1
|
De Rose DU, Maggiora E, Maiocco G, Morniroli D, Vizzari G, Tiraferri V, Coscia A, Cresi F, Dotta A, Salvatori G, Giannì ML. Improving growth in preterm infants through nutrition: a practical overview. Front Nutr 2024; 11:1449022. [PMID: 39318385 PMCID: PMC11421391 DOI: 10.3389/fnut.2024.1449022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
The primary purpose of this practical overview is to provide a practical update on appropriate nutritional strategies to improve growth in preterm infants. Current recommendations for improving preterm growth concern both macronutrients and micronutrients, with tailored nutrition since the first days of life, particularly when fetal growth restriction has been reported. Human milk is undoubtedly the best nutrition for all newborns, but, in some populations, if not adequately fortified, it does not adequately support their growth. In all preterms, growth should be correctly monitored weekly to intercept a negative trend of growth and implement nutritional strategies to avoid growth restriction. Similarly, growth should be accurately supported and monitored after discharge to improve long-term health consequences.
Collapse
Affiliation(s)
- Domenico Umberto De Rose
- Neonatal Intensive Care Unit, “Bambino Gesù” Children’s Hospital IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, “Tor Vergata” University of Rome, Rome, Italy
| | - Elena Maggiora
- Neonatology Unit of the University, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Giulia Maiocco
- Neonatology Unit of the University, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Daniela Morniroli
- Neonatal Intensive Care Unit (NICU), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Vizzari
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza 2023–2027, University of Milan, Milan, Italy
| | - Valentina Tiraferri
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza 2023–2027, University of Milan, Milan, Italy
| | - Alessandra Coscia
- Neonatology Unit of the University, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesco Cresi
- Neonatology Unit of the University, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Andrea Dotta
- Neonatal Intensive Care Unit, “Bambino Gesù” Children’s Hospital IRCCS, Rome, Italy
| | - Guglielmo Salvatori
- Neonatal Intensive Care Unit, “Bambino Gesù” Children’s Hospital IRCCS, Rome, Italy
- Human Milk Bank, “Bambino Gesù” Children’s Hospital IRCCS, Rome, Italy
| | - Maria Lorella Giannì
- Neonatal Intensive Care Unit (NICU), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza 2023–2027, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Butorac Ahel I, Tomulić KL, Cicvarić IV, Žuvić M, Dekanić KB, Šegulja S, Čače IB. Incidence and Risk Factors for Glucose Disturbances in Premature Infants. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091295. [PMID: 36143971 PMCID: PMC9501184 DOI: 10.3390/medicina58091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Background and Objectives: There are limited data regarding the incidence and risk factors for hypoglycemia, hyperglycemia, and unstable glycemia in preterm infants. The aim of the present study was to determine the incidence and risk factors associated with neonatal hypoglycemia, hyperglycemia, and unstable glycemia in preterm infants during the first seven days of life. Materials and Methods: This prospective study included preterm infants <37 weeks of gestation, admitted to the Neonatal Intensive Care Unit between January 2018 and December 2020. Based on blood glucose levels in the first week of life, infants were divided into the following four groups: normoglycemic, hypoglycemic, hyperglycemic, and unstable. Blood glucose levels were measured from capillary blood at the 1st, 3rd, 6th, and 12th hour of life during the first 24 h, and at least once a day from days 2 to 7, prefeed. Results: Of 445 enrolled infants, 20.7% (92/445) were categorized as hypoglycemic, 9.9% (44/445) as hyperglycemic, and 2.9% (13/445) as unstable, respectively. Hypoglycemia was most commonly observed among infants ≥34 weeks (27.9%), and hyperglycemia was most common among preterm infants <28 weeks (50%). Female gender increased the chances of developing hypoglycemia by three times. The decrease in gestational age by one week increased the chance of developing hyperglycemia by 1.9 times. Sepsis increased the chance of developing hyperglycemia seven times, respiratory distress syndrome five times, and mechanical ventilation three times, respectively. Conclusions: Glucose disturbances in the early neonatal period in preterm infants are common and mostly asymptomatic. Therefore, careful blood glucose level monitoring is required in those infants, especially in late preterm infants, in order to prevent possible neurological complications.
