLdDX); moderately early-initiated, medium cumulative dose of systemic dexamethasone (MoMdDX); moderately early-initiated, high cumulative dose of systemic dexamethasone (MoHdDX); late-initiated, low cumulative dose of systemic dexamethasone (LaLdDX); late-initiated, medium cumulative dose of systemic dexamethasone (LaMdDX); late-initiated, high cumulative dose of systemic dexamethasone (LaHdDX); early-initiated systemic hydrocortisone (EHC); late-initiated systemic hydrocortisone (LHC); early-initiated inhaled budesonide (EIBUD); early-initiated inhaled beclomethasone (EIBEC); early-initiated inhaled fluticasone (EIFLUT); late-initiated inhaled budesonide (LIBUD); late-initiated inhaled beclomethasone (LIBEC); and intratracheal budesonide (ITBUD). DATA SOURCES PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Embase, World Health Organization's International Clinical Trials Registry Platform (ICTRP), and CINAHL were searched from inception through August 25, 2020. STUDY SELECTION In this systematic review and network meta-analysis, the randomized clinical trials selected included preterm neonates with a gestational age of 32 weeks or younger and for whom a corticosteroid regimen was initiated within 4 weeks of postnatal age. Peer-reviewed articles and abstracts in all languages were included. DATA EXTRACTION AND SYNTHESIS Two independent authors extracted data in duplicate. Network meta-analysis used a bayesian model. MAIN OUTCOMES AND MEASURES Primary combined outcome was BPD, defined as oxygen requirement at 36 weeks' postmenstrual age (PMA), or mortality at 36 weeks' PMA. The secondary outcomes included 15 safety outcomes. RESULTS A total of 62 studies involving 5559 neonates (mean [SD] gestational age, 26 [1] weeks) were included. Several regimens were associated with a decreased risk of BPD or mortality, including EHC (risk ratio [RR], 0.82; 95% credible interval [CrI], 0.68-0.97); EIFLUT (RR, 0.75; 95% CrI, 0.55-0.98); LaHdDX (RR, 0.70; 95% CrI, 0.54-0.87); MoHdDX (RR, 0.64; 95% CrI, 0.48-0.82); ITBUD (RR, 0.73; 95% CrI, 0.57-0.91); and MoMdDX (RR, 0.61; 95% CrI, 0.45-0.79). Surface under the cumulative ranking curve (SUCRA) value ranking showed that MoMdDX (SUCRA, 0.91), MoHdDX (SUCRA, 0.86), and LaHdDX (SUCRA, 0.76) were the 3 most beneficial interventions. ITBUD (RR, 4.36; 95% CrI, 1.04-12.90); LaHdDX (RR, 11.91; 95% CrI, 1.64-44.49); LaLdDX (RR, 6.33; 95% CrI, 1.62-18.56); MoHdDX (RR, 4.96; 95% CrI, 1.14-14.75); and MoMdDX (RR, 3.16; 95% CrI, 1.35-6.82) were associated with more successful extubation from invasive mechanical ventilation. EHC was associated with a higher risk of gastrointestinal perforation (RR, 2.77; 95% CrI, 1.09-9.32). MoMdDX showed a higher risk of hypertension (RR, 3.96; 95% CrI, 1.10-30.91). MoHdDX had a higher risk of hypertrophic cardiomyopathy (RR, 5.94; 95% CrI, 1.95-18.11). CONCLUSIONS AND RELEVANCE This study suggested that MoMdDX may be the most appropriate postnatal corticosteroid regimen for preventing BPD or mortality at a PMA of 36 weeks, albeit with a risk of hypertension. The quality of evidence was low.
Collapse
Affiliation(s)
- Viraraghavan Vadakkencherry Ramaswamy
- Newborn Services, John Radcliffe Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom,Ankura Hospital for Women and Children, Hyderabad, India
| | - Tapas Bandyopadhyay
- Department of Neonatology, Dr Ram Manohar Lohia Hospital and Post Graduate Institute of Medical Education and Research, New Delhi, India
| | - Debasish Nanda
- Department of Neonatology, Institute of Medical Sciences and SUM Hospital, Orissa, India
| | - Prathik Bandiya
- Department of Neonatology, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Javed Ahmed
- Women’s Wellness and Research Centre, Hamad Medical Corporation, Doha, Qatar
| | - Anip Garg
- Department of Neonatology, James Cook University Hospital, Middlesbrough, United Kingdom
| | - Charles C. Roehr
- Newborn Services, John Radcliffe Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom,National Perinatal Epidemiology Unit, Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Sushma Nangia
- Department of Neonatology, Lady Hardinge Medical College, New Delhi, India
| |
Collapse
|
18
|
Zhu H, Tian Y, Cheng H, Zheng Y, Wang W, Bao T, Wu R, Tian Z. A clinical study on plasma biomarkers for deciding the use of adjuvant corticosteroid therapy in bronchopulmonary dysplasia of premature infants. Int J Med Sci 2021; 18:2581-2588. [PMID: 34104089 PMCID: PMC8176188 DOI: 10.7150/ijms.58650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
Objective: The study was designed to investigate some plasma markers which help us to decide the use of adjuvant corticosteroid therapy in bronchopulmonary dysplasia (BPD) of premature infants. Methods: Thirty BPD infants were treated by dexamethasone. Among these cases, dexamethasone was significant effective in 10 cases, and no significant effective in 20 cases. These patients were divided into two groups as the significant effect (SE) group (n=10) and the non-significant effect (NE) group (n=20) according to the curative effect of dexamethasone. Fifteen non-BPD infants with gestational age and gender matching were selected as the control group. Plasma samples before and after dexamethasone treatment were collected from three infants chosen randomly from SEG for the data-independent acquisition (DIA) analysis. ELISA was further used to detect the levels of differential proteins LRP1 and S100A8 in all individuals, including SE, NE and control groups. Results: DIA analysis results showed that after dexamethasone treatment, there were a total of 52 plasma proteins that showed significant differences, of which 43 proteins were down-regulated and 9 proteins were up-regulated. LRP1 and S100A8 were two plasma proteins that were significantly changed after dexamethasone treatment. Compared with the control group, plasma LRP1 was significantly increased in BPD. Interestingly, the plasma concentration of LRP1 in the NE group was significantly higher than that in the SE group. S100A8, as an indicator of plasma inflammation, was significantly higher in BPD than the control group. Unlike LRP1, there was no significantly difference between the SE and NE group (P=0.279) before dexamethasone treatment. Conclusion: Elevated plasma LRP1 and S100A8 in BPD infants are two indicators that correlated with the efficacy of dexamethasone, and might be used as biomarkers for deciding the use of adjuvant corticosteroids therapy in the BPD.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yian Tian
