1
|
Yoon HS, Tsugama D. Overexpression of the tomato nuclear-cytoplasmic shuttling bZIP transcription factor VSF-1 in Arabidopsis retards plant development under mannitol-stressed conditions. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154476. [PMID: 40138856 DOI: 10.1016/j.jplph.2025.154476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/22/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
VASCULAR SPECIFICITY FACTOR 1 (VSF-1) is a basic leucine zipper transcription factor identified in tomato (Solanum lycopersicum L.). VSF-1 regulates vascular-specific gene expression and is homologous to an Arabidopsis thaliana mechanical stress regulator, VIP1, but physiological roles for VSF-1 remain unclear. Here, we demonstrate that VSF-1 shuttles between the nucleus and the cytoplasm in response to hypo-osmotic stress. In Arabidopsis plants overexpressing the VSF-1-GFP fusion protein, VSF-1-GFP was mainly detected in the cytoplasm under unstressed conditions but in the nucleus under hypo-osmotically stressed conditions. VSF-1 contains three serine residues within HXRXXS motifs, which can serve as its phosphorylation and 14-3-3 protein-binding sites. In a transient gene expression system in Nicotiana benthamiana leaves, GFP-fused VSF-1 variants where those serine residues were replaced with alanine exhibited nuclear accumulation even under unstressed conditions. GFP-fused VSF-1 variants lacking those HXRXXS motifs also exhibited such nuclear accumulation. The VSF-1 variants lacking those HXRXXS motifs failed to interact with 14-3-3 proteins in a yeast two-hybrid system. These findings suggest that the nuclear accumulation of VSF-1 is triggered by hypo-osmotic stress through its dissociation from 14-3-3 proteins, similar to that of VIP1. The Arabidopsis VSF-1-GFP-overexpressing lines exhibited retarded germination and growth in the presence of mannitol, which can induce hyper-osmotic stress and repress nuclear accumulation of VSF-1. These results are consistent with phenotypes from VIP1-GFP-overexpressing lines in a previous study, indicating a conserved role for VIP1 and VSF-1 in regulating osmotic stress responses.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan; Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| |
Collapse
|
2
|
Li F, Wang J, Wang P, Li L. Dephosphorylation of bZIP59 by PP2A ensures appropriate shade avoidance response in Arabidopsis. Dev Cell 2025; 60:551-566.e6. [PMID: 39536759 DOI: 10.1016/j.devcel.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Changes in light quality and quantity experienced by many shade-intolerant plants grown in close proximity lead to transcriptional reprogramming and shade avoidance syndrome (SAS). Despite the importance of phosphorylation-dependent signaling in cellular physiology, phosphorylation events during SAS are largely unknown. Here, we examined shade-regulated phosphorylation events in Arabidopsis using quantitative phosphoproteomics. We confirmed shade-induced dephosphorylation of bZIP59, a basic region/leucine zipper motif (bZIP) transcription factor. Shade treatment promotes the nuclear localization of bZIP59, which can be mimicked by mutation of the phosphorylation sites on bZIP59. Phenotypic analysis identified that bZIP59 negatively regulated shade-induced hypocotyl elongation. bZIP59 repressed the shade-induced activation of certain growth-related genes, while shade increased the DNA binding of bZIP59. Furthermore, the protein phosphatase 2A (PP2A) mediated dephosphorylation of bZIP59. Our study characterized a previously unidentified mechanism by which the phytochrome B (phyB)-PP2A-bZIP59 regulatory module integrates shade signals and transcriptomes, broadening our knowledge of phosphorylation strategies for rapid adaptation to shade.
Collapse
Affiliation(s)
- Fengquan Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Jiayu Wang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
3
|
Xu L, Lu Y, Jiang J, Chen Q, Xu Y, Mi Q, Xiang H, Lu L, Li X, Gao Q, Li L. The 14-3-3 protein nt GF14e interacts with CIPK2 and increases low potassium stress in tobacco. PLANT SIGNALING & BEHAVIOR 2024; 19:2359257. [PMID: 38825861 PMCID: PMC11152103 DOI: 10.1080/15592324.2024.2359257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
Potassium (K+) plays a role in enzyme activation, membrane transport, and osmotic regulation processes. An increase in potassium content can significantly improve the elasticity and combustibility of tobacco and reduce the content of harmful substances. Here, we report that the expression analysis of Nt GF14e, a 14-3-3 gene, increased markedly after low-potassium treatment (LK). Then, chlorophyll content, POD activity and potassium content, were significantly increased in overexpression of Nt GF14e transgenic tobacco lines compared with those in the wild type plants. The net K+ efflux rates were severely lower in the transgenic plants than in the wild type under LK stress. Furthermore, transcriptome analysis identified 5708 upregulated genes and 2787 downregulated genes between Nt GF14e overexpressing transgenic tobacco plants. The expression levels of some potassium-related genes were increased, such as CBL-interacting protein kinase 2 (CIPK2), Nt CIPK23, Nt CIPK25, H+-ATPase isoform 2 a (AHA2a), Nt AHA4a, Stelar K+ outward rectifier 1(SKOR1), and high affinity K+ transporter 5 (HAK5). The result of yeast two-hybrid and luciferase complementation imaging experiments suggested Nt GF14e could interact with CIPK2. Overall, these findings indicate that NtGF14e plays a vital roles in improving tobacco LK tolerance and enhancing potassium nutrition signaling pathways in tobacco plants.
