1
|
Abstract
From the first clinical trial by Dr. W.F. Anderson to the most recent US Food and Drug Administration-approved Luxturna (Spark Therapeutics, 2017) and Zolgensma (Novartis, 2019), gene therapy has revamped thinking and practice around cancer treatment and improved survival rates for adult and pediatric patients with genetic diseases. A major challenge to advancing gene therapies for a broader array of applications lies in safely delivering nucleic acids to their intended sites of action. Peptides offer unique potential to improve nucleic acid delivery based on their versatile and tunable interactions with biomolecules and cells. Cell-penetrating peptides and intracellular targeting peptides have received particular focus due to their promise for improving the delivery of gene therapies into cells. We highlight key examples of peptide-assisted, targeted gene delivery to cancer-specific signatures involved in tumor growth and subcellular organelle-targeting peptides, as well as emerging strategies to enhance peptide stability and bioavailability that will support long-term implementation.
Collapse
Affiliation(s)
- Sandeep Urandur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| |
Collapse
|
2
|
Shueng PW, Yu LY, Hou HH, Chiu HC, Lo CL. Charge Conversion Polymer–Liposome Complexes to Overcome the Limitations of Cationic Liposomes in Mitochondrial-Targeting Drug Delivery. Int J Mol Sci 2022; 23:ijms23063080. [PMID: 35328500 PMCID: PMC8954455 DOI: 10.3390/ijms23063080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial-targeting therapy is considered an important strategy for cancer treatment. (3-Carboxypropyl) triphenyl phosphonium (CTPP) is one of the candidate molecules that can drive drugs or nanomedicines to target mitochondria via electrostatic interactions. However, the mitochondrial-targeting effectiveness of CTPP is low. Therefore, pH-sensitive polymer–liposome complexes with charge-conversion copolymers and CTPP-containing cationic liposomes were designed for efficiently delivering an anti-cancer agent, ceramide, into cancer cellular mitochondria. The charge-conversion copolymers, methoxypoly(ethylene glycol)-block-poly(methacrylic acid-g-histidine), were anionic and helped in absorbing and shielding the positive charges of cationic liposomes at pH 7.4. In contrast, charge-conversion copolymers became neutral in order to depart from cationic liposomes and induced endosomal escape for releasing cationic liposomes into cytosol at acidic endosomes. The experimental results reveal that these pH-sensitive polymer–liposome complexes could rapidly escape from MCF-7 cell endosomes and target MCF-7 mitochondria within 3 h, thereby leading to the generation of reactive oxygen species and cell apoptosis. These findings provide a promising solution for cationic liposomes in cancer mitochondrial-targeting drug delivery.
Collapse
Affiliation(s)
- Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Lu-Yi Yu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (L.-Y.Y.); (H.-H.H.)
| | - Hsiao-Hsin Hou
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (L.-Y.Y.); (H.-H.H.)
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 300, Taiwan;
| | - Chun-Liang Lo
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (L.-Y.Y.); (H.-H.H.)
- Correspondence:
| |
Collapse
|
3
|
Huang F, Tang X, Ye B, Wu S, Ding K. PSL-LCCL: a resource for subcellular protein localization in liver cancer cell line SK_HEP1. Database (Oxford) 2022; 2022:6521743. [PMID: 35134877 PMCID: PMC9248857 DOI: 10.1093/database/baab087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
The characterization of subcellular protein localization provides a basis for further
understanding cellular behaviors. A delineation of subcellular localization of proteins on
cytosolic membrane-bound organelles in human liver cancer cell lines (hLCCLs) has yet to
be performed. To obtain its proteome-wide view, we isolated and enriched six cytosolic
membrane-bound organelles in one of the hLCCLs (SK_HEP1) and quantified their proteins
using mass spectrometry. The vigorous selection of marker proteins and a
machine-learning-based algorithm were implemented to localize proteins at cluster and
neighborhood levels. We validated the performance of the proposed method by comparing the
predicted subcellular protein localization with publicly available resources. The profiles
enabled investigating the correlation of protein domains with their subcellular
localization and colocalization of protein complex members. A subcellular proteome
database for SK_HEP1, including (i) the subcellular protein localization and (ii) the
subcellular locations of protein complex members and their interactions, was constructed.