- University of Barcelona, TPM-DTI, Barcelona, Catalunya, Spain
| | - Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yafei Zheng
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Wei Wang
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Rong Wu
- Neonatal Medical Center, Huai'an Maternity and Child Healthcare Hospital, Yangzhou University Medical College, Huai'an, Jiangsu, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
19
|
Harris C, Bisquera A, Zivanovic S, Lunt A, Calvert S, Marlow N, Peacock JL, Greenough A. Postnatal dexamethasone exposure and lung function in adolescents born very prematurely. PLoS One 2020; 15:e0237080. [PMID: 32764779 PMCID: PMC7413559 DOI: 10.1371/journal.pone.0237080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/19/2020] [Indexed: 12/22/2022] Open
Abstract
We previously demonstrated corticosteroid administration on the neonatal intensive care unit was associated with reduced lung function at 11 to 14 years of age in children born very prematurely. The objective of this observational study was to assess if lung function remained impaired at 16 to 19 years of age in those who had received postnatal corticosteroids and whether the trajectory of lung function with increasing age differed between those who had and had not received corticosteroids. One hundred and fifty-nine children born prior to 29 weeks of gestational age had comprehensive lung function measurements; 49 had received postnatal dexamethasone. Lung function outcomes were compared between those who had and had not received postnatal dexamethasone after adjustment for neonatal factors. Forced expiratory flow at 75%, 50%, 25% and 25-75% of the expired vital capacity, forced expiratory volume in one second, peak expiratory flow and forced vital capacity and lung volumes (total lung capacity and residual volume) were assessed. The majority of results were significantly lower in those who received dexamethasone (between 0.61 to 0.78 standard deviations). Lung function reduced as the number of courses of dexamethasone increased. Between 11 and 14 years and 16 to 19 years, lung function improved in the unexposed group, but forced expiratory flow at 75% of the expired vital capacity and forced expiratory volume in one second deteriorated in those who had received postnatal corticosteroids (p = 0.0006). These results suggest that prematurely born young people who received postnatal corticosteroids may be at risk of premature onset of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Christopher Harris
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Asthma UK Centre for Allergic Mechanisms in Asthma, King’s College London, London, United Kingdom
| | - Alessandra Bisquera
- School of Population Health and Environmental Sciences, King’s College London, London, United Kingdom
| | - Sanja Zivanovic
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Asthma UK Centre for Allergic Mechanisms in Asthma, King’s College London, London, United Kingdom
| | - Alan Lunt
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Asthma UK Centre for Allergic Mechanisms in Asthma, King’s College London, London, United Kingdom
| | - Sandy Calvert
- Department of Child Health, St George's Hospital, London, United Kingdom
| | - Neil Marlow
- EGA Institute for Women’s Health, Faculty of Population Health Sciences, University College London, United Kingdom
| | - Janet L. Peacock
- School of Population Health and Environmental Sciences, King’s College London, London, United Kingdom
- NIHR Biomedical Centre at Guy’s and St Thomas NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Anne Greenough
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Asthma UK Centre for Allergic Mechanisms in Asthma, King’s College London, London, United Kingdom
- NIHR Biomedical Centre at Guy’s and St Thomas NHS Foundation Trust and King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Lemyre B, Dunn M, Thebaud B. Postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia in preterm infants. Paediatr Child Health 2020; 25:322-331. [PMID: 32765169 DOI: 10.1093/pch/pxaa073] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 05/23/2019] [Indexed: 12/23/2022] Open
Abstract
Historically, postnatal corticosteroids have been used to prevent and treat bronchopulmonary dysplasia (BPD), a significant cause of morbidity and mortality in preterm infants. Administering dexamethasone to prevent BPD in the first 7 days post-birth has been associated with increasing risk for cerebral palsy, while early inhaled corticosteroids appear to be associated with an increased risk of mortality. Neither medication is presently recommended to prevent BPD. New evidence suggests that prophylactic hydrocortisone, when initiated in the first 48 hours post-birth, at a physiological dose, and in the absence of indomethacin, improves survival without BPD, with no adverse neurodevelopmental effects at 2 years. This therapy may be considered by clinicians for infants at highest risk for BPD. Routine dexamethasone therapy for all ventilator-dependent infants is not recommended, but after the first week post-birth, clinicians may consider a short course of low-dose dexamethasone (0.15 mg/kg/day to 0.2 mg/kg/day) for individual infants at high risk for, or with evolving, BPD. There is no evidence that hydrocortisone is an effective or safe alternative to dexamethasone for treating evolving or established BPD. Current evidence does not support inhaled corticosteroids for the treatment of BPD.