Collapse
Affiliation(s)
- Li Xu
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, Yunnan, People’s Republic of China
| | - Yifei Lu
- College of Agronomy, Sichuan Agriculture University, Chengdu, People’s Republic of China
| | - Jiarui Jiang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, Yunnan, People’s Republic of China
| | - Qian Chen
- College of Agronomy, Sichuan Agriculture University, Chengdu, People’s Republic of China
| | - Yong Xu
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, Yunnan, People’s Republic of China
| | - Qili Mi
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, Yunnan, People’s Republic of China
| | - Haiying Xiang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, Yunnan, People’s Republic of China
| | - Liming Lu
- College of Agronomy, Sichuan Agriculture University, Chengdu, People’s Republic of China
| | - Xuemei Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, Yunnan, People’s Republic of China
| | - Qian Gao
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, Yunnan, People’s Republic of China
| | - Liqin Li
- College of Agronomy, Sichuan Agriculture University, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. Characterizing the role of PP2A B'' family subunits in mechanical stress response and plant development through calcium and ABA signaling in Arabidopsis thaliana. PLoS One 2024; 19:e0313590. [PMID: 39541304 PMCID: PMC11563394 DOI: 10.1371/journal.pone.0313590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Protein phosphatase 2AB'' (PP2A B'') family subunits have calcium-binding EF-hand motifs, facilitating interaction with PP2A substrates. In Arabidopsis thaliana, the PP2A B'' family subunits consist of six members, AtB''α-ε and FASS. These subunits can interact with a basic leucine zipper transcription factor, VIP1, and its close homologs. Mechanical stress triggers PP2A-mediated dephosphorylation of VIP1 and its close homologs, leading to nuclear localization and gene upregulation to alleviate touch-induced root bending and leaf damage. However, the physiological roles of PP2A B'' family subunits in the mechanical stress response in Arabidopsis remain unclear. This study aims to characterize such roles. A quadruple knockout mutant with T-DNA insertions in AtB''α, AtB''β, AtB''γ, and AtB''δ was generated. atb''αβγδ mutants exhibited no significant damage upon brushing or touch-induced root bending compared to the wild type. Transcriptome analysis showed a significant decrease in the expression of CYP707A3, a gene potentially targeted by VIP1 that regulates abscisic acid (ABA) catabolism, in the atb''αβγδ mutant compared to wild type leaves. However, other genes, including XTH23, EXLA1, and CYP707A1, also VIP1 targets, exhibited similar induction in both brushed atb''αβγδ mutants and wild type leaves. We observed an enrichment of the CAMTA motif, CGCG(C/T) in the promoters of genes showing downregulated expression levels in brushed atb''αβγδ leaves compared to brushed wild type leaves. These findings suggest that PP2A B'' family subunits exhibit functional redundancy in the VIP1-dependent pathway but influence CAMTA-dependent gene expression under mechanical stress. Under calcium-deficient and ABA-supplemented conditions, growth of atb''αβγδ seedlings was retarded when compared to wild type and single knockout mutants, atb''γ and atb''δ, indicating a crucial role in plant development by modulating calcium or ABA signaling.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
- Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, China
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
5
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. VIP1 and its close homologs confer mechanical stress tolerance in Arabidopsis leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109021. [PMID: 39137679 DOI: 10.1016/j.plaphy.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
VIP1, an Arabidopsis thaliana basic leucine zipper transcription factor, and its close homologs are imported from the cytoplasm to the nucleus when cells are exposed to mechanical stress. They bind to AGCTG (G/T) and regulate mechanical stress responses in roots. However, their role in leaves is unclear. To clarify this, mutant lines (QM1 and QM2) that lack the functions of VIP1 and its close homologs (bZIP29, bZIP30 and PosF21) were generated. Brushing more severely damaged QM1 and QM2 leaves than wild-type leaves. Genes regulating stress responses and cell wall properties were downregulated in brushed QM2 leaves and upregulated in brushed VIP1-GFP-overexpressing (VIP1-GFPox) leaves compared to wild-type leaves in a transcriptome analysis. The VIP1-binding sequence AGCTG (G/T) was enriched in the promoters of genes downregulated in brushed QM2 leaves compared to wild-type leaves and in those upregulated in brushed VIP1-GFPox leaves. Calmodulin-binding transcription activators (CAMTAs) are known regulators of mechanical stress responses, and the CAMTA-binding sequence CGCGT was enriched in the promoters of genes upregulated in the brushed QM2 leaves and in those downregulated in the brushed VIP1-GFPox leaves. These findings suggest that VIP1 and its homologs upregulate genes via AGCTG (G/T) and influence CAMTA-dependent gene expression to enhance mechanical stress tolerance in leaves.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, 060-8589, Japan.
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, PR China.