Our research provides resources for further research on hLCCLs proteomics. Database URL: http://www.igenetics.org.cn/project/PSL-LCCL/
Collapse
Affiliation(s)
| | | | - Bo Ye
- Department of Bioinformatics, School of Basic
Medicine, Chongqing Medical University, #1 Road Yixueyuan, Yuzhong
District, Chongqing 400016, People’s Republic of China
| | - Songfeng Wu
- *Correspondence may also be addressed to Songfeng Wu. Tel:
+8610-61777053; and Keyue Ding. Tel:
+86371-87160116;
| | - Keyue Ding
- *Correspondence may also be addressed to Songfeng Wu. Tel:
+8610-61777053; and Keyue Ding. Tel:
+86371-87160116;
| |
Collapse
|
4
|
Cerrato CP, Langel Ü. An update on cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 2022; 19:133-146. [PMID: 35086398 DOI: 10.1080/17425247.2022.2034784] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Cell-penetrating peptide (CPP) technologies represent an important strategy to address drug delivery to specific intracellular compartments by covalent conjugation to targeting sequences, potentially enabling strategies to combat most diseases. AREAS COVERED This updated review article provides an overview of current intracellular organelle targeting by CPP. The targeting strategies of CPP and CPP/cargo complexes to specific cells or intracellular organelles are summarized, and the review provides an update on the current data for their pharmacological and therapeutical applications. EXPERT OPINION Targeted drug delivery is moving from the level of tissue or specific pathogenic cell to the level of specific organelle that is the target of the drug, an important aspect in drug design and development. Organelle-targeted drug delivery results in improved efficacy, ability to control mode of action, reduction of undesired toxicities and side effects, and possibility to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Ülo Langel
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Rochette L, Rigal E, Dogon G, Malka G, Zeller M, Vergely C, Cottin Y. Mitochondrial-derived peptides: New markers for cardiometabolic dysfunction. Arch Cardiovasc Dis 2022; 115:48-56. [PMID: 34972639 DOI: 10.1016/j.acvd.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
Great attention is being paid to the evaluation of new markers in blood circulation for the estimation of tissue metabolism disturbance. This endogenous disturbance may contribute to the onset and progression of cardiometabolic disease. In addition to their role in energy production and metabolism, mitochondria play a main function in cellular mechanisms, including apoptosis, oxidative stress and calcium homeostasis. Mitochondria produce mitochondrial-derived peptides that mediate the transcriptional stress response by translocating into the nucleus and interacting with deoxyribonucleic acid. This class of peptides includes humanin, mitochondrial open reading frame of the 12S ribosomal ribonucleic acid type c (MOTS-c) and small humanin-like peptides. Mitochondrial-derived peptides are regulators of metabolism, exerting cytoprotective effects through antioxidative stress, anti-inflammatory responses and antiapoptosis; they are emerging biomarkers reflecting mitochondrial function, and the circulating concentration of these proteins can be used to diagnose cardiometabolic dysfunction. The aims of this review are: (1) to describe the emerging role for mitochondrial-derived peptides as biomarkers; and (2) to discuss the therapeutic application of these peptides.
Collapse
Affiliation(s)
- Luc Rochette
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France.