Collapse
Affiliation(s)
- Brigitte Lemyre
- Canadian Paediatric Society, Fetus and Newborn Committee, Ottawa, Ontario
| | - Michael Dunn
- Canadian Paediatric Society, Fetus and Newborn Committee, Ottawa, Ontario
| | - Bernard Thebaud
- Canadian Paediatric Society, Fetus and Newborn Committee, Ottawa, Ontario
| |
Collapse
|
21
|
Surfactant replacement therapy: from biological basis to current clinical practice. Pediatr Res 2020; 88:176-183. [PMID: 31926483 PMCID: PMC7223236 DOI: 10.1038/s41390-020-0750-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023]
Abstract
This review summarizes the current knowledge on the physiological action of endogenous and exogenous pulmonary surfactant, the role of different types of animal-derived and synthetic surfactants for RDS therapy, different modes of administration, potential risks and strategies of ventilation, and highlights the most promising aims for future development. Scientists have clarified the physicochemical properties and functions of the different components of surfactant, and part of this successful research is derived from the characterization of genetic diseases affecting surfactant composition or function. Knowledge from functional tests of surfactant action, its immunochemistry, kinetics and homeostasis are important also for improving therapy with animal-derived surfactant preparations and for the development of modified surfactants. In the past decade newly designed artificial surfactants and additives have gained much attention and have proven different advantages, but their particular role still has to be defined. For clinical practice, alternative administration techniques as well as postsurfactant ventilation modes, taking into account alterations in lung mechanics after surfactant placement, may be important in optimizing the potential of this most important drug in neonatology.
Collapse
|
22
|
Sung TJ. Bronchopulmonary dysplasia: how can we improve its outcomes? KOREAN JOURNAL OF PEDIATRICS 2019; 62:367-373. [PMID: 31122011 PMCID: PMC6801196 DOI: 10.3345/kjp.2019.00178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/17/2019] [Indexed: 01/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of preterm infants with multiple factors affected from prenatal to postnatal periods. Despite significant advances in neonatal care over almost 50 years, BPD rates have not decreased; in fact, they may have even increased. Since more preterm infants, even at periviable gestational age, survive today, different stages of lung development affect the pathogenesis of BPD. Hence, the definition of BPD has changed from “old” to “new.” In this review, we discuss the various definitions of BPD, risk factors from the prenatal to postnatal periods, management strategies by phase, and future directions for research.
Collapse
Affiliation(s)
- Tae-Jung Sung
- Department of Pediatrics, Hallym University Medical Center, Seoul, Korea
| |
Collapse
|
23
|
|
24
|
Montigaud Y, Périnel S, Dubus JC, Leclerc L, Suau M, Goy C, Clotagatide A, Prévôt N, Pourchez J. Development of an ex vivo respiratory pediatric model of bronchopulmonary dysplasia for aerosol deposition studies. Sci Rep 2019; 9:5720. [PMID: 30952897 PMCID: PMC6450907 DOI: 10.1038/s41598-019-42103-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/20/2019] [Indexed: 01/03/2023] Open
Abstract
Ethical restrictions are limitations of in vivo inhalation studies, on humans and animal models. Thus, in vitro or ex vivo anatomical models offer an interesting alternative if limitations are clearly identified and if extrapolation to human is made with caution. This work aimed to develop an ex vivo infant-like respiratory model of bronchopulmonary dysplasia easy to use, reliable and relevant compared to in vivo infant data. This model is composed of a 3D-printed head connected to a sealed enclosure containing a leporine thorax. Physiological data and pleural-mimicking depressions were measured for chosen respiratory rates. Homogeneity of ventilation was assessed by 81mkrypton scintigraphies. Regional radioaerosol deposition was quantified with 99mtechnetium-diethylene triamine pentaacetic acid after jet nebulization. Tidal volumes values are ranged from 33.16 ± 7.37 to 37.44 ± 7.43 mL and compliance values from 1.78 ± 0.65 to 1.85 ± 0.99 mL/cmH2O. Ventilation scintigraphies showed a homogenous ventilation with asymmetric repartition: 56.94% ± 9.4% in right lung and 42.83% ± 9.36 in left lung. Regional aerosol deposition in lungs exerted 2.60% ± 2.24% of initial load of radioactivity. To conclude the anatomical model satisfactorily mimic a 3-months old BPD-suffering bronchopulmonary dysplasia and can be an interesting tool for aerosol regional deposition studies.
