1
|
Hu Y, Tang J, Yu D, Su S, Fang J, Xia L, Xu W, Zhu W, Song N, Wang F, Diao D, Zhang W. Correlation and diagnostic significance of CD4 T cell subsets and NLRP3 inflammasome in ulcerative colitis: the role of the NLRP3/T-bet/GATA3 axis. BMC Gastroenterol 2025; 25:23. [PMID: 39833691 PMCID: PMC11748810 DOI: 10.1186/s12876-025-03603-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND AND AIM Ulcerative colitis (UC) is characterized by complex immunological interactions involving CD4 T cell subsets and the NLRP3 inflammasome, which influence inflammatory responses. This investigation focused on delineating the activation profiles of these components and their correlation with disease severity and activity, assessing their diagnostic implications in UC. METHODS We conducted immunohistochemistry and ELISA assays to measure markers expression of CD4 T cell subsets and the NLRP3 inflammasome in UC patients versus controls. Findings were validated using correlation analysis, molecular docking and ROC curves. RESULTS UC patients displayed increased Th1 (T-bet, TNF-α), Th2 (GATA3, IL-6), and Th17 (RORγt, IL-17, IL-22, IL-23) markers versus controls. Additionally, Th1 and Th2 cytokines (IL-2 and IL-4) were significantly elevated in severe UC, while Treg markers (FOXP3, IL-10, TGF-β1) were elevated only in mild-to-moderate UC. Enhanced NLRP3 inflammasome activation, indicated by elevated NLRP3, Caspase-1, and IL-1β levels. These molecular patterns, confirmed through correlation analysis and molecular docking, underscored strong correlations among NLRP3, T-bet, and GATA3, supporting the proposed NLRP3/T-bet/GATA3 axis. This axis, along with other biomarkers, showed strong associations with UC severity, Mayo score, UCEIS, demonstrated relatively high diagnostic value. CONCLUSION The NLRP3/T-bet/GATA3 axis provides a referable strategy for multi-targeted combined treatment of UC and may serve as potential biomarkers for enhancing diagnostic accuracy and guiding therapy.
Collapse
Affiliation(s)
- Yingnan Hu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Jingyi Tang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dian Yu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Su
- Department of Spleen and Stomach Diseases, Qujiang District Hospital of Traditional Chinese Medicine, Quzhou, China
| | - Jintao Fang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linying Xia
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenjun Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weihan Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ninping Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318, Chaowang Road, Gongshu District, Hangzhou City, Zhejiang Province, CN310005, People's Republic of China
| | - Fengyong Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318, Chaowang Road, Gongshu District, Hangzhou City, Zhejiang Province, CN310005, People's Republic of China
| | - Dechang Diao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Wei Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318, Chaowang Road, Gongshu District, Hangzhou City, Zhejiang Province, CN310005, People's Republic of China.
| |
Collapse
|
2
|
Wallace JW, Constant DA, Nice TJ. Interferon Lambda in the Pathogenesis of Inflammatory Bowel Diseases. Front Immunol 2021; 12:767505. [PMID: 34712246 PMCID: PMC8547615 DOI: 10.3389/fimmu.2021.767505] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Interferon λ (IFN-λ) is critical for host viral defense at mucosal surfaces and stimulates immunomodulatory signals, acting on epithelial cells and few other cell types due to restricted IFN-λ receptor expression. Epithelial cells of the intestine play a critical role in the pathogenesis of Inflammatory Bowel Disease (IBD), and the related type II interferons (IFN-γ) have been extensively studied in the context of IBD. However, a role for IFN-λ in IBD onset and progression remains unclear. Recent investigations of IFN-λ in IBD are beginning to uncover complex and sometimes opposing actions, including pro-healing roles in colonic epithelial tissues and potentiation of epithelial cell death in the small intestine. Additionally, IFN-λ has been shown to act through non-epithelial cell types, such as neutrophils, to protect against excessive inflammation. In most cases IFN-λ demonstrates an ability to coordinate the host antiviral response without inducing collateral hyperinflammation, suggesting that IFN-λ signaling pathways could be a therapeutic target in IBD. This mini review discusses existing data on the role of IFN-λ in the pathogenesis of inflammatory bowel disease, current gaps in the research, and therapeutic potential of modulating the IFN-λ-stimulated response.