| | - Eve Rigal
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Geoffrey Dogon
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Gabriel Malka
- Centre interface applications médicales (CIAM), université Mohammed VI Polytechnique, 43150 Ben Guerir, Morocco
| | - Marianne Zeller
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Catherine Vergely
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Yves Cottin
- Cardiology Unit, CHU de Dijon-Bourgogne, 21000 Dijon, France
| |
Collapse
|
6
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
7
|
Faria R, Vivés E, Boisguerin P, Sousa A, Costa D. Development of Peptide-Based Nanoparticles for Mitochondrial Plasmid DNA Delivery. Polymers (Basel) 2021; 13:1836. [PMID: 34206125 PMCID: PMC8199553 DOI: 10.3390/polym13111836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/25/2022] Open
Abstract
A mitochondrion is a cellular organelle able to produce cellular energy in the form of adenosine triphosphate (ATP). As in the nucleus, mitochondria contain their own genome: the mitochondrial DNA (mtDNA). This genome is particularly susceptible to mutations that are at the basis of a multitude of disorders, especially those affecting the heart, the central nervous system and muscles. Conventional clinical practice applied to mitochondrial diseases is very limited and ineffective; a clear need for innovative therapies is demonstrated. Gene therapy seems to be a promising approach. The use of mitochondrial DNA as a therapeutic, optimized by peptide-based complexes with mitochondrial targeting, can be seen as a powerful tool in the reestablishment of normal mitochondrial function. In line with this requirement, in this work and for the first time, a mitochondrial-targeting sequence (MTS) has been incorporated into previously researched peptides, to confer on them a targeting ability. These peptides were then considered to complex a plasmid DNA (pDNA) which contains the mitochondrial gene ND1 (mitochondrially encoded NADH dehydrogenase 1 protein), aiming at the formation of peptide-based nanoparticles. Currently, the ND1 plasmid is one of the most advanced bioengineered vectors for conducting research on mitochondrial gene expression. The formed complexes were characterized in terms of pDNA complexation capacity, morphology, size, surface charge and cytotoxic profile. These data revealed that the developed carriers possess suitable properties for pDNA delivery. Furthermore, in vitro studies illustrated the mitochondrial targeting ability of the novel peptide/pDNA complexes. A comparison between the different complexes revealed the most promising ones that complex pDNA and target mitochondria. This may contribute to the optimization of peptide-based non-viral systems to target mitochondria, instigating progress in mitochondrial gene therapy.
Collapse
Affiliation(s)
- Rúben Faria
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (R.F.); (A.S.)
| | - Eric Vivés
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Prisca Boisguerin
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Angela Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (R.F.); (A.S.)
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (R.F.); (A.S.)
| |
Collapse
|
8
|
Feger G, Angelov B, Angelova A. Prediction of Amphiphilic Cell-Penetrating Peptide Building Blocks from Protein-Derived Amino Acid Sequences for Engineering of Drug Delivery Nanoassemblies. J Phys Chem B 2020; 124:4069-4078. [PMID: 32337991 DOI: 10.1021/acs.jpcb.0c01618] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amphiphilic molecules, forming self-assembled nanoarchitectures, are typically composed of hydrophobic and hydrophilic domains. Peptide amphiphiles can be designed from two, three, or four building blocks imparting novel structural and functional properties and affinities for interaction with cellular membranes or intracellular organelles. Here we present a combined numerical approach to design amphiphilic peptide scaffolds that are derived from the human nuclear Ki-67 protein. Ki-67 acts, like a biosurfactant, as a steric and electrostatic charge barrier against the collapse of mitotic chromosomes. The proposed predictive design of new Ki-67 protein-derived amphiphilic amino acid sequences exploits the computational outcomes of a set of web-accessible predictors, which are based on machine learning methods. The ensemble of such artificial intelligence algorithms, involving support vector machine (SVM), random forest (RF) classifiers, and neural networks (NN), enables the nanoengineering of a broad range of innovative peptide materials for therapeutic delivery in various applications. Amphiphilic cell-penetrating peptides (CPP), derived from natural protein sequences, may spontaneously form self-assembled nanocarriers characterized by enhanced cellular uptake. Thanks to their inherent low immunogenicity, they may enable the safe delivery of therapeutic molecules across the biological barriers.