Collapse
Affiliation(s)
- Ivona Butorac Ahel
- Department of Pediatrics, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Kristina Lah Tomulić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Pediatric Intensive Care Unit, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
- Correspondence: ; Tel.: +38-551659172
| | - Inge Vlašić Cicvarić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Clinical, Health and Organizational Psychology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Marta Žuvić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Kristina Baraba Dekanić
- Department of Pediatrics, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Silvije Šegulja
- Department of Clinical Science, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Iva Bilić Čače
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Neonatal Intensive Care Unit, Department of Pediatrics, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Expert consensus on standard clinical management of neonatal hypoglycemia in China (2021). ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1-13. [PMID: 35177170 PMCID: PMC8802387 DOI: 10.7499/j.issn.1008-8830.2108061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
There are many high-risk factors for neonatal hypoglycemia, and persistent severe hypoglycemia can lead to irreversible neurological damage and bring a great burden to family and society. Early standardized prevention and clinical management can effectively reduce the incidence rate of neonatal hypoglycemia and brain injury induced by hypoglycemia; however at present, there is still a lack of unified clinical management guidelines for neonatal hypoglycemia in China, and different medical institutions follow different clinical guidelines developed by other countries for the management of neonatal hypoglycemia. In order to further standardize the clinical management of neonatal hypoglycemia, this consensus is developed by the Group of Neonatology, Pediatric Society, Chinese Medical Association. This consensus provides 21 recommendations to address related clinical issues in the prevention, monitoring, and management of hypoglycemia in neonates with a gestational age of ≥35 weeks.
Collapse
|
4
|
Galderisi A, Trevisanuto D, Russo C, Hall R, Bruschettini M. Continuous glucose monitoring for the prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2021; 12:CD013309. [PMID: 34931697 PMCID: PMC8690212 DOI: 10.1002/14651858.cd013309.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Preterm infants are susceptible to hyperglycaemia and hypoglycaemia, which may lead to adverse neurodevelopment. The use of continuous glucose monitoring (CGM) devices might help in keeping glucose levels in the normal range, and reduce the need for blood sampling. However, the use of CGM might be associated with harms in the preterm infant. OBJECTIVES To assess the benefits and harms of CGM versus intermittent modalities to measure glycaemia in preterm infants 1. at risk of hypoglycaemia or hyperglycaemia; 2. with proven hypoglycaemia; or 3. with proven hyperglycaemia. SEARCH METHODS We searched CENTRAL (2021, Issue 4); PubMed; Embase; and CINAHL in April 2021. We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomized controlled trials (RCTs) and quasi-RCTs. SELECTION CRITERIA We included RCTs and quasi-RCTs comparing the use of CGM versus intermittent modalities to measure glycaemia in preterm infants at risk of hypoglycaemia or hyperglycaemia; with proven hypoglycaemia; or with proven hyperglycaemia. DATA COLLECTION AND ANALYSIS We assessed the methodological quality of included trials using Cochrane Effective Practice and Organisation of Care Group (EPOC) criteria (assessing randomization, blinding, loss to follow-up, and handling of outcome data). We evaluated treatment effects using a fixed-effect model with risk ratio (RR) with 95% confidence intervals (CI) for categorical data and mean, standard deviation (SD), and mean difference (MD) for continuous data. We used the GRADE approach to assess the certainty of the evidence. MAIN RESULTS We included four trials enrolling 300 infants in our updated review. We included one new study and excluded another previously included study (because the inclusion criteria of the review have been narrowed). We compared the use of CGM to intermittent modalities in preterm infants at risk of hypoglycaemia or hyperglycaemia; however, one of these trials was analyzed separately because CGM was used as a standalone device, without being coupled to a control algorithm as in the other trials. We identified no studies in preterm infants with proven hypoglycaemia or hyperglycaemia. None of the four included trials reported the neurodevelopmental outcome (i.e. the primary outcome of this review), or seizures. The effect of the use of CGM on mortality during hospitalization is uncertain (RR 0.59, 95% CI 0.16 to 2.13; RD -0.02, 95% CI -0.07 to 0.03; 230 participants; 2 studies; very low-certainty evidence). The certainty of the evidence was very low for all outcomes because of limitations in study design, and imprecision of estimates. One study is ongoing (estimated sample size 60 infants) and planned to be completed in 2022. AUTHORS' CONCLUSIONS There is insufficient evidence to determine if CGM affects preterm infant mortality or morbidities. We are very uncertain of the safety of CGM and the available management algorithms, and many morbidities remain unreported. Preterm infants at risk of hypoglycaemia or hyperglycaemia were enrolled in all four included studies. No studies have been conducted in preterm infants with proven hypoglycaemia or hyperglycaemia. Long-term outcomes were not reported. Events of necrotizing enterocolitis, reported in the study published in 2021, were lower in the CGM group. However, the effect of CGM on this outcome remains very uncertain. Clinical trials are required to determine the most effective CGM and glycaemic management regimens in preterm infants before larger studies can be performed to assess the efficacy of CGM for reducing mortality, morbidity, and long-term neurodevelopmental impairments.