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| |
Collapse
|
6
|
Shao X, Zhang Z, Yang F, Yu Y, Guo J, Li J, Xu T, Pan X. Chilling stress response in tobacco seedlings: insights from transcriptome, proteome, and phosphoproteome analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1390993. [PMID: 38872895 PMCID: PMC11170286 DOI: 10.3389/fpls.2024.1390993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Tobacco (Nicotiana tabacum L.) is an important industrial crop, which is sensitive to chilling stress. Tobacco seedlings that have been subjected to chilling stress readily flower early, which seriously affects the yield and quality of their leaves. Currently, there has been progress in elucidating the molecular mechanisms by which tobacco responds to chilling stress. However, little is known about the phosphorylation that is mediated by chilling. In this study, the transcriptome, proteome and phosphoproteome were analyzed to elucidate the mechanisms of the responses of tobacco shoot and root to chilling stress (4 °C for 24 h). A total of 6,113 differentially expressed genes (DEGs), 153 differentially expressed proteins (DEPs) and 345 differential phosphopeptides were identified in the shoot, and the corresponding numbers in the root were 6,394, 212 and 404, respectively. This study showed that the tobacco seedlings to 24 h of chilling stress primarily responded to this phenomenon by altering their levels of phosphopeptide abundance. Kyoto Encyclopedia of Genes and Genomes analyses revealed that starch and sucrose metabolism and endocytosis were the common pathways in the shoot and root at these levels. In addition, the differential phosphopeptide corresponding proteins were also significantly enriched in the pathways of photosynthesis-antenna proteins and carbon fixation in photosynthetic organisms in the shoot and arginine and proline metabolism, peroxisome and RNA transport in the root. These results suggest that phosphoproteins in these pathways play important roles in the response to chilling stress. Moreover, kinases and transcription factors (TFs) that respond to chilling at the levels of phosphorylation are also crucial for resistance to chilling in tobacco seedlings. The phosphorylation or dephosphorylation of kinases, such as CDPKs and RLKs; and TFs, including VIP1-like, ABI5-like protein 2, TCP7-like, WRKY 6-like, MYC2-like and CAMTA7 among others, may play essential roles in the transduction of tobacco chilling signal and the transcriptional regulation of the genes that respond to chilling stress. Taken together, these findings provide new insights into the molecular mechanisms and regulatory networks of the responses of tobacco to chilling stress.
Collapse
Affiliation(s)
- Xiuhong Shao
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| | - Zhenchen Zhang
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| | - Faheng Yang
- China National Tobacco Corporation, Guangdong Company, Guangzhou, China
| | - Yongchao Yu
- China National Tobacco Corporation, Guangdong Company, Guangzhou, China
| | - Junjie Guo
- China National Tobacco Corporation, Guangdong Company, Guangzhou, China
| | - Jiqin Li
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| | - Tingyu Xu
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou, China
| |
Collapse
|
7
|
Marathe S, Grotewold E, Otegui MS. Should I stay or should I go? Trafficking of plant extra-nuclear transcription factors. THE PLANT CELL 2024; 36:1524-1539. [PMID: 38163635 PMCID: PMC11062434 DOI: 10.1093/plcell/koad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/03/2024]
Abstract
At the heart of all biological processes lies the control of nuclear gene expression, which is primarily achieved through the action of transcription factors (TFs) that generally contain a nuclear localization signal (NLS) to facilitate their transport into the nucleus. However, some TFs reside in the cytoplasm in a transcriptionally inactive state and only enter the nucleus in response to specific signals, which in plants include biotic or abiotic stresses. These extra-nuclear TFs can be found in the cytosol or associated with various membrane systems, including the endoplasmic reticulum and plasma membrane. They may be integral proteins with transmembrane domains or associate peripherally with the lipid bilayer via acylation or membrane-binding domains. Although over 30 plant TFs, most of them involved in stress responses, have been experimentally shown to reside outside the nucleus, computational predictions suggest that this number is much larger. Understanding how extra-nuclear TFs are trafficked into the nucleus is essential for reconstructing transcriptional regulatory networks that govern major cellular pathways in response to biotic and abiotic signals. Here, we provide a perspective on what is known on plant extranuclear-nuclear TF retention, nuclear trafficking, and the post-translational modifications that ultimately enable them to regulate gene expression upon entering the nucleus.