Collapse
Affiliation(s)
- Yoann Montigaud
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - Sophie Périnel
- INSERM U 1059 Sainbiose, Université Jean Monnet, F-42023, Saint-Etienne, France
- CHU Saint-Etienne, Saint-Etienne, F-42055, France
| | - Jean-Christophe Dubus
- Médecine infantile, pneumo-allergologie, CRCM & CNRS, URMITE 6236, Assistance publique-Hôpitaux de Marseille, 13385, Marseille cedex 5, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - Marie Suau
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - Clémence Goy
- INSERM U 1059 Sainbiose, Université Jean Monnet, F-42023, Saint-Etienne, France
- CHU Saint-Etienne, Saint-Etienne, F-42055, France
| | - Anthony Clotagatide
- INSERM U 1059 Sainbiose, Université Jean Monnet, F-42023, Saint-Etienne, France
- CHU Saint-Etienne, Saint-Etienne, F-42055, France
| | - Nathalie Prévôt
- INSERM U 1059 Sainbiose, Université Jean Monnet, F-42023, Saint-Etienne, France
- CHU Saint-Etienne, Saint-Etienne, F-42055, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France.
| |
Collapse
|
25
|
Arsan S, Korkmaz A, Oğuz S. Turkish Neonatal Society guideline on prevention and management of bronchopulmonary dysplasia. TURK PEDIATRI ARSIVI 2018; 53:S138-S150. [PMID: 31236027 PMCID: PMC6568289 DOI: 10.5152/turkpediatriars.2018.01814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Scientific and technological advances in perinatology and neonatology have led to an increased rate of survival and decreased incidences of various neonatal morbidities. However, the incidence of bronchopulmonary dysplasia has remained almost the same for years in very-low-birth-weight preterm infants. Although bronchopulmonary dysplasia is the leading cause of chronic respiratory morbidity in small preterms, no substantial improvement has been achieved in prevention and treatment strategies to date. Currently, postnatal very-low-dose corticosteroids, caffeine, and vitamin A seem to be the drugs of choice, and stem cell therapy appears to be the most promising treatment modality for the future. In this guideline, which was prepared by the Turkish Neonatal Society, recent evidence-based recommendations for the prevention and treatment of bronchopulmonary dysplasia are summarized.
Collapse
Affiliation(s)
- Saadet Arsan
- Division of Neonatology, Department of Pediatrics, Ankara University, Faculty of Medicine, Ankara, Turkey
| | - Ayşe Korkmaz
- Division of Neonatology, Department of Pediatrics, Acıbadem University, Faculty of Medicine, İstanbul, Turkey
| | - Suna Oğuz
- Zekai Tahir Burak Women’s Health Practice and Research Center, Health Sciences University, Ankara, Turkey
| |
Collapse
|
26
|
Michael Z, Spyropoulos F, Ghanta S, Christou H. Bronchopulmonary Dysplasia: An Update of Current Pharmacologic Therapies and New Approaches. Clin Med Insights Pediatr 2018; 12:1179556518817322. [PMID: 30574005 PMCID: PMC6295761 DOI: 10.1177/1179556518817322] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most prevalent long-term morbidity of surviving extremely preterm infants and is associated with significant health care utilization in infancy and beyond. Recent advances in neonatal care have resulted in improved survival of extremely low birth weight (ELBW) infants; however, the incidence of BPD has not been substantially impacted by novel interventions in this vulnerable population. The multifactorial cause of BPD requires a multi-pronged approach for prevention and treatment. New approaches in assisted ventilation, optimal nutrition, and pharmacologic interventions are currently being evaluated. The focus of this review is the current state of the evidence for pharmacotherapy in BPD. Promising future approaches in need of further study will also be reviewed.
Collapse
Affiliation(s)
- Zoe Michael
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fotios Spyropoulos
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
27
|
Patry C, Kranig S, Rafat N, Schaible T, Toenshoff B, Hoffmann GF, Ries M. Cross-sectional analysis on publication status and age representation of clinical studies addressing mechanical ventilation and ventilator-induced lung injury in infants and children. BMJ Open 2018; 8:e023524. [PMID: 30455388 PMCID: PMC6252714 DOI: 10.1136/bmjopen-2018-023524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES We determined the number and time-to-public availability of study results of published and unpublished clinical studies in paediatric mechanical ventilation (MV) and ventilator-induced lung injury (VILI), which were registered as completed on ClinicalTrials.gov. Furthermore, we explored the pattern of represented research study subtopics and the corresponding study populations. SETTING Literature search based on ClinicalTrials.gov, PubMed and Google Scholar from 9 July 2017 to 27 September 2017. PRIMARY AND SECONDARY OUTCOME MEASURES Assessment, if studies included in our analysis had been published. Assessment of primary research focus, patient enrolment and age representation of the analysed studies. RESULTS We identified n=109 registered and completed clinical studies on paediatric MV and VILI (enrolment: 22 233 participants). 71% were published, including data from 18 647 subjects. 29% of studies were unpublished, containing data from 3586 subjects. Median time-to-public availability of study results was 22 (IQR, 12.8-41.5) months. The most important study subtopics were biophysical and technical aspects of MV (32 studies), administration of drugs to mitigate VILI through various mechanisms (40 studies) and diagnostic procedures (16 studies). n=66/109 (61%) studies exclusively focused on children below 1 year of age and n=2/109 (2%) exclusively on children between 1 and 14 years. CONCLUSIONS One-third of clinical studies in paediatric MV and VILI registered as completed on ClinicalTrials.gov remained unpublished and contained data on 3586 study participants. The overall median time-to-public availability of study results was longer than the deadline of 12 months mandated by the Food and Drug Administration Amendment Act of 2007. Important and clinically relevant research study subtopics were represented in the research questions investigated in paediatric MV and VILI. The study population was skewed towards children younger than 1 year which indicates, that there is a substantial need for clinical VILI research in older children.