Collapse
Affiliation(s)
- Alfonso Galderisi
- Pediatrics Endocrinology, Yale University, New Haven, Connecticut, USA
| | - Daniele Trevisanuto
- Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | | | - Rebecka Hall
- Informatics & Technology (IT) Services, Cochrane, Copenhagen, Denmark
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
5
|
Persad E, Sibrecht G, Ringsten M, Karlelid S, Romantsik O, Ulinder T, Borges do Nascimento IJ, Björklund M, Arno A, Bruschettini M. Interventions to minimize blood loss in very preterm infants-A systematic review and meta-analysis. PLoS One 2021; 16:e0246353. [PMID: 33556082 PMCID: PMC7870155 DOI: 10.1371/journal.pone.0246353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
Blood loss in the first days of life has been associated with increased morbidity and mortality in very preterm infants. In this systematic review we included randomized controlled trials comparing the effects of interventions to preserve blood volume in the infant from birth, reduce the need for sampling, or limit the blood sampled. Mortality and major neurodevelopmental disabilities were the primary outcomes. Included studies underwent risk of bias-assessment and data extraction by two review authors independently. We used risk ratio or mean difference to evaluate the treatment effect and meta-analysis for pooled results. The certainty of evidence was assessed using GRADE. We included 31 trials enrolling 3,759 infants. Twenty-five trials were pooled in the comparison delayed cord clamping or cord milking vs. immediate cord clamping or no milking. Increasing placental transfusion resulted in lower mortality during the neonatal period (RR 0.51, 95% CI 0.26 to 1.00; participants = 595; trials = 5; I2 = 0%, moderate certainty of evidence) and during first hospitalization (RR 0.70, 95% CI 0.51, 0.96; 10 RCTs, participants = 2,476, low certainty of evidence). The certainty of evidence was very low for the other primary outcomes of this review. The six remaining trials compared devices to monitor glucose levels (three trials), blood sampling from the umbilical cord or from the placenta vs. blood sampling from the infant (2 trials), and devices to reintroduce the blood after analysis vs. conventional blood sampling (1 trial); the certainty of evidence was rated as very low for all outcomes in these comparisons. Increasing placental transfusion at birth may reduce mortality in very preterm infants; However, extremely limited evidence is available to assess the effects of other interventions to reduce blood loss after birth. In future trials, infants could be randomized following placental transfusion to different blood saving approaches. Trial registration: PROSPERO CRD42020159882.
Collapse
Affiliation(s)
- Emma Persad
- Department for Evidence-Based Medicine and Evaluation, Danube University Krems, Krems an der Donau, Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | | | | | | | | | - Tommy Ulinder
- Department of Pediatrics, Lund University, Lund, Sweden
| | - Israel Júnior Borges do Nascimento
- University Hospital and School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- School of Medicine, Milwaukee Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Maria Björklund
- Library & ICT, Faculty of Medicine, Lund University, Lund, Sweden
| | - Anneliese Arno
- Eppi-Centre, Institute of Education, University College London, London, United Kingdom
| | - Matteo Bruschettini
- Department of Pediatrics, Lund University, Lund, Sweden
- Cochrane Sweden, Research and Development, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
6
|
Nava C, Modiano Hedenmalm A, Borys F, Hooft L, Bruschettini M, Jenniskens K. Accuracy of continuous glucose monitoring in preterm infants: a systematic review and meta-analysis. BMJ Open 2020; 10:e045335. [PMID: 33361084 PMCID: PMC7768969 DOI: 10.1136/bmjopen-2020-045335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Continuous glucose monitoring (CGM) could be a valuable instrument for measurement of glucose concentration in preterm neonate. We undertook a systematic review and meta-analysis to compare the diagnostic accuracy of CGM devices to intermittent blood glucose evaluation methods for the detection of hypoglycaemic or hypoglycaemic events in preterm infants. DATA SOURCES A structured electronic database search was performed for studies that assessed the accuracy of CGM against any intermittent blood glucose testing methods in detecting episodes of altered glycaemia in preterm infants. No restrictions were used. Three review authors screened records and included studies. DATA EXTRACTION Risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. From individual patient data (IPD), sensitivity and specificity were determined using predefined thresholds. The mean absolute relative difference (MARD) of the studied CGM devices was assessed and if those satisfied the accuracy requirements (EN ISO 15197). IPD datasets were meta-analysed using a logistic mixed-effects model. A bivariate model was used to estimate the summary receiver operating characteristic curve (ROC) curve and extract the area under the curve (AUC). The overall level of certainty of the evidence was assessed using Grading of Recommendations Assessment, Development and Evaluation. RESULTS Among 4481 records, 11 were included. IPD datasets were obtained for five studies. Only two of the studies showed an MARD lower than 10%, with none of the five CGM devices studied satisfying the European Union (EU) ISO 15197 requirements. Pooled sensitivity and specificity of CGM devices for hypoglycaemia were 0.39 and 0.99, whereas for hyperglycaemia were 0.87 and 0.99, respectively. The AUC was 0.70 and 0.86, respectively. The certainty of the evidence was considered as low to moderate. Limitations primarily related to the lack of representative population, reference standard and CGM device. CONCLUSIONS CGM devices demonstrated low sensitivity for detecting hypoglycaemia in preterm infants, however, provided high accuracy for detection of hyperglycaemia. PROSPERO REGISTRATION NUMBER CRD42020152248.
