1
|
Wei YH, Lin F. Barcodes based on nucleic acid sequences: Applications and challenges (Review). Mol Med Rep 2025; 32:187. [PMID: 40314098 PMCID: PMC12076290 DOI: 10.3892/mmr.2025.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/04/2025] [Indexed: 05/03/2025] Open
Abstract
Cells are the fundamental structural and functional units of living organisms and the study of these entities has remained a central focus throughout the history of biological sciences. Traditional cell research techniques, including fluorescent protein tagging and microscopy, have provided preliminary insights into the lineage history and clonal relationships between progenitor and descendant cells. However, these techniques exhibit inherent limitations in tracking the full developmental trajectory of cells and elucidating their heterogeneity, including sensitivity, stability and barcode drift. In developmental biology, nucleic acid barcode technology has introduced an innovative approach to cell lineage tracing. By assigning unique barcodes to individual cells, researchers can accurately identify and trace the origin and differentiation pathways of cells at various developmental stages, thereby illuminating the dynamic processes underlying tissue development and organogenesis. In cancer research, nucleic acid barcoding has played a pivotal role in analyzing the clonal architecture of tumor cells, exploring their heterogeneity and resistance mechanisms and enhancing our understanding of cancer evolution and inter‑clonal interactions. Furthermore, nucleic acid barcodes play a crucial role in stem cell research, enabling the tracking of stem cells from diverse origins and their derived progeny. This has offered novel perspectives on the mechanisms of stem cell self‑renewal and differentiation. The present review presented a comprehensive examination of the principles, applications and challenges associated with nucleic acid barcode technology.
Collapse
Affiliation(s)
- Ying Hong Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
2
|
Sun W, Perkins M, Huyghe M, Faraldo MM, Fre S, Perié L, Lyne AM. Extracting, filtering and simulating cellular barcodes using CellBarcode tools. NATURE COMPUTATIONAL SCIENCE 2024; 4:128-143. [PMID: 38374363 PMCID: PMC10899113 DOI: 10.1038/s43588-024-00595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Identifying true DNA cellular barcodes among polymerase chain reaction and sequencing errors is challenging. Current tools are restricted in the diversity of barcode types supported or the analysis strategies implemented. As such, there is a need for more versatile and efficient tools for barcode extraction, as well as for tools to investigate which factors impact barcode detection and which filtering strategies to best apply. Here we introduce the package CellBarcode and its barcode simulation kit, CellBarcodeSim, that allows efficient and versatile barcode extraction and filtering for a range of barcode types from bulk or single-cell sequencing data using a variety of filtering strategies. Using the barcode simulation kit and biological data, we explore the technical and biological factors influencing barcode identification and provide a decision tree on how to optimize barcode identification for different barcode settings. We believe that CellBarcode and CellBarcodeSim have the capability to enhance the reproducibility and interpretation of barcode results across studies.
Collapse
Affiliation(s)
- Wenjie Sun
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.
| | - Meghan Perkins
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Mathilde Huyghe
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Marisa M Faraldo
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.
| | - Anne-Marie Lyne
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.
- INSERM U900, Paris, France.
- MINES ParisTech, CBIO-Centre for Computational Biology, PSL Research University, Paris, France.
| |
Collapse
|
3
|
Hadj Abed L, Tak T, Cosgrove J, Perié L. CellDestiny: A RShiny application for the visualization and analysis of single-cell lineage tracing data. Front Med (Lausanne) 2022; 9:919345. [PMID: 36275810 PMCID: PMC9581332 DOI: 10.3389/fmed.2022.919345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Single-cell lineage tracing permits the labeling of individual cells with a heritable marker to follow the fate of each cell's progeny. Over the last twenty years, several single-cell lineage tracing methods have emerged, enabling major discoveries in developmental biology, oncology and gene therapies. Analytical tools are needed to draw meaningful conclusions from lineage tracing measurements, which are characterized by high variability, sparsity and technical noise. However, the single cell lineage tracing field lacks versatile and easy-to-use tools for standardized and reproducible analyses, in particular tools accessible to biologists. Here we present CellDestiny, a RShiny app and associated web application developed for experimentalists without coding skills to perform visualization and analysis of single cell lineage-tracing datasets through a graphical user interface. We demonstrate the functionality of CellDestiny through the analysis of (i) lentiviral barcoding datasets of murine hematopoietic progenitors; (ii) published integration site data from Wiskott-Aldrich Symdrome patients undergoing gene-therapy treatment; and (iii) simultaneous barcoding and transcriptomic analysis of murine hematopoietic progenitor differentiation in vitro. In summary, CellDestiny is an easy-to-use and versatile toolkit that enables biologists to visualize and analyze single-cell lineage tracing data.