Collapse
Affiliation(s)
- Christian Patry
- Department of Pediatrics I, University Children’s Hospital Heidelberg, Heidelberg, Germany
- Institute for Physiology and Pathophysiology, University Children’s Hospital Heidelberg, Heidelberg, Germany
| | - Simon Kranig
- Department of Neonatology, University Children’s Hospital Heidelberg, Heidelberg, Germany
| | - Neysan Rafat
- Clinic for Neonatology, University Medical Center Mannheim, Mannheim, Germany
| | - Thomas Schaible
- Clinic for Neonatology, University Medical Center Mannheim, Mannheim, Germany
| | - Burkhard Toenshoff
- Department of Pediatrics I, University Children’s Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Department of Pediatrics I, University Children’s Hospital Heidelberg, Heidelberg, Germany
| | - Markus Ries
- Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Doyle LW, Cheong JL, Ehrenkranz RA, Halliday HL. Early (< 8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 2017; 10:CD001146. [PMID: 29063585 PMCID: PMC6485683 DOI: 10.1002/14651858.cd001146.pub5] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia remains a major problem in neonatal intensive care units. Persistent inflammation in the lungs is the most likely underlying pathogenesis. Corticosteroids have been used to prevent or treat bronchopulmonary dysplasia because of their potent anti-inflammatory effects. OBJECTIVES To examine the relative benefits and adverse effects of systemic postnatal corticosteroids commenced within the first seven days of life for preterm infants at risk of developing bronchopulmonary dysplasia. SEARCH METHODS For the 2017 update, we used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 1); MEDLINE via PubMed (January 2013 to 21 February 2017); Embase (January 2013 to 21 February 2017); and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (January 2013 to 21 February 2017). We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-randomised trials. SELECTION CRITERIA For this review, we selected RCTs examining systemic postnatal corticosteroid treatment within the first seven days of life (early) in high-risk preterm infants. Most studies evaluated the use of dexamethasone, but we also included studies that assessed hydrocortisone, even when used primarily for management of hypotension. DATA COLLECTION AND ANALYSIS We used the GRADE approach to assess the quality of evidence.We extracted and analysed data regarding clinical outcomes that included mortality, bronchopulmonary dysplasia, death or bronchopulmonary dysplasia, failure to extubate, complications during primary hospitalisation, and long-term health outcomes. MAIN RESULTS We included 32 RCTs enrolling a total of 4395 participants. The overall risk of bias of included studies was probably low, as all were RCTs, and most trials used rigorous methods. Investigators reported significant benefits for the following outcomes overall: lower rates of failure to extubate, decreased risks of bronchopulmonary dysplasia both at 28 days of life and at 36 weeks' postmenstrual age, death or bronchopulmonary dysplasia at 28 days of life and at 36 weeks' postmenstrual age, patent ductus arteriosus, and retinopathy of prematurity (ROP), including severe ROP. Researchers found no significant differences in rates of neonatal or subsequent mortality; they noted that gastrointestinal bleeding and intestinal perforation were important adverse effects, and that risks of hyperglycaemia, hypertension, hypertrophic cardiomyopathy, and growth failure were increased. The 13 trials that reported late outcomes described several adverse neurological effects at follow-up examination, including cerebral palsy. However, study authors indicated that major neurosensory disability was not significantly increased, either overall in the eight studies for which this outcome could be determined, or in the two individual studies in which rates of cerebral palsy or abnormal neurological examination were significantly increased. Moreover, data show that rates of the combined outcomes of death or cerebral palsy, or of death or major neurosensory disability, were not significantly increased. Two-thirds of studies used dexamethasone (n = 21). Subgroup analyses by type of corticosteroid revealed that most of the beneficial and harmful effects of treatment were attributable to dexamethasone. However, as with dexamethasone, hydrocortisone was associated with reduced rates of patent ductus arteriosus, mortality, and the combined outcome of mortality or chronic lung disease, but with increased occurrence of intestinal perforation. Results showed that hydrocortisone was not associated with obvious longer-term problems.Use of the GRADE approach revealed that the quality of evidence was high for the major outcomes considered, but review authors downgraded quality one level for several outcomes (mortality at latest age, bronchopulmonary dysplasia at 36 weeks, and death or bronchopulmonary dysplasia at 36 weeks) because of weak evidence of publication bias or moderate heterogeneity (death or cerebral palsy). AUTHORS' CONCLUSIONS Benefits of early postnatal corticosteroid treatment (≤ 7 days), particularly dexamethasone, may not outweigh adverse effects associated with this treatment. Although early corticosteroid treatment facilitates extubation and reduces risk of bronchopulmonary dysplasia and patent ductus arteriosus, it causes short-term adverse effects including gastrointestinal bleeding, intestinal perforation, hyperglycaemia, hypertension, hypertrophic cardiomyopathy, and growth failure. Long-term follow-up studies report increased risk of abnormal findings on neurological examination and increased risk of cerebral palsy. However, the methodological quality of studies examining long-term outcomes is limited in some cases: Surviving children have been assessed predominantly before school age; no study has been sufficiently powered to detect important adverse long-term neurosensory outcomes; and no study has been designed with survival free of adverse long-term neurodevelopmental disability as the primary outcome. There is a compelling need for long-term follow-up and reporting of late outcomes, especially neurological and developmental outcomes, among surviving infants who participated in all randomised trials of early postnatal corticosteroid treatment. Hydrocortisone reduced rates of patent ductus arteriosus, of mortality, and of the combined outcome of mortality or bronchopulmonary dysplasia, without causing any obvious long-term harm. However, gastrointestinal perforation was more frequent in the hydrocortisone group. Longer-term follow-up into late childhood is vital for assessment of important effects or other effects that cannot be assessed in early childhood, such as effects of early hydrocortisone treatment on higher-order neurological functions, including cognitive function, academic performance, behaviour, mental health, and motor function. Further randomised controlled trials of early hydrocortisone should include longer-term survival free of neurodevelopmental disability as the main outcome.