Collapse
Affiliation(s)
- Sarika Marathe
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Ren H, Zhang Y, Zhong M, Hussian J, Tang Y, Liu S, Qi G. Calcium signaling-mediated transcriptional reprogramming during abiotic stress response in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:210. [PMID: 37728763 DOI: 10.1007/s00122-023-04455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Calcium (Ca2+) is a second messenger in plants growth and development, as well as in stress responses. The transient elevation in cytosolic Ca2+ concentration have been reported to be involved in plants response to abiotic and biotic stresses. In plants, Ca2+-induced transcriptional changes trigger molecular mechanisms by which plants adapt and respond to environment stresses. The mechanism for transcription regulation by Ca2+ could be either rapid in which Ca2+ signals directly cause the related response through the gene transcript and protein activities, or involved amplification of Ca2+ signals by up-regulation the expression of Ca2+ responsive genes, and then increase the transmission of Ca2+ signals. Ca2+ regulates the expression of genes by directly binding to the transcription factors (TFs), or indirectly through its sensors like calmodulin, calcium-dependent protein kinases (CDPK) and calcineurin B-like protein (CBL). In recent years, significant progress has been made in understanding the role of Ca2+-mediated transcriptional regulation in different processes in plants. In this review, we have provided a comprehensive overview of Ca2+-mediated transcriptional regulation in plants in response to abiotic stresses including nutrition deficiency, temperature stresses (like heat and cold), dehydration stress, osmotic stress, hypoxic, salt stress, acid rain, and heavy metal stress.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Minyi Zhong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Jamshaid Hussian
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Yuting Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
9
|
Chen Q, Qu M, Chen Q, Meng X, Fan H. Phosphoproteomics analysis of the effect of target of rapamycin kinase inhibition on Cucumis sativus in response to Podosphaera xanthii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107641. [PMID: 36940522 DOI: 10.1016/j.plaphy.2023.107641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Target of rapamycin (TOR) kinase is a conserved sensor of cell growth in yeasts, plants, and mammals. Despite the extensive research on the TOR complex in various biological processes, large-scale phosphoproteomics analysis of TOR phosphorylation events upon environmental stress are scarce. Powdery mildew caused by Podosphaera xanthii poses a major threat to the quality and yield of cucumber (Cucumis sativus L.). Previous studies concluded that TOR participated in abiotic and biotic stress responses. Hence, studying the underlying mechanism of TOR-P. xanthii infection is particularly important. In this study, we performed a quantitative phosphoproteomics studies of Cucumis against P. xanthii attack under AZD-8055 (TOR inhibitor) pretreatment. A total of 3384 phosphopeptides were identified from the 1699 phosphoproteins. The Motif-X analysis showed high sensitivity and specificity of serine sites under AZD-8055-treatment or P. xanthii stress, and TOR exhibited a unique preference for proline at +1 position and glycine at -1 position to enhance the phosphorylation response to P. xanthii. The functional analysis suggested that the unique responses were attributed to proteins related to plant hormone signaling, mitogen-activated protein kinase cascade signaling, phosphatidylinositol signaling system, and circadian rhythm; and calcium signaling- and defense response-related proteins. Our results provided rich resources for understanding the molecular mechanism of how the TOR kinase controlled plant growth and stress adaptation.
Collapse
Affiliation(s)
- Qiumin Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mengqi Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qinglei Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biology and Genetic Improvement of Fruit Vegetables of Shenyang, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biology and Genetic Improvement of Fruit Vegetables of Shenyang, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
10
|
Wang L, Gui Y, Yang B, Dong W, Xu P, Si F, Yang W, Luo Y, Guo J, Niu D, Jiang C. Mitogen-Activated Protein Kinases Associated Sites of Tobacco Repression of Shoot Growth Regulates Its Localization in Plant Cells. Int J Mol Sci 2022; 23:ijms23168941. [PMID: 36012208 PMCID: PMC9409217 DOI: 10.3390/ijms23168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Plant defense and growth rely on multiple transcriptional factors (TFs). Repression of shoot growth (RSG) is a TF belonging to a bZIP family in tobacco, known to be involved in plant gibberellin feedback regulation by inducing the expression of key genes. The tobacco calcium-dependent protein kinase CDPK1 was reported to interact with RSG and manipulate its intracellular localization by phosphorylating Ser-114 of RSG previously. Here, we identified tobacco mitogen-activated protein kinase 3 (NtMPK3) as an RSG-interacting protein kinase. Moreover, the mutation of the predicted MAPK-associated phosphorylation site of RSG (Thr-30, Ser-74, and Thr-135) significantly altered the intracellular localization of the NtMPK3-RSG interaction complex. Nuclear transport of RSG and its amino acid mutants (T30A and S74A) were observed after being treated with plant defense elicitor peptide flg22 within 5 min, and the two mutated RSG swiftly re-localized in tobacco cytoplasm within 30 min. In addition, triple-point mutation of RSG (T30A/S74A/T135A) mimics constant unphosphorylated status, and is predominantly localized in tobacco cytoplasm. RSG (T30A/S74A/T135A) showed no re-localization effect under the treatments of flg22, B. cereus AR156, or GA3, and over-expression of this mutant in tobacco resulted in lower expression levels of downstream gene GA20ox1. Our results suggest that MAPK-associated phosphorylation sites of RSG regulate its localization in tobacco, and that constant unphosphorylation of RSG in Thr-30, Ser-74, and Thr-135 keeps RSG predominantly localized in cytoplasm.
Collapse
Affiliation(s)
- Luyao Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Shenzhen Branch, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Correspondence: (C.J.); (L.W.)
| | - Ying Gui
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Bingye Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Wenpan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Peiling Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Fangjie Si
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Wei Yang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an 223300, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an 223300, China
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Dongdong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Chunhao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
- Correspondence: (C.J.); (L.W.)
| |
Collapse
|
11
|
Li Q, Qin Y, Hu X, Jin L, Li G, Gong Z, Xiong X, Wang W. Physiology and Gene Expression Analysis of Potato ( Solanum tuberosum L.) in Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:1565. [PMID: 35736717 PMCID: PMC9229698 DOI: 10.3390/plants11121565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The production of potato (Solanum tuberosum L.) faces a severe challenge due to the salinization of arable land worldwide. The cultivation of salt-tolerant potatoes is of great significance to ensure food security. In this study, two cultivars of 'Longshu 5' and 'Qingshu 9' were compared for physiological responses to salt stress, and then the salt tolerance of the two cultivars were assessed via principal component analysis. Furthermore, the Na+, K+, and Ca2+ flux of the cultivars under salt stress was recorded. Finally, the expression levels of ion transport-related genes and transcription factors in salt-tolerant cultivars were explored under NaCl stress. The results showed that the seven physiological indicators of salt tolerance were differed between the cultivars. Interestingly, soluble protein and sugar were early responsive to salt stress than proline in the salt-tolerance cultivar. Peroxidase and superoxide dismutase activity were significantly different in 'Longshu 5' under NaCl stress and without being significantly different in 'Qingshu9'. In addition, the salt tolerance of 'Longshu 5' was more tolerant than 'Qingshu 9' based on principal component evaluation. Meanwhile, the strong efflux of Na+, the stability of K+, and the high absorption of Ca2+ in 'Longshu 5' indicated salt adaption mechanisms in the salt-tolerant potato. In addition, we found that ion transport-related genes and transcription factors, such as StSOS1, StNHX4, StAKT1, StNAC24, and StCYP707A, played a role in the salt tolerance of 'Longshu 5'. In conclusion, the salt-tolerant potato can regulate physiological substances to adapt to salt stress, and ion transport related genes and transcription factors play a role in improving salt tolerance.