Collapse
Affiliation(s)
- Louisa Hadj Abed
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
- Centre de Bio-Informatique, MINES ParisTech, Institut Curie, PSL University, Paris, France
| | - Tamar Tak
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Jason Cosgrove
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| |
Collapse
|
4
|
Tak T, Prevedello G, Simon G, Paillon N, Benlabiod C, Marty C, Plo I, Duffy KR, Perié L. HSPCs display within-family homogeneity in differentiation and proliferation despite population heterogeneity. eLife 2021; 10:60624. [PMID: 34002698 PMCID: PMC8175087 DOI: 10.7554/elife.60624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
High-throughput single-cell methods have uncovered substantial heterogeneity in the pool of hematopoietic stem and progenitor cells (HSPCs), but how much instruction is inherited by offspring from their heterogeneous ancestors remains unanswered. Using a method that enables simultaneous determination of common ancestor, division number, and differentiation status of a large collection of single cells, our data revealed that murine cells that derived from a common ancestor had significant similarities in their division progression and differentiation outcomes. Although each family diversifies, the overall collection of cell types observed is composed of homogeneous families. Heterogeneity between families could be explained, in part, by differences in ancestral expression of cell surface markers. Our analyses demonstrate that fate decisions of cells are largely inherited from ancestor cells, indicating the importance of common ancestor effects. These results may have ramifications for bone marrow transplantation and leukemia, where substantial heterogeneity in HSPC behavior is observed.
Collapse
Affiliation(s)
- Tamar Tak
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Giulio Prevedello
- Institut Curie, PSL Research University, CNRS, Orsay, France.,Université Paris-Saclay, Saclay, France
| | - Gaël Simon
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Noémie Paillon
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Camélia Benlabiod
- INSERM, UMR1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université de Paris, Paris, France
| | - Caroline Marty
- Université Paris-Saclay, Saclay, France.,INSERM, UMR1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- Université Paris-Saclay, Saclay, France.,INSERM, UMR1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Co Kildare, Ireland
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| |
Collapse
|
5
|
Nazaraliyev A, Richard E, Sawai CM. In-vivo differentiation of adult hematopoietic stem cells from a single-cell point of view. Curr Opin Hematol 2020; 27:241-247. [PMID: 32398457 DOI: 10.1097/moh.0000000000000587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Although hematopoietic stem cell (HSC) function has long been studied by transplantation assays, this does not reflect what HSCs actually do in their native context. Here, we review recent technologic advances that facilitate the study of HSCs in their native context focusing on inducible HSC-specific lineage tracing and inference of hematopoietic trajectories through single-cell RNA sequencing (scRNA-Seq). RECENT FINDINGS Lineage tracing of HSCs at the population level using multiple systems has suggested that HSCs make a major contribution to steady-state hematopoiesis. Although several genetic systems and novel methods for lineage tracing individual hematopoietic clones have been described, the technology for tracking these cellular barcodes (in particular mutations or insertion sites) is still in its infancy. Thus, lineage tracing of HSC clones in the adult bone marrow remains elusive. Static snapshots of scRNA-Seq of hematopoietic populations have captured the heterogeneity of transcriptional profiles of HSCs and progenitors, with some cells displaying a unilineage signature as well as others with bi or multipotent lineage profiles. Kinetic analysis using HSC-specific lineage tracing combined with scRNA-Seq confirmed this heterogeneity of progenitor populations and revealed a rapid and early emergence of megakaryocytic progeny, followed by erythroid and myeloid lineages, whereas lymphoid differentiation emerged last. SUMMARY New approaches to study HSCs both in vivo through lineage tracing and at a high-resolution molecular level through scRNA-Seq are providing key insight into HSC differentiation in the absence of transplantation. Recent studies using these approaches are discussed here. These studies pave the way for integration of in-vivo clonal analysis of HSC behavior over time with single-cell sequencing data, including but not limited to transcriptomic, proteomic, and epigenomic, to establish a comprehensive molecular and cellular map of hematopoiesis.