Collapse
Affiliation(s)
- Lex W Doyle
- The University of MelbourneDepartment of Obstetrics and GynaecologyParkvilleVictoriaAustralia3052
| | - Jeanie L Cheong
- The Royal Women’s HospitalNewborn Research Centre and Neonatal ServicesLocked Bag 30020 Flemington RdMelbourneVictoriaAustralia3052
| | - Richard A Ehrenkranz
- Yale UniversityDepartment of PediatricsPO Box 208064333 Cedar StreetNew HavenConnecticutUSA06520‐8064
| | - Henry L Halliday
- Retired Honorary Professor of Child Health, Queen's University74 Deramore Park SouthBelfastNorthern IrelandUKBT9 5JY
| | | |
Collapse
|
29
|
Doyle LW, Cheong JL, Ehrenkranz RA, Halliday HL. Late (> 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 2017; 10:CD001145. [PMID: 29063594 PMCID: PMC6485440 DOI: 10.1002/14651858.cd001145.pub4] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Many preterm infants who survive go on to develop bronchopulmonary dysplasia, probably as the result of persistent inflammation in the lungs. Corticosteroids have powerful anti-inflammatory effects and have been used to treat individuals with established bronchopulmonary dysplasia. However, it is unclear whether any beneficial effects outweigh the adverse effects of these drugs. OBJECTIVES To examine the relative benefits and adverse effects of late systemic postnatal corticosteroid treatment (> 7 days) for preterm infants with evolving or established bronchopulmonary dysplasia. SEARCH METHODS For the 2017 update, we used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 1); MEDLINE via PubMed (January 2013 to 21 February 2017); Embase (January 2013 to 21 February 2017); and the Cumulative Index to Nursing and Allied Health Literature (CINAHL; January 2013 to 21 February 2017). We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA We selected for inclusion in this review randomised controlled trials (RCTs) comparing systemic postnatal corticosteroid treatment versus placebo or nothing initiated more than seven days after birth for preterm infants with evolving or established bronchopulmonary dysplasia. DATA COLLECTION AND ANALYSIS We used the GRADE approach to assess the quality of evidence.We extracted and analysed data regarding clinical outcomes including mortality, bronchopulmonary dysplasia, death or bronchopulmonary dysplasia, failure to extubate, complications during primary hospitalisation, and long-term health outcomes. MAIN RESULTS Twenty-one RCTs enrolling a total of 1424 participants were eligible for this review. All were RCTs, but methods used for random allocation were not always clear. Allocation concealment, blinding of the intervention, and blinding of outcome assessments most often were satisfactory. Late steroid treatment was associated with a reduction in neonatal mortality (at 28 days) but no reduction in mortality at 36 weeks, at discharge, or at latest reported age. Benefits of delayed steroid treatment included reductions in failure to extubate by 3, 7, or 28 days; bronchopulmonary dysplasia both at 28 days of life and at 36 weeks' postmenstrual age; need for late rescue treatment with dexamethasone; discharge on home oxygen; and death or bronchopulmonary dysplasia both at 28 days of life and at 36 weeks' postmenstrual age. Data revealed a trend towards increased risk of infection and gastrointestinal bleeding but no increase in risk of necrotising enterocolitis. Short-term adverse affects included hyperglycaemia, glycosuria, and hypertension. Investigators reported an increase in severe retinopathy of prematurity but no significant increase in blindness. Trial results showed a trend towards reduction in severe intraventricular haemorrhage, but only five studies enrolling 247 infants reported this outcome. Trends towards an increase in cerebral palsy or abnormal neurological examination findings were partly offset by a trend in the opposite direction involving death before late follow-up. The combined rate of death or cerebral palsy was not significantly different between steroid and control groups. Major neurosensory disability and the combined rate of death or major neurosensory disability were not significantly different between steroid and control groups. There were no substantial differences between groups for other outcomes in later childhood, including respiratory health or function, blood pressure, or growth, although there were fewer participants with a clinically important reduction in forced expired volume in one second (FEV1) on respiratory function testing in the dexamethasone group.GRADE findings were high for all major outcomes considered, but review authors degraded the quality of evidence by one level because we found evidence of publication bias (bronchopulmonary dysplasia at 36 weeks). AUTHORS' CONCLUSIONS Benefits of late corticosteroid therapy may not outweigh actual or potential adverse effects. This review of postnatal systemic corticosteroid treatment for bronchopulmonary dysplasia initiated after seven days of age suggests that late therapy may reduce neonatal mortality without significantly increasing the risk of adverse long-term neurodevelopmental outcomes. However, the methodological quality of studies determining long-term outcomes is limited in some cases (some studies assessed surviving children only before school age, when some important neurological outcomes cannot be determined with certainty), and no studies were sufficiently powered to detect increased rates of important adverse long-term neurosensory outcomes. Evidence showing both benefits and harms of treatment and limitations of available evidence suggests that it may be prudent to reserve the use of late corticosteroids for infants who cannot be weaned from mechanical ventilation, and to minimise both dose and duration for any course of treatment.