Collapse
Affiliation(s)
- Qing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture, Beijing 100081, China; (Q.L.); (L.J.); (G.L.)
- College of Horticulture, Hunan Agricultural University, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education Changsha, Hunan Provincial Engineering Research Center for Potatoes, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China; (Y.Q.); (X.H.)
| | - Yuzhi Qin
- College of Horticulture, Hunan Agricultural University, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education Changsha, Hunan Provincial Engineering Research Center for Potatoes, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China; (Y.Q.); (X.H.)
| | - Xinxi Hu
- College of Horticulture, Hunan Agricultural University, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education Changsha, Hunan Provincial Engineering Research Center for Potatoes, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China; (Y.Q.); (X.H.)
| | - Liping Jin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture, Beijing 100081, China; (Q.L.); (L.J.); (G.L.)
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture, Beijing 100081, China; (Q.L.); (L.J.); (G.L.)
| | - Zhenping Gong
- Tangshan Academy of Agricultural Sciences, Tangshan 063001, China;
| | - Xingyao Xiong
- College of Horticulture, Hunan Agricultural University, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education Changsha, Hunan Provincial Engineering Research Center for Potatoes, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China; (Y.Q.); (X.H.)
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wanxing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture, Beijing 100081, China; (Q.L.); (L.J.); (G.L.)
| |
Collapse
|
12
|
Huang Y, Wang W, Yu H, Peng J, Hu Z, Chen L. The role of 14-3-3 proteins in plant growth and response to abiotic stress. PLANT CELL REPORTS 2022; 41:833-852. [PMID: 34773487 DOI: 10.1007/s00299-021-02803-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The 14-3-3 proteins widely exist in almost all plant species. They specifically recognize and interact with phosphorylated target proteins, including protein kinases, phosphatases, transcription factors and functional proteins, offering an array of opportunities for 14-3-3s to participate in the signal transduction processes. 14-3-3s are multigene families and can form homo- and heterodimers, which confer functional specificity of 14-3-3 proteins. They are widely involved in regulating biochemical and cellular processes and plant growth and development, including cell elongation and division, seed germination, vegetative and reproductive growth, and seed dormancy. They mediate plant response to environmental stresses such as salt, alkaline, osmotic, drought, cold and other abiotic stresses, partially via hormone-related signalling pathways. Although many studies have reviewed the function of 14-3-3 proteins, recent research on plant 14-3-3s has achieved significant advances. Here, we provide a comprehensive overview of the fundamental properties of 14-3-3 proteins and systematically summarize and dissect the emerging advances in understanding the roles of 14-3-3s in plant growth and development and abiotic stress responses. Some ambiguous questions about the roles of 14-3-3s under environmental stresses are reviewed. Interesting questions related to plant 14-3-3 functions that remain to be elucidated are also discussed.
Collapse
Affiliation(s)
- Ye Huang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenshu Wang
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan, 430345, China
| | - Hua Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhua Peng
- Huazhi Biotech Co., Ltd., Changsha, 410125, China
| | - Zhengrong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
(De)Activation (Ir)Reversibly or Degradation: Dynamics of Post-Translational Protein Modifications in Plants. Life (Basel) 2022; 12:life12020324. [PMID: 35207610 PMCID: PMC8874572 DOI: 10.3390/life12020324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
The increasing dynamic functions of post-translational modifications (PTMs) within protein molecules present outstanding challenges for plant biology even at this present day. Protein PTMs are among the first and fastest plant responses to changes in the environment, indicating that the mechanisms and dynamics of PTMs are an essential area of plant biology. Besides being key players in signaling, PTMs play vital roles in gene expression, gene, and protein localization, protein stability and interactions, as well as enzyme kinetics. In this review, we take a broader but concise approach to capture the current state of events in the field of plant PTMs. We discuss protein modifications including citrullination, glycosylation, phosphorylation, oxidation and disulfide bridges, N-terminal, SUMOylation, and ubiquitination. Further, we outline the complexity of studying PTMs in relation to compartmentalization and function. We conclude by challenging the proteomics community to engage in holistic approaches towards identification and characterizing multiple PTMs on the same protein, their interaction, and mechanism of regulation to bring a deeper understanding of protein function and regulation in plants.