Collapse
Affiliation(s)
- Amal Nazaraliyev
- INSERM Unit 1218 ACTION, University of Bordeaux, Bergonié Cancer Institute, Bordeaux, France
| | | | | |
Collapse
|
6
|
Abstract
Diversity indices are useful single-number metrics for characterizing a complex distribution of a set of attributes across a population of interest. The utility of these different metrics or sets of metrics depends on the context and application, and whether a predictive mechanistic model exists. In this topical review, we first summarize the relevant mathematical principles underlying heterogeneity in a large population, before outlining the various definitions of 'diversity' and providing examples of scientific topics in which its quantification plays an important role. We then review how diversity has been a ubiquitous concept across multiple fields, including ecology, immunology, cellular barcoding experiments, and socioeconomic studies. Since many of these applications involve sampling of populations, we also review how diversity in small samples is related to the diversity in the entire population. Features that arise in each of these applications are highlighted.
Collapse
Affiliation(s)
- Song Xu
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, United States of America
| | | | | |
Collapse
|
7
|
Macnair W, De Vargas Roditi L, Ganscha S, Claassen M. Tree-ensemble analysis assesses presence of multifurcations in single cell data. Mol Syst Biol 2019; 15:e8552. [PMID: 30918107 PMCID: PMC6437440 DOI: 10.15252/msb.20188552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/04/2022] Open
Abstract
We introduce TreeTop, an algorithm for single cell data analysis to identify and assign a branching score to branch points in biological processes which may have multi-level branching hierarchies. We demonstrate branch point identification for processes with varying topologies, including T-cell maturation, B-cell differentiation and hematopoiesis. Our analyses are consistent with recent experimental studies suggesting a shallower hierarchy of differentiation events in hematopoiesis, rather than the classical multi-level hierarchy.
Collapse
Affiliation(s)
- Will Macnair
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | - Stefan Ganscha
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Manfred Claassen
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Bujko K, Kucia M, Ratajczak J, Ratajczak MZ. Hematopoietic Stem and Progenitor Cells (HSPCs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:49-77. [PMID: 31898781 DOI: 10.1007/978-3-030-31206-0_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) isolated from bone marrow have been successfully employed for 50 years in hematological transplantations. Currently, these cells are more frequently isolated from mobilized peripheral blood or umbilical cord blood. In this chapter, we overview several topics related to these cells including their phenotype, methods for isolation, and in vitro and in vivo assays to evaluate their proliferative potential. The successful clinical application of HSPCs is widely understood to have helped establish the rationale for the development of stem cell therapies and regenerative medicine.
Collapse
Affiliation(s)
- Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
9
|
Guilliams M, Mildner A, Yona S. Developmental and Functional Heterogeneity of Monocytes. Immunity 2018; 49:595-613. [DOI: 10.1016/j.immuni.2018.10.005] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
|
10
|
Vegh P, Haniffa M. The impact of single-cell RNA sequencing on understanding the functional organization of the immune system. Brief Funct Genomics 2018; 17:265-272. [PMID: 29547972 PMCID: PMC6063276 DOI: 10.1093/bfgp/ely003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Application of single-cell genomics technologies has revolutionized our approach to study the immune system. Unravelling the functional diversity of immune cells and their coordinated response is key to understanding immunity. Single-cell transcriptomics technologies provide high-dimensional assessment of the transcriptional states of immune cells and have been successfully applied to discover new immune cell types, reveal haematopoietic lineages, identify gene modules dictating immune responses and investigate lymphocyte antigen receptor diversity. In this review, we discuss the impact and applications of single-cell RNA sequencing technologies in immunology.