Collapse
Affiliation(s)
- Jonathan W Wallace
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
3
|
Haring E, Zeiser R, Apostolova P. Interfering With Inflammation: Heterogeneous Effects of Interferons in Graft- Versus-Host Disease of the Gastrointestinal Tract and Inflammatory Bowel Disease. Front Immunol 2021; 12:705342. [PMID: 34249014 PMCID: PMC8264264 DOI: 10.3389/fimmu.2021.705342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
The intestine can be the target of several immunologically mediated diseases, including graft-versus-host disease (GVHD) and inflammatory bowel disease (IBD). GVHD is a life-threatening complication that occurs after allogeneic hematopoietic stem cell transplantation. Involvement of the gastrointestinal tract is associated with a particularly high mortality. GVHD development starts with the recognition of allo-antigens in the recipient by the donor immune system, which elicits immune-mediated damage of otherwise healthy tissues. IBD describes a group of immunologically mediated chronic inflammatory diseases of the intestine. Several aspects, including genetic predisposition and immune dysregulation, are responsible for the development of IBD, with Crohn’s disease and ulcerative colitis being the two most common variants. GVHD and IBD share multiple key features of their onset and development, including intestinal tissue damage and loss of intestinal barrier function. A further common feature in the pathophysiology of both diseases is the involvement of cytokines such as type I and II interferons (IFNs), amongst others. IFNs are a family of protein mediators produced as a part of the inflammatory response, typically to pathogens or malignant cells. Diverse, and partially paradoxical, effects have been described for IFNs in GVHD and IBD. This review summarizes current knowledge on the role of type I, II and III IFNs, including basic concepts and controversies about their functions in the context of GVHD and IBD. In addition, therapeutic options, research developments and remaining open questions are addressed.
Collapse
Affiliation(s)
- Eileen Haring
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petya Apostolova
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Cai Y, Xu B, Zhou F, Wu J, Li S, Zheng Q, Li Y, Li X, Gao F, Dong S, Liu R. Si-Ni-San ameliorates chronic colitis by modulating type I interferons-mediated inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153495. [PMID: 33611210 DOI: 10.1016/j.phymed.2021.153495] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic relapsing inflammatory disease that markedly elevates the risk of colon cancers and results in disability. The disrupted immune homeostasis has been recognized as a predominant player in the pathogenesis of UC. However, the overall remission rate of current therapies based on immunoregulation is still unsatisfactory. Si-Ni-San (SNS) has been found effective in relieving UC through thousands of years of clinical practice, yet the specific mechanisms of the protective effect of SNS were not fully elucidated. PURPOSE We aim to investigate the therapeutic effects of SNS against the development of chronic colitis and the underlying mechanisms. METHODS We established a DSS-induced chronic experimental colitis mouse model to evaluate the effect of SNS. RNA-sequencing, bioinformatic analysis, and in vitro studies were performed to investigate the underlying mechanisms. RESULTS Our data demonstrated that SNS significantly ameliorated chronic experimental colitis via inhibiting the expression of genes associated with inflammatory responses. Interestingly, SNS significantly suppressed DSS-induced type I interferon (IFN) responses instead of directly downregulating the production of pro-inflammatory cytokines, such as Il-6. In vitro study further found that SNS selectively inhibited STING and RIG-I pathway-induced type I IFN responses by modulating TBK1- and IRF3-dependent signaling transduction. SNS also suppressed the expression of IFN-stimulated genes by directly inhibiting STAT1 and STAT2 activation. CONCLUSION Our study not only provides novel insights into the pathogenic role of type I IFN responses in colitis but also suggested that SNS or bioactive compounds derived from SNS may serve as novel therapeutic strategies for the treatment of UC via interfering type I IFN-mediated inflammation.
Collapse
Affiliation(s)
- Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shifen Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
5
|
Le Hingrat Q, Sereti I, Landay AL, Pandrea I, Apetrei C. The Hitchhiker Guide to CD4 + T-Cell Depletion in Lentiviral Infection. A Critical Review of the Dynamics of the CD4 + T Cells in SIV and HIV Infection. Front Immunol 2021; 12:695674. [PMID: 34367156 PMCID: PMC8336601 DOI: 10.3389/fimmu.2021.695674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Ghouri YA, Tahan V, Shen B. Secondary causes of inflammatory bowel diseases. World J Gastroenterol 2020; 26:3998-4017. [PMID: 32821067 PMCID: PMC7403802 DOI: 10.3748/wjg.v26.i28.3998] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/15/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD), conventionally consist of Crohn's disease (CD) and ulcerative colitis. They occur in individuals with high risk genotype for the disease in the setting of appropriate environmental factors. The pathogenesis of IBD involves a dysregulated autoimmune response to gut dysbiosis, which in turn is triggered due to exposure to various inciting environmental factors. But there is no clearly defined etiology of IBD and this type of disease is termed as "idiopathic IBD", "classic IBD", or "primary IBD". We reviewed the current medical literature and found that certain etiological factors may be responsible for the development of IBD or IBD-like conditions, and we consider this form of de novo IBD as "secondary IBD". Currently known factors that are potentially responsible for giving rise to secondary IBD are medications; bowel altering surgeries and transplantation of organs, stem cells or fecal microbiome. Medications associated with the development of secondary IBD include; immunomodulators, anti-tumor necrosis factor alpha agents, anti-interleukin agents, interferons, immune stimulating agents and checkpoint inhibitors. Colectomy can in some cases give rise to de novo CD, pouchitis of the ileal pouch, or postcolectomy enteritis syndrome. After solid organ transplantation or hematopoietic stem cell transplantation, the recipient may develop de novo IBD or IBD flare. Fecal microbiota transplantation has been widely used to treat patients suffering from recurrent Clostridium difficile infection but can also causes IBD flares.