Collapse
Affiliation(s)
- Guillaume Feger
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay UMR8612, F-92296 Châtenay-Malabry, France
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay UMR8612, F-92296 Châtenay-Malabry, France
| |
Collapse
|
9
|
Kim S, Nam HY, Lee J, Seo J. Mitochondrion-Targeting Peptides and Peptidomimetics: Recent Progress and Design Principles. Biochemistry 2019; 59:270-284. [PMID: 31696703 DOI: 10.1021/acs.biochem.9b00857] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are multifunctional subcellular organelles whose operations encompass energy production, signal transduction, and metabolic regulation. Given their wide range of roles, they have been studied extensively as a potential therapeutic target for the treatment of various diseases, including cancer, diabetes, and neurodegenerative diseases. Mitochondrion-mediated pathways have been identified as promising targets in the context of these diseases. However, the delivery of specific probes and drugs to the mitochondria is one of the major problems that remains to be solved. Over the past decade, much effort has been devoted to developing mitochondrion-targeted delivery methods based on the membrane characteristics and the protein import machinery of mitochondria. While various methods utilizing small molecules to polymeric particles have been introduced, it is notable that many of these compounds share common structural elements and physicochemical properties for optimal selectivity and efficiency. In this Perspective, we will review the most recently developed mitochondrion-targeting peptides and peptidomimetics to outline the key aspects of structural requirements and design principles. We will also discuss successful and potential applications of mitochondrial delivery to assess opportunities and challenges in the targeting of mitochondria.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science , Sungshin University , Seoul 01133 , Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| |
Collapse
|
10
|
Cationic Oligopeptide-Functionalized Mitochondria Targeting Sequence Show Mitochondria Targeting and Anticancer Activity. Macromol Res 2019. [DOI: 10.1007/s13233-019-7153-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Popov LD. Mitochondrial peptides—appropriate options for therapeutic exploitation. Cell Tissue Res 2019; 377:161-165. [DOI: 10.1007/s00441-019-03049-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
|
12
|
Klimpel A, Neundorf I. Bifunctional peptide hybrids targeting the matrix of mitochondria. J Control Release 2018; 291:147-156. [DOI: 10.1016/j.jconrel.2018.10.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022]
|
13
|
Gong Z, Ikonomova SP, Karlsson AJ. Secondary structure of cell-penetrating peptides during interaction with fungal cells. Protein Sci 2018; 27:702-713. [PMID: 29247564 PMCID: PMC5818750 DOI: 10.1002/pro.3364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022]
Abstract
Cell-penetrating peptides (CPPs) are peptides that cross cell membranes, either alone or while carrying molecular cargo. Although their interactions with mammalian cells have been widely studied, much less is known about their interactions with fungal cells, particularly at the biophysical level. We analyzed the interactions of seven CPPs (penetratin, Pep-1, MPG, pVEC, TP-10, MAP, and cecropin B) with the fungal pathogen Candida albicans using experiments and molecular simulations. Circular dichroism (CD) of the peptides revealed a structural transition from a random coil or weak helix to an α-helix occurs for all peptides when the solvent is changed from aqueous to hydrophobic. However, CD performed in the presence of C. albicans cells showed that proximity to the cell membrane is not necessarily sufficient to induce this structural transition, as penetratin, Pep-1, and MPG did not display a structural shift in the presence of cells. Monte Carlo simulations were performed to further probe the molecular-level interaction with the cell membrane, and these simulations suggested that pVEC, TP-10, MAP, and cecropin B strongly penetrate into the hydrophobic domain of the membrane lipid bilayer, inducing a transition to an α-helical conformation. In contrast, penetratin, Pep-1 and MPG remained in the hydrophilic region without a shift in conformation. The experimental data and MC simulations combine to explain how peptide structure affects their interaction with cells and their mechanism of translocation into cells (direct translocation vs. endocytosis). Our work also highlights the utility of combining biophysical experiments, biological experiments, and molecular modeling to understand biological phenomena.
Collapse
Affiliation(s)
- Zifan Gong
- Department of Chemical and Biomolecular EngineeringUniversity of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College ParkMaryland20742
| | - Svetlana P. Ikonomova
- Department of Chemical and Biomolecular EngineeringUniversity of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College ParkMaryland20742
| | - Amy J. Karlsson
- Department of Chemical and Biomolecular EngineeringUniversity of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College ParkMaryland20742
| |
Collapse
|