Collapse
|
14
|
Tokumitsu Y, Kozu T, Yamatani H, Ito T, Nakano H, Hase A, Sasada H, Takada Y, Kaga A, Ishimoto M, Kusaba M, Nakashima T, Abe J, Yamada T. Functional Divergence of G and Its Homologous Genes for Green Pigmentation in Soybean Seeds. FRONTIERS IN PLANT SCIENCE 2022; 12:796981. [PMID: 35069653 PMCID: PMC8766641 DOI: 10.3389/fpls.2021.796981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The degradation of chlorophyll in mature soybean seeds is closely related to the development of their yellow color. In this study, we examined G, its homologue G-like (GL), and their mutant alleles and investigated the relationship between these genes and chlorophyll accumulation in the seed coats of mature seeds. Transient expression of G and GL proteins fused with green fluorescent protein revealed that both were localized in plastids. Overexpression of G resulted in the accumulation of chlorophyll in the seed coats and cotyledons of mature seeds, indicating that high expression levels of G result in chlorophyll accumulation that exceeds its metabolism in the seeds of yellow soybean. Analysis of near isogenic lines at the G locus demonstrated a significant difference in the chlorophyll content of the seed coats and cotyledons of mature seeds when G and mutant g alleles were expressed in the d1d2 stay-green genetic background, indicating that the G protein might repress the SGR-independent degradation of chlorophyll. We examined the distribution of mutant alleles at the G and GL loci among cultivated and wild soybean germplasm. The g allele was widely distributed in cultivated soybean germplasm, except for green seed coat soybean lines, all of which contained the G allele. The gl alleles were much fewer in number than the g alleles and were mainly distributed in the genetic resources of cultivated soybean from Japan. None of the landraces and breeding lines investigated in this study were observed to contain both the g and gl alleles. Therefore, in conclusion, the mutation of the G locus alone is essential for establishing yellow soybeans, which are major current soybean breeding lines.
Collapse
Affiliation(s)
- Yusuke Tokumitsu
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takuto Kozu
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroshi Yamatani
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takeshi Ito
- Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Haruna Nakano
- Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ayaka Hase
- Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroki Sasada
- Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yoshitake Takada
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization, Fukuyama, Japan
| | - Akito Kaga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masao Ishimoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Taiken Nakashima
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jun Abe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. NDR/LATS-family protein kinase genes are indispensable for embryogenesis in Arabidopsis. FEBS Open Bio 2021; 11:2600-2606. [PMID: 34320276 PMCID: PMC8409290 DOI: 10.1002/2211-5463.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
NDR/LATS‐family protein kinases are conserved among eukaryotes. These protein kinases in yeast and animals phosphorylate specific targets and regulate the cell cycle. Arabidopsis thaliana has eight NDR/LATS‐family protein kinase genes (NDR1‐8), of which NDR2, NDR4, and NDR5 are involved in regulating pollen development. However, the functions of the other NDR/LATS‐family protein kinase genes in plants are unclear. Here, we show that three putative phosphorylation sites of an Arabidopsis basic leucine zipper transcription factor, VIP1, correspond to NDR/LATS‐family protein kinase phosphorylation motifs and that two of these three sites are phosphorylated by NDR2, NDR3, or NDR8 in vitro. Expression of NDR1‐8 was detected in various tissues. An NDR4 NDR6 NDR7 NDR8 quadruple mutation caused embryonic lethality These results suggest that different NDR/LATS‐family protein kinases in plants have distinct physiological roles.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Japan
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, China
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Japan
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Japan
| |
Collapse
|
16
|
Ito T, Fukazawa J. SCARECROW-LIKE3 regulates the transcription of gibberellin-related genes by acting as a transcriptional co-repressor of GAI-ASSOCIATED FACTOR1. PLANT MOLECULAR BIOLOGY 2021; 105:463-482. [PMID: 33474657 DOI: 10.1007/s11103-020-01101-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
SCL3 inhibits transcriptional activity of IDD-DELLA complex by acting as a co-repressor and repression activity is enhanced in the presence of GAF1 in a TOPLESS-independent manner. GRAS [GIBBERELLIN-INSENSITIVE (GAI), REPRESSOR OF ga1-3 (RGA) and SCARECROW (SCR)] proteins are a family of plant-specific transcriptional regulators that play diverse roles in development and signaling. GRAS family DELLA proteins act as growth repressors by inhibiting gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also act as co-activators of transcription factor GAI-ASSOCIATED FACTOR1 (GAF1)/INDETERMINATE DOMAIN2 (IDD2), the GAF1-DELLA complex activating transcription of GAF1 target genes. GAF1 also interacts with TOPLESS (TPL), a transcriptional co-repressor, in the absence of DELLA, the GAF1-TPL complex repressing transcription of the target genes. SCARECROW-LIKE3 (SCL3), another member of the GRAS family, is thought to inhibit transcriptional activity of the IDD-DELLA complex through competitive interaction with IDD. Here, we also revealed that SCL3 inhibits transcriptional activation by the GAF1-DELLA complex via repression activity rather than via competitive inhibition of the GAF1-DELLA interaction. Moreover, the repression activity of SCL3 was enhanced by GAF1 in a TPL-independent manner. While the GRAS domain of DELLA has transcriptional activation activity, that of SCL3 has repression activity. SCL3 also inhibited transcriptional activity of GAF1-RGA fusion proteins. Results from the co-immunoprecipitation assays and the yeast three-hybrid assay suggested the possibility that SCL3 forms a ternary complex with GAF1 and DELLA. These findings provide important information on DELLA-regulated GA signaling and new insight into the transcriptional repression mechanism.