Collapse
Affiliation(s)
- Yezaz A Ghouri
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri- School of Medicine, Columbia, MO 65201, United States
| | - Veysel Tahan
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri- School of Medicine, Columbia, MO 65201, United States
| | - Bo Shen
- Department of Medicine and Surgery, Interventional IBD Center, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, NY 10032, United States
| |
Collapse
|
7
|
The TLR9 agonist MGN1703 triggers a potent type I interferon response in the sigmoid colon. Mucosal Immunol 2018; 11:449-461. [PMID: 28766555 PMCID: PMC5796873 DOI: 10.1038/mi.2017.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/25/2017] [Indexed: 02/04/2023]
Abstract
Toll-like receptor 9 (TLR9) agonists are being developed for treatment of colorectal and other cancers, yet the impact of these drugs on human intestines remains unknown. This, together with the fact that there are additional potential indications for TLR9 agonist therapy (e.g., autoimmune and infectious diseases), led us to investigate the impact of MGN1703 (Lefitolimod) on intestinal homeostasis and viral persistence in HIV-positive individuals. Colonic sigmoid biopsies were collected (baseline and week four) from 11 HIV+ individuals on suppressive antiretroviral therapy, who received MGN1703 (60 mg s.c.) twice weekly for 4 weeks in a single-arm, phase 1b/2a study. Within sigmoid mucosa, global transcriptomic analyses revealed 248 modulated genes (false discovery rate<0.05) including many type I interferon (IFN)-stimulated genes. MGN1703 increased the frequencies of cells exhibiting MX1 (P=0.001) and ISG15 (P=0.014) protein expression. No changes were observed in neutrophil infiltration (myeloperoxidase; P=0.97). No systematic effect on fecal microbiota structure was observed (analysis of similarity Global R=-0.105; P=0.929). TLR9 expression at baseline was inversely proportional to the change in integrated HIV DNA during MGN1703 treatment (P=0.020). In conclusion, MGN1703 induced a potent type I IFN response, without a concomitant general inflammatory response, in the intestines.
Collapse
|
8
|
Wang Y, Mao Y, Zhang J, Shi G, Cheng L, Lin Y, Li Y, Zhang X, Zhang Y, Chen X, Deng J, Su X, Dai L, Yang Y, Zhang S, Yu D, Wei Y, Deng H. IL-35 recombinant protein reverses inflammatory bowel disease and psoriasis through regulation of inflammatory cytokines and immune cells. J Cell Mol Med 2017; 22:1014-1025. [PMID: 29193791 PMCID: PMC5783847 DOI: 10.1111/jcmm.13428] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/22/2017] [Indexed: 02/05/2023] Open
Abstract
Interleukin‐35 (IL‐35), a member of the IL‐12 family, functions as a new anti‐inflammatory factor involved in arthritis, psoriasis, inflammatory bowel disease (IBD) and other immune diseases. Although IL‐35 can significantly prevent the development of inflammation in many diseases, there have been no early studies accounting for the role of IL‐35 recombinant protein in IBD and psoriasis. In this study, we assessed the therapeutic potential of IL‐35 recombinant protein in three well‐known mouse models: the dextransulfate sodium (DSS)‐induced colitis mouse model, the keratin14 (K14)‐vascular endothelial growth factor A (VEGF‐A)‐transgenic (Tg) psoriasis mouse model and the imiquimod (IMQ)‐induced psoriasis mouse model. Our results indicated that IL‐35 recombinant protein can slow down the pathologic process in DSS‐induced acute colitis mouse model by decreasing the infiltrations of macrophages, CD4+T and CD8+T cells and by promoting the infiltration of Treg cells. Further analysis demonstrated that IL‐35 recombinant protein may regulate inflammation through promoting the secretion of IL‐10 and inhibiting the expression of pro‐inflammatory cytokines such as IL‐6, TNF‐α and IL‐17 in acute colitis model. In addition, lower dose of IL‐35 recombinant protein could achieve long‐term treatment effects as TNF‐α monoclonal antibody did in the psoriasis mouse. In summary, the remarkable therapeutic effects of IL‐35 recombinant protein in acute colitis and psoriasis mouse models indicated that IL‐35 recombinant protein had a variety of anti‐inflammatory effects and was expected to become an effective candidate drug for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Mao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junfeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Lin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yiming Li
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaomei Zhang
- Laboratory Animal Center, Sichuan University, Chengdu, China
| | - Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Pott J, Stockinger S. Type I and III Interferon in the Gut: Tight Balance between Host Protection and Immunopathology. Front Immunol 2017; 8:258. [PMID: 28352268 PMCID: PMC5348535 DOI: 10.3389/fimmu.2017.00258] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
The intestinal mucosa forms an active interface to the outside word, facilitating nutrient and water uptake and at the same time acts as a barrier toward the highly colonized intestinal lumen. A tight balance of the mucosal immune system is essential to tolerate harmless antigens derived from food or commensals and to effectively defend against potentially dangerous pathogens. Interferons (IFN) provide a first line of host defense when cells detect an invading organism. Whereas type I IFN were discovered almost 60 years ago, type III IFN were only identified in the early 2000s. It was initially thought that type I IFN and type III IFN performed largely redundant functions. However, it is becoming increasingly clear that type III IFN exert distinct and non-redundant functions compared to type I IFN, especially in mucosal tissues. Here, we review recent progress made in unraveling the role of type I/III IFN in intestinal mucosal tissue in the steady state, in response to mucosal pathogens and during inflammation.
Collapse
Affiliation(s)
- Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Silvia Stockinger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine , Vienna , Austria
| |
Collapse
|
10
|
Romero-Castro A, Gutiérrez-Sánchez M, Correa-Basurto J, Rosales Hernández MC, Padilla Martínez II, Mendieta-Wejebe JE. Pharmacokinetics in Wistar Rats of 5-[(4-Carboxybutanoyl)Amino]-2-Hydroxybenzoic Acid: A Novel Synthetic Derivative of 5-Aminosalicylic Acid (5-ASA) with Possible Anti-Inflammatory Activity. PLoS One 2016; 11:e0159889. [PMID: 27454774 PMCID: PMC4959752 DOI: 10.1371/journal.pone.0159889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022] Open
Abstract
5-[(4-carboxybutanoyl)amino]-2-hydroxybenzoic acid (C2) is a novel synthetic derivative of 5-aminosalicylic acid (5-ASA), which is currently being evaluated ex vivo as an anti-inflammatory agent and has shown satisfactory results. This study aimed to obtain the pharmacokinetic profiles, tissue distribution and plasma protein binding of C2 in Wistar Rats. Additionally, an HPLC method was developed and validated to quantify C2 in rat plasma. The pharmacokinetic profiles of intragastric, intravenous and intraperitoneal administration routes at singles doses of 100, 50, and 100 mg/kg, respectively, were studied in Wistar rats. The elimination half-life of intravenously administered C2 was approximately 33 min. The maximum plasma level of C2 was reached approximately 24 min after intragastric administration, with a Cmax value of 2.5 g/mL and an AUCtot value of 157 μg min-1/mL; the oral bioavailability was approximately 13%. Following a single intragastric or oral dose (100 mg/kg), C2 was distributed and detected in all examined tissues (including the brain and colon). The results showed that C2 accumulates over time. The plasma protein binding results indicated that the unbound fraction of C2 at concentrations of 1 to 20 μg/mL ranged from 89.8% to 92.5%, meaning that this fraction of C2 is available to cross tissues. Finally, the blood-plasma partitioning (BP ratio) of C2 in rat plasma was 0.71 and 0.6 at concentrations of 5 and 10 μg/mL, respectively, which indicates that C2 is free in the plasmatic phase and not inside blood cells. The results of this study suggest that a fraction of the administered C2 dose is absorbed in the stomach, and the fraction that is not absorbed reaches the small intestine and colon. This distribution constitutes the main advantage of C2 compared with 5-ASA for the treatment of ulcerative colitis (UC) and Crohn's disease (CD).
Collapse
Affiliation(s)
- Aurelio Romero-Castro
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, México
| | - Mara Gutiérrez-Sánchez
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, México
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Bioinformática, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, México
| | - Martha Cecilia Rosales Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, México
| | - Itzia Irene Padilla Martínez
- Laboratorio de Química Supramolecular y Orgánica, Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Ciudad de México 07340, México
| | - Jessica Elena Mendieta-Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, México
| |
Collapse
|