Collapse
Affiliation(s)
- Peter Vegh
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Department of Dermatology, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, Clevers H, Deplancke B, Dunham I, Eberwine J, Eils R, Enard W, Farmer A, Fugger L, Göttgens B, Hacohen N, Haniffa M, Hemberg M, Kim S, Klenerman P, Kriegstein A, Lein E, Linnarsson S, Lundberg E, Lundeberg J, Majumder P, Marioni JC, Merad M, Mhlanga M, Nawijn M, Netea M, Nolan G, Pe'er D, Phillipakis A, Ponting CP, Quake S, Reik W, Rozenblatt-Rosen O, Sanes J, Satija R, Schumacher TN, Shalek A, Shapiro E, Sharma P, Shin JW, Stegle O, Stratton M, Stubbington MJT, Theis FJ, Uhlen M, van Oudenaarden A, Wagner A, Watt F, Weissman J, Wold B, Xavier R, Yosef N. The Human Cell Atlas. eLife 2017; 6:e27041. [PMID: 29206104 DOI: 10.1101/121202] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/30/2017] [Indexed: 05/28/2023] Open
Abstract
The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.
Collapse
Affiliation(s)
- Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Ewan Birney
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Bernd Bodenmiller
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Piero Carninci
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Menna Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Hans Clevers
- Hubrecht Institute, Princess Maxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Ian Dunham
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - James Eberwine
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Roland Eils
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Enard
- Department of Biology II, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Andrew Farmer
- Takara Bio United States, Inc., Mountain View, United States
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, United States
- Massachusetts General Hospital Cancer Center, Boston, United States
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Seung Kim
- Departments of Developmental Biology and of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and the Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, United States
| | - Sten Linnarsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Genetics, Stanford University, Stanford, United States
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Musa Mhlanga
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Martijn Nawijn
- Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mihai Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Garry Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, United States
| | | | - Chris P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Quake
- Department of Applied Physics and Department of Bioengineering, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Wolf Reik
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Joshua Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Rahul Satija
- Department of Biology, New York University, New York, United States
- New York Genome Center, New York University, New York, United States
| | - Ton N Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alex Shalek
- Broad Institute of MIT and Harvard, Cambridge, United States
- Institute for Medical Engineering & Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Ehud Shapiro
- Department of Computer Science and Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, Department of Immunology, MD Anderson Cancer Center, University of Texas, Houston, United States
| | - Jay W Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Oliver Stegle
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Michael Stratton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | | - Fabian J Theis
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Matthias Uhlen
- Science for Life Laboratory and Department of Proteomics, KTH Royal Institute of Technology, Stockholm, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | | | - Allon Wagner
- Department of Electrical Engineering and Computer Science and the Center for Computational Biology, University of California, Berkeley, Berkeley, United States
| | - Fiona Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Jonathan Weissman
- Howard Hughes Medical Institute, Chevy Chase, United States
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, United States
- Center for RNA Systems Biology, University of California, San Francisco, San Francisco, United States
| | - Barbara Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ramnik Xavier
- Broad Institute of MIT and Harvard, Cambridge, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, United States
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, United States
| | - Nir Yosef
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
- Department of Electrical Engineering and Computer Science and the Center for Computational Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
12
|
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, Clevers H, Deplancke B, Dunham I, Eberwine J, Eils R, Enard W, Farmer A, Fugger L, Göttgens B, Hacohen N, Haniffa M, Hemberg M, Kim S, Klenerman P, Kriegstein A, Lein E, Linnarsson S, Lundberg E, Lundeberg J, Majumder P, Marioni JC, Merad M, Mhlanga M, Nawijn M, Netea M, Nolan G, Pe'er D, Phillipakis A, Ponting CP, Quake S, Reik W, Rozenblatt-Rosen O, Sanes J, Satija R, Schumacher TN, Shalek A, Shapiro E, Sharma P, Shin JW, Stegle O, Stratton M, Stubbington MJT, Theis FJ, Uhlen M, van Oudenaarden A, Wagner A, Watt F, Weissman J, Wold B, Xavier R, Yosef N. The Human Cell Atlas. eLife 2017; 6:e27041. [PMID: 29206104 PMCID: PMC5762154 DOI: 10.7554/elife.27041] [Citation(s) in RCA: 1381] [Impact Index Per Article: 172.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022] Open
Abstract
The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.