Collapse
Affiliation(s)
- Takeshi Ito
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Jutarou Fukazawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
17
|
Cai J, Cai W, Huang X, Yang S, Wen J, Xia X, Yang F, Shi Y, Guan D, He S. Ca14-3-3 Interacts With CaWRKY58 to Positively Modulate Pepper Response to Low-Phosphorus Starvation. FRONTIERS IN PLANT SCIENCE 2021; 11:607878. [PMID: 33519860 PMCID: PMC7840522 DOI: 10.3389/fpls.2020.607878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Low-phosphorus stress (LPS) and pathogen attack are two important stresses frequently experienced by plants in their natural habitats, but how plant respond to them coordinately remains under-investigated. Here, we demonstrate that CaWRKY58, a known negative regulator of the pepper (Capsicum annuum) response to attack by Ralstonia solanacearum, is upregulated by LPS. Virus-induced gene silencing (VIGS) and overexpression of CaWRKY58 in Nicotiana benthamiana plants in combination with chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA) demonstrated that CaWRKY58 positively regulates the response of pepper to LPS by directly targeting and regulating genes related to phosphorus-deficiency tolerance, including PHOSPHATE STARVATION RESPONSE1 (PHR1). Yeast two-hybrid assays revealed that CaWRKY58 interacts with a 14-3-3 protein (Ca14-3-3); this interaction was confirmed by pull-down, bimolecular fluorescence complementation (BiFC), and microscale thermophoresis (MST) assays. The interaction between Ca14-3-3 and CaWRKY58 enhanced the activation of PHR1 expression by CaWRKY58, but did not affect the expression of the immunity-related genes CaNPR1 and CaDEF1, which are negatively regulated by CaWRKY58 in pepper upon Ralstonia solanacearum inoculation. Collectively, our data indicate that CaWRKY58 negatively regulates immunity against Ralstonia solanacearum, but positively regulates tolerance to LPS and that Ca14-3-3 transcriptionally activates CaWRKY58 in response to LPS.
Collapse
Affiliation(s)
- Jinsen Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiwei Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueying Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayu Wen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Xia
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Shi
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Arabidopsis bZIP18 and bZIP52 Accumulate in Nuclei Following Heat Stress where They Regulate the Expression of a Similar Set of Genes. Int J Mol Sci 2021; 22:ijms22020530. [PMID: 33430325 PMCID: PMC7830406 DOI: 10.3390/ijms22020530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/07/2023] Open
Abstract
Heat stress (HS) is a major abiotic stress that negatively impacts crop yields across the globe. Plants respond to elevated temperatures by changing gene expression, mediated by transcription factors (TFs) functioning to enhance HS tolerance. The involvement of Group I bZIP TFs in the heat stress response (HSR) is not known. In this study, bZIP18 and bZIP52 were investigated for their possible role in the HSR. Localization experiments revealed their nuclear accumulation following heat stress, which was found to be triggered by dephosphorylation. Both TFs were found to possess two motifs containing serine residues that are candidates for phosphorylation. These motifs are recognized by 14–3–3 proteins, and bZIP18 and bZIP52 were found to bind 14–3–3 ε, the interaction of which sequesters them to the cytoplasm. Mutation of both residues abolished 14–3–3 ε interaction and led to a strict nuclear localization for both TFs. RNA-seq analysis revealed coordinated downregulation of several metabolic pathways including energy metabolism and translation, and upregulation of numerous lncRNAs in particular. These results support the idea that bZIP18 and bZIP52 are sequestered to the cytoplasm under control conditions, and that heat stress leads to their re-localization to nuclei, where they jointly regulate gene expression.
Collapse
|
19
|
Xiong Y, Fan XH, Wang Q, Yin ZG, Sheng XW, Chen J, Zhou YB, Chen M, Ma YZ, Ma J, Xu ZS. Genomic Analysis of Soybean PP2A-B ' ' Family and Its Effects on Drought and Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:784038. [PMID: 35195114 PMCID: PMC8847135 DOI: 10.3389/fpls.2021.784038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/30/2021] [Indexed: 05/05/2023]
Abstract
Abiotic stresses induce the accumulation of reactive oxygen species (ROS) and significantly affect plant growth. Protein phosphatase 2A (PP2A) plays an important role in controlling intracellular and extracellular ROS signals. However, the interaction between PP2A, ROS, and stress tolerance remains largely unclear. In this study, we found that the B ' ' subunit of PP2A (PP2A-B ' ' ) can be significantly induced and was analyzed using drought- and salt-induced soybean transcriptome data. Eighty-three soybean PP2A-B ' ' genes were identified from the soybean genome via homologous sequence alignment, which was distributed across 20 soybean chromosomes. Among soybean PP2A-B ' ' family genes, 26 GmPP2A-B ' ' members were found to be responsive to drought and salt stresses in soybean transcriptome data. Quantitative PCR (qPCR) analysis demonstrated that GmPP2A-B ' ' 71 had the highest expression levels under salt and drought stresses. Functional analysis demonstrated that overexpression of GmPP2A-B ' ' 71 in soybeans can improve plant tolerance to drought and salt stresses; however, the interference of GmPP2A-B ' ' 71 in soybean increased the sensibility to drought and salt stresses. Further analysis demonstrated that overexpression of GmPP2A-B ' ' 71 in soybean could enhance the expression levels of stress-responsive genes, particularly genes associated with ROS elimination. These results indicate that PP2A-B ' ' can promote plant stress tolerance by regulating the ROS signaling, which will contribute to improving the drought resistance of crops.