Collapse
Affiliation(s)
- Lex W Doyle
- The University of MelbourneDepartment of Obstetrics and GynaecologyParkvilleVictoriaAustralia3052
| | - Jeanie L Cheong
- The Royal Women’s HospitalNewborn Research Centre and Neonatal ServicesLocked Bag 30020 Flemington RdMelbourneVictoriaAustralia3052
| | - Richard A Ehrenkranz
- Yale UniversityDepartment of PediatricsPO Box 208064333 Cedar StreetNew HavenConnecticutUSA06520‐8064
| | - Henry L Halliday
- Retired Honorary Professor of Child Health, Queen's University74 Deramore Park SouthBelfastNorthern IrelandUKBT9 5JY
| | | |
Collapse
|
30
|
Shah SS, Ohlsson A, Halliday HL, Shah VS. Inhaled versus systemic corticosteroids for preventing bronchopulmonary dysplasia in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev 2017; 10:CD002058. [PMID: 29041034 PMCID: PMC6485718 DOI: 10.1002/14651858.cd002058.pub3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) remains an important cause of mortality and morbidity in preterm infants and inflammation plays a significant role in its pathogenesis. The use of inhaled corticosteroids may modulate the inflammatory process without concomitant high systemic steroid concentrations and less risk of adverse effects. This is an update of a review published in 2012 (Shah 2012). We recently updated the related review on "Inhaled versus systemic corticosteroids for treating bronchopulmonary dysplasia in ventilated very low birth weight preterm neonates". OBJECTIVES To determine the effect of inhaled versus systemic corticosteroids started within the first 7 days of life on preventing death or BPD in ventilated very low birth weight infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL 2017, Issue 1), MEDLINE via PubMed (1966 to 23 February 2017), Embase (1980 to 23 February 2017), and CINAHL (1982 to 23 February 2017). We searched clinical trials registers, conference proceedings and the reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-randomised trials. SELECTION CRITERIA Randomised or quasi-randomised controlled trials comparing inhaled versus systemic corticosteroid therapy (irrespective of dose and duration) starting in the first seven days of life in very low birth weight preterm infants receiving assisted ventilation. DATA COLLECTION AND ANALYSIS Clinical outcomes data were extracted and analysed using Review Manager. When appropriate, meta-analysis was performed using typical relative risk (RR), typical risk difference (RD) and weighted mean difference (WMD). Meta-analyses were performed using typical relative risk, typical risk difference (RD), and weighted mean difference with their 95% confidence intervals (CI). If RD was statistically significant, the number needed to benefit or the number needed to harm was calculated. We assessed the quality of evidence was evaluated using GRADE principles. MAIN RESULTS We included two trials that involved 294 infants. No new studies were included for the 2017 update. The incidence of death or BPD at 36 weeks' postmenstrual age was not statistically significantly different between infants who received inhaled or systemic steroids (RR 1.09, 95% CI 0.88 to 1.35; RD 0.05, 95% CI -0.07 to 0.16; 1 trial, N = 278). The incidence of BPD at 36 weeks' postmenstrual age among survivors was not statistically significant between groups (RR 1.34, 95% CI 0.94 to 1.90; RD 0.11, 95% CI -0.02 to 0.24; 1 trial, N = 206). There was no statistically significant difference in the outcomes of BPD at 28 days, death at 28 days or 36 weeks' postmenstrual age and the combined outcome of death or BPD by 28 days between groups (2 trials, N = 294). The duration of mechanical ventilation was significantly longer in the inhaled steroid group compared with the systemic steroid group (typical MD 4 days, 95% CI 0.2 to 8; 2 trials, N = 294; I² = 0%) as was the duration of supplemental oxygen (typical MD 11 days, 95% CI 2 to 20; 2 trials, N = 294; I² = 33%).The incidence of hyperglycaemia was significantly lower with inhaled steroids (RR 0.52, 95% CI 0.39 to 0.71; RD -0.25, 95% CI -0.37 to -0.14; 1 trial, N = 278; NNTB 4, 95% CI 3 to 7 to avoid 1 infant experiencing hyperglycaemia). The rate of patent ductus arteriosus increased in the group receiving inhaled steroids (RR 1.64, 95% CI 1.23 to 2.17; RD 0.21, 95% CI 0.10 to 0.33; 1 trial, N = 278; NNTH 5, 95% CI 3 to 10). In a subset of surviving infants in the United Kingdom and Ireland there were no significant differences in developmental outcomes at 7 years of age. However, there was a reduced risk of having ever been diagnosed as asthmatic by 7 years of age in the inhaled steroid group compared with the systemic steroid group (N = 48) (RR 0.42, 95% CI 0.19 to 0.94; RD -0.31, 95% CI -0.58 to -0.05; NNTB 3, 95% CI 2 to 20).According to GRADE the quality of the evidence was moderate to low. Evidence was downgraded on the basis of design (risk of bias), consistency (heterogeneity) and precision of the estimates.Both studies received grant support and the industry provided aero chambers and metered dose inhalers of budesonide and placebo for the larger study. No conflict of interest was identified. AUTHORS' CONCLUSIONS We found no evidence that early inhaled steroids confer important advantages over systemic steroids in the management of ventilator-dependent preterm infants. Based on this review inhaled steroids cannot be recommended over systemic steroids as a part of standard practice for ventilated preterm infants. Because they might have fewer adverse effects than systemic steroids, further randomised controlled trials of inhaled steroids are needed that address risk/benefit ratio of different delivery techniques, dosing schedules and long-term effects, with particular attention to neurodevelopmental outcome.