Collapse
Affiliation(s)
- Aviv Regev
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
| | - Eric S Lander
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Ido Amit
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and ImmunobiologyHarvard Medical SchoolBostonUnited States
| | - Ewan Birney
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
| | - Bernd Bodenmiller
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Institute of Molecular Life SciencesUniversity of ZürichZürichSwitzerland
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Piero Carninci
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
| | - Menna Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular BiologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Hans Clevers
- Hubrecht Institute, Princess Maxima Center for Pediatric Oncology and University Medical Center UtrechtUtrechtThe Netherlands
| | - Bart Deplancke
- Institute of Bioengineering, School of Life SciencesSwiss Federal Institute of Technology (EPFL)LausanneSwitzerland
| | - Ian Dunham
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
| | - James Eberwine
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Roland Eils
- Division of Theoretical Bioinformatics (B080)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuantHeidelberg UniversityHeidelbergGermany
| | - Wolfgang Enard
- Department of Biology IILudwig Maximilian University MunichMartinsriedGermany
| | - Andrew Farmer
- Takara Bio United States, Inc.Mountain ViewUnited States
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Berthold Göttgens
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust-MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Nir Hacohen
- Broad Institute of MIT and HarvardCambridgeUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - Muzlifah Haniffa
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Seung Kim
- Departments of Developmental Biology and of MedicineStanford University School of MedicineStanfordUnited States
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and the Translational Gastroenterology Unit, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
- Oxford NIHR Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoUnited States
| | - Ed Lein
- Allen Institute for Brain ScienceSeattleUnited States
| | - Sten Linnarsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Emma Lundberg
- Science for Life Laboratory, School of BiotechnologyKTH Royal Institute of TechnologyStockholmSweden
- Department of GeneticsStanford UniversityStanfordUnited States
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologyStockholmSweden
| | | | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Miriam Merad
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Musa Mhlanga
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Martijn Nawijn
- Department of Pathology and Medical Biology, GRIAC Research InstituteUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Mihai Netea
- Department of Internal Medicine and Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Garry Nolan
- Department of Microbiology and ImmunologyStanford UniversityStanfordUnited States
| | - Dana Pe'er
- Computational and Systems Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | | | - Chris P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Stephen Quake
- Department of Applied Physics and Department of BioengineeringStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Wolf Reik
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Epigenetics ProgrammeThe Babraham InstituteCambridgeUnited Kingdom
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Joshua Sanes
- Center for Brain Science and Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
| | - Rahul Satija
- Department of BiologyNew York UniversityNew YorkUnited States
- New York Genome CenterNew York UniversityNew YorkUnited States
| | - Ton N Schumacher
- Division of ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Alex Shalek
- Broad Institute of MIT and HarvardCambridgeUnited States
- Institute for Medical Engineering & Science (IMES) and Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| | - Ehud Shapiro
- Department of Computer Science and Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, Department of Immunology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
| | - Jay W Shin
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
| | - Oliver Stegle
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
| | - Michael Stratton
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | - Fabian J Theis
- Institute of Computational BiologyGerman Research Center for Environmental Health, Helmholtz Center MunichNeuherbergGermany
- Department of MathematicsTechnical University of MunichGarchingGermany
| | - Matthias Uhlen
- Science for Life Laboratory and Department of ProteomicsKTH Royal Institute of TechnologyStockholmSweden
- Novo Nordisk Foundation Center for BiosustainabilityDanish Technical UniversityLyngbyDenmark
| | | | - Allon Wagner
- Department of Electrical Engineering and Computer Science and the Center for Computational BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Fiona Watt
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
| | - Jonathan Weissman
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Cellular & Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- California Institute for Quantitative Biomedical ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Center for RNA Systems BiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Barbara Wold
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Ramnik Xavier