Collapse
Affiliation(s)
- Chiara Nava
- Neonatal Intensive Care Unit, Ospedale Alessandro Manzoni, Lecco, Lecco, Italy
| | | | - Franciszek Borys
- Poznan University of Medical Sciences, Poznan, Wielkopolskie, Poland
| | - Lotty Hooft
- Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics; Cochrane Sweden, Research and Development, Lund University, Skane University Hospital, Lund, Sweden, Lund, Sweden
| | - Kevin Jenniskens
- Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands
| |
Collapse
|
7
|
Galderisi A, Bruschettini M, Russo C, Hall R, Trevisanuto D. Continuous glucose monitoring for the prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2020; 12:CD013309. [PMID: 33348448 PMCID: PMC8092644 DOI: 10.1002/14651858.cd013309.pub2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Preterm infants are susceptible to hyperglycemia and hypoglycemia, conditions which may lead to adverse neurodevelopment. The use of continuous glucose monitoring devices (CGM) might help keeping glucose levels in the normal range, and reduce the need for blood sampling. However, the use of CGM might be associated with harms in the preterm infant. OBJECTIVES Objective one: to assess the benefits and harms of CGM alone versus standard method of glycemic measure in preterm infants. Objective two: to assess the benefits and harms of CGM with automated algorithm versus standard method of glycemic measure in preterm infants. Objective three: to assess the benefits and harms of CGM with automated algorithm versus CGM without automated algorithm in preterm infants. SEARCH METHODS We adopted the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 9), in the Cochrane Library; MEDLINE via PubMed (1966 to 25 September 2020); Embase (1980 to 25 September 2020); and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1982 to 25 September 2020). We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomized controlled trials and quasi-randomized trials. SELECTION CRITERIA Randomized controlled trials (RCTs) and quasi-RCTs in preterm infants comparing: 1) the use of CGM versus intermittent modalities to measure glycemia (comparison 1); or CGM associated with prespecified interventions to correct hypoglycemia or hyperglycemia versus CGM without such prespecified interventions (comparison 2). DATA COLLECTION AND ANALYSIS We assessed the methodological quality of included trials using Cochrane Effective Practice and Organisation of Care Group (EPOC) criteria (assessing randomization, blinding, loss to follow-up, and handling of outcome data). We evaluated treatment effects using a fixed-effect model with risk ratio (RR) for categorical data and mean, standard deviation (SD), and mean difference (MD) for continuous data. We used the GRADE approach to assess the certainty of the evidence. MAIN RESULTS Four trials enrolling 138 infants met our inclusion criteria. Investigators in three trials (118 infants) compared the use of CGM to intermittent modalities (comparison one); however one of these trials was analyzed separately because CGM was used as a standalone device, without being coupled to a control algorithm like in the other trials. A fourth trial (20 infants) assessed CGM with an automated algorithm versus CGM with a manual algorithm. None of the four included trials reported the neurodevelopmental outcome, i.e. the primary outcome of this review. Within comparison one, the certainty of the evidence on the use of CGM on mortality during hospitalization is very uncertain (typical RR 3.00, 95% CI 0.13 to 70.30; typical RD 0.04, 95% CI -0.06 to 0.14; 50 participants; 1 study; very low certainty). The number of hypoglycemic episodes was reported in two studies with conflicting data. The number of hyperglycemic episodes was reported in one study (typical MD -1.40, 95% CI -2.84 to 0.04; 50 participants; 1 study). The certainty of the evidence was very low for all outcomes because of limitations in study design, and imprecision of estimates. Three studies are ongoing. AUTHORS' CONCLUSIONS There is insufficient evidence to determine if CGM improves preterm infant mortality or morbidities. Long-term outcomes were not reported. Clinical trials are required to determine the most effective CGM and glycemic management regimens in preterm infants before larger studies can be performed to assess the efficacy of CGM for reducing mortality, morbidity and long-term neurodevelopmental impairments. The absence of CGM labelled for neonatal use is still a major limit in its use as well as the absence of dedicated neonatal devices.
Collapse
Affiliation(s)
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| | | | - Rebecka Hall
- Informatics and Technology (IT) Services Department, Cochrane Central Executive, Copenhagen, Denmark
| | - Daniele Trevisanuto
- Department of Woman's and Child's Health, University of Padova, Padova, Italy
| |
Collapse
|