Collapse
Affiliation(s)
- Sachin S Shah
- Surya Hospital for Women and ChildrenDepartment of PediatricsPuneIndia
| | - Arne Ohlsson
- University of TorontoDepartments of Paediatrics, Obstetrics and Gynaecology and Institute of Health Policy, Management and EvaluationTorontoCanada
| | - Henry L Halliday
- Retired Honorary Professor of Child Health, Queen's University Belfast74 Deramore Park SouthBelfastNorthern IrelandUKBT9 5JY
| | - Vibhuti S Shah
- University of TorontoDepartment of Paediatrics and Institute of Health Policy, Management and Evaluation600 University AvenueTorontoONCanadaM5G 1X5
| | | |
Collapse
|
31
|
Shah SS, Ohlsson A, Halliday HL, Shah VS. Inhaled versus systemic corticosteroids for the treatment of bronchopulmonary dysplasia in ventilated very low birth weight preterm infants. Cochrane Database Syst Rev 2017; 10:CD002057. [PMID: 29035425 PMCID: PMC6485655 DOI: 10.1002/14651858.cd002057.pub4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND This is an update of a review published in 2012. A related review "Inhaled versus systemic corticosteroids for preventing bronchopulmonary dysplasia in ventilated very low birth weight preterm neonates" has been updated as well. Bronchopulmonary dysplasia (BPD) is a serious and common problem among very low birth weight infants, despite the use of antenatal steroids and postnatal surfactant therapy to decrease the incidence and severity of respiratory distress syndrome. Due to their anti-inflammatory properties, corticosteroids have been widely used to treat or prevent BPD. However, the use of systemic steroids has been associated with serious short- and long-term adverse effects. Administration of corticosteroids topically through the respiratory tract may result in beneficial effects on the pulmonary system with fewer undesirable systemic side effects. OBJECTIVES To compare the effectiveness of inhaled versus systemic corticosteroids administered to ventilator-dependent preterm neonates with birth weight ≤ 1500 g or gestational age ≤ 32 weeks after 7 days of life on the incidence of death or BPD at 36 weeks' postmenstrual age. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL 2017, Issue 1), MEDLINE via PubMed (1966 to 23 February 2017), Embase (1980 to 23 February 2017), and CINAHL (1982 to 23 February 2017). We also searched clinical trials registers, conference proceedings and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Randomised or quasi-randomised controlled trials comparing inhaled versus systemic corticosteroid therapy (irrespective of dose and duration) starting after the first week of life in ventilator-dependent very low birth weight infants. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by the Cochrane Collaboration. MAIN RESULTS We included three trials that involved a total of 431 participants which compared inhaled versus systemic corticosteroids to treat BPD. No new trials were included for the 2017 update.Although one study randomised infants at < 72 hours (N = 292), treatment started when infants were aged > 15 days. In this larger study, deaths were included from the point of randomisation and before treatment started. Two studies (N = 139) randomised and started treatment at 12 to 21 days.Two trials reported non-significant differences between groups for the primary outcome: incidence of death or BPD at 36 weeks' postmenstrual age among all randomised infants. Estimates for the largest trial were Relative risk (RR) 1.04 (95% Confidence interval (CI) 0.86 to 1.26), Risk difference (RD) 0.03 (95% CI -0.09 to 0.15); (moderate-quality evidence). Estimates for the other trial reporting the primary outcome were RR 0.94 (95% CI 0.83 to 1.05), RD -0.06 (95% CI -0.17 to 0.05); (low-quality evidence).Secondary outcomes that included data from all three trials showed no significant differences in the duration of mechanical ventilation or supplemental oxygen, length of hospital stay, or the incidence of hyperglycaemia, hypertension, necrotising enterocolitis, gastrointestinal bleed, retinopathy of prematurity or culture-proven sepsis moderate- to low-quality evidence).In a subset of 75 surviving infants who were enrolled from the United Kingdom and Ireland, there were no significant differences in developmental outcomes at seven years of age between groups (moderate-quality evidence). One study received grant support and the industry provided aerochambers and metered dose inhalers of budesonide and placebo for the same study. No conflict of interest was identified. AUTHORS' CONCLUSIONS We found no evidence that inhaled corticosteroids confer net advantages over systemic corticosteroids in the management of ventilator-dependent preterm infants. There was no evidence of difference in effectiveness or adverse event profiles for inhaled versus systemic steroids.A better delivery system guaranteeing selective delivery of inhaled steroids to the alveoli might result in beneficial clinical effects without increasing adverse events.To resolve this issue, studies are needed to identify the risk/benefit ratio of different delivery techniques and dosing schedules for administration of these medications. The long-term effects of inhaled steroids, with particular attention to neurodevelopmental outcomes, should be addressed in future studies.
Collapse
Affiliation(s)
- Sachin S Shah
- Surya Hospital for Women and ChildrenDepartment of PediatricsPuneIndia
| | - Arne Ohlsson
- University of TorontoDepartments of Paediatrics, Obstetrics and Gynaecology and Institute of Health Policy, Management and EvaluationTorontoCanada
| | - Henry L Halliday
- Retired Honorary Professor of Child Health, Queen's University Belfast74 Deramore Park SouthBelfastNorthern IrelandUKBT9 5JY
| | - Vibhuti S Shah
- University of TorontoDepartment of Paediatrics and Institute of Health Policy, Management and Evaluation600 University AvenueTorontoONCanadaM5G 1X5
| | | |
Collapse
|