- Broad Institute of MIT and HarvardCambridgeUnited States
- Center for Computational and Integrative BiologyMassachusetts General HospitalBostonUnited States
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel DiseaseMassachusetts General HospitalBostonUnited States
- Center for Microbiome Informatics and TherapeuticsMassachusetts Institute of TechnologyCambridgeUnited States
| | - Nir Yosef
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Department of Electrical Engineering and Computer Science and the Center for Computational BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Human Cell Atlas Meeting Participants
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
- Division of Immunology, Department of Microbiology and ImmunobiologyHarvard Medical SchoolBostonUnited States
- Institute of Molecular Life SciencesUniversity of ZürichZürichSwitzerland
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular BiologyUniversity of CambridgeCambridgeUnited Kingdom
- Hubrecht Institute, Princess Maxima Center for Pediatric Oncology and University Medical Center UtrechtUtrechtThe Netherlands
- Institute of Bioengineering, School of Life SciencesSwiss Federal Institute of Technology (EPFL)LausanneSwitzerland
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Division of Theoretical Bioinformatics (B080)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuantHeidelberg UniversityHeidelbergGermany
- Department of Biology IILudwig Maximilian University MunichMartinsriedGermany
- Takara Bio United States, Inc.Mountain ViewUnited States
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Wellcome Trust-MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Massachusetts General Hospital Cancer CenterBostonUnited States
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Departments of Developmental Biology and of MedicineStanford University School of MedicineStanfordUnited States
- Peter Medawar Building for Pathogen Research and the Translational Gastroenterology Unit, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
- Oxford NIHR Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Allen Institute for Brain ScienceSeattleUnited States
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Science for Life Laboratory, School of BiotechnologyKTH Royal Institute of TechnologyStockholmSweden
- Department of GeneticsStanford UniversityStanfordUnited States
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologyStockholmSweden
- National Institute of Biomedical GenomicsKalyaniIndia
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkUnited States
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Department of Pathology and Medical Biology, GRIAC Research InstituteUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Internal Medicine and Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Microbiology and ImmunologyStanford UniversityStanfordUnited States
- Computational and Systems Biology ProgramSloan Kettering InstituteNew YorkUnited States
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
- Department of Applied Physics and Department of BioengineeringStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Epigenetics ProgrammeThe Babraham InstituteCambridgeUnited Kingdom
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUnited Kingdom
- Center for Brain Science and Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- Department of BiologyNew York UniversityNew YorkUnited States
- New York Genome CenterNew York UniversityNew YorkUnited States
- Division of ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Institute for Medical Engineering & Science (IMES) and Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Department of Computer Science and Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
- Department of Genitourinary Medical Oncology, Department of Immunology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
- Institute of Computational BiologyGerman Research Center for Environmental Health, Helmholtz Center MunichNeuherbergGermany
- Department of MathematicsTechnical University of MunichGarchingGermany
- Science for Life Laboratory and Department of ProteomicsKTH Royal Institute of TechnologyStockholmSweden
- Novo Nordisk Foundation Center for BiosustainabilityDanish Technical UniversityLyngbyDenmark
- Hubrecht Institute and University Medical Center UtrechtUtrechtThe Netherlands
- Department of Electrical Engineering and Computer Science and the Center for Computational BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
- Department of Cellular & Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- California Institute for Quantitative Biomedical ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Center for RNA Systems BiologyUniversity of California, San FranciscoSan FranciscoUnited States
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
- Center for Computational and Integrative BiologyMassachusetts General HospitalBostonUnited States
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel DiseaseMassachusetts General HospitalBostonUnited States
- Center for Microbiome Informatics and TherapeuticsMassachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
13
|
Robin C, Lacaud G, Jaffredo T. Shedding light on hematopoietic stem cells: formation, regulation, and utilization. FEBS Lett 2016; 590:3963-3964. [PMID: 27891601 DOI: 10.1002/1873-3468.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center, Utrecht, The Netherlands.,Department of Cell Biology, University Medical Center, Utrecht, The Netherlands
| | | | | |
Collapse
|