Collapse
Affiliation(s)
- Yang Xiong
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xu-Hong Fan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, China
| | - Qiang Wang
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zheng-Gong Yin
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xue-Wen Sheng
- College of Modern Agriculture, Changchun Vocational Institute of Technology, Changchun, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
- *Correspondence: Jian Ma,
| | - Zhao-Shi Xu
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Zhao-Shi Xu,
| |
Collapse
|
20
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. The B″-family subunits of protein phosphatase 2A are necessary for in-vitro dephosphorylation of the Arabidopsis mechanosensory transcription factor VIP1. Biochem Biophys Res Commun 2020; 534:353-358. [PMID: 33342519 DOI: 10.1016/j.bbrc.2020.11.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
Protein phosphatase 2A (PP2A) B″-family subunits have Ca2+-binding EF-hand motifs and can bind PP2A substrates. Arabidopsis thaliana PP2A B″-family subunits are encoded by six genes, and bind a transcription factor, VIP1. VIP1 is dephosphorylated and nuclear-localized by hypo-osmotic stress. However, whether PP2A B″-family subunits mediate the VIP1 dephosphorylation is unclear. Here, we show by yeast two-hybrid and in vitro pull down assays that Arabidopsis PP2A B″-family subunits bind Arabidopsis PP2A A (scaffold) subunits. We also show that VIP1 dephosphorylation in vitro can be induced by a PP2A B″-family subunit.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, 060-8589, Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, PR China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan
| | - Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| |
Collapse
|
21
|
Chen S, Feng X, Chen X, Zhuang Z, Xiao J, Fu H, Klein JD, Wang XH, Hoover RS, Eaton DC, Cai H. 14-3-3γ, a novel regulator of the large-conductance Ca 2+-activated K + channel. Am J Physiol Renal Physiol 2020; 319:F52-F62. [PMID: 32463725 DOI: 10.1152/ajprenal.00584.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
14-3-3γ is a small protein regulating its target proteins through binding to phosphorylated serine/threonine residues. Sequence analysis of large-conductance Ca2+-activated K+ (BK) channels revealed a putative 14-3-3 binding site in the COOH-terminal region. Our previous data showed that 14-3-3γ is widely expressed in the mouse kidney. Therefore, we hypothesized that 14-3-3γ has a novel role in the regulation of BK channel activity and protein expression. We used electrophysiology, Western blot analysis, and coimmunoprecipitation to examine the effects of 14-3-3γ on BK channels both in vitro and in vivo. We demonstrated the interaction of 14-3-3γ with BK α-subunits (BKα) by coimmunoprecipitation. In human embryonic kidney-293 cells stably expressing BKα, overexpression of 14-3-3γ significantly decreased BK channel activity and channel open probability. 14-3-3γ inhibited both total and cell surface BKα protein expression while enhancing ERK1/2 phosphorylation in Cos-7 cells cotransfected with flag-14-3-3γ and myc-BK. Knockdown of 14-3-3γ by siRNA transfection markedly increased BKα expression. Blockade of the ERK1/2 pathway by incubation with the MEK-specific inhibitor U0126 partially abolished 14-3-3γ-mediated inhibition of BK protein expression. Similarly, pretreatment of the lysosomal inhibitor bafilomycin A1 reversed the inhibitory effects of 14-3-3γ on BK protein expression. Furthermore, overexpression of 14-3-3γ significantly increased BK protein ubiquitination in embryonic kidney-293 cells stably expressing BKα. Additionally, 3 days of dietary K+ challenge reduced 14-3-3γ expression and ERK1/2 phosphorylation while enhancing renal BK protein expression and K+ excretion. These data suggest that 14-3-3γ modulates BK channel activity and protein expression through an ERK1/2-mediated ubiquitin-lysosomal pathway.
Collapse
Affiliation(s)
- Shan Chen
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuyan Feng
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Xinxin Chen
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Zhizhi Zhuang
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jia Xiao
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Haian Fu
- Department of Pharmacology, Emory University, School of Medicine, Atlanta, Georgia
| | - Janet D Klein
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Xiaonan H Wang
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Robert S Hoover
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia.,Physiology, Emory University, School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Physiology, Emory University, School of Medicine, Atlanta, Georgia
| | - Hui Cai
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia.,Physiology, Emory University, School of Medicine, Atlanta, Georgia
| |
Collapse
|
22
|
Li L, Deng M, Lyu C, Zhang J, Peng J, Cai C, Yang S, Lu L, Ni S, Liu F, Zheng S, Yu L, Wang X. Quantitative phosphoproteomics analysis reveals that protein modification and sugar metabolism contribute to sprouting in potato after BR treatment. Food Chem 2020; 325:126875. [PMID: 32387993 DOI: 10.1016/j.foodchem.2020.126875] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/02/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Brassinosteroids (BRs), a new class of steroid hormones, are involved in the regulation of plant cell elongation and seed germination. Nevertheless, the molecular mechanism of the effect of BRs on tuber sprouting remains largely unknown. In this study, quantitative phosphoproteomics was employed to investigate the protein phosphorylation changes in sprouting induced by BRs. Our results showed that BRs accelerated the conversion of starch into soluble sugar in tubers. A functional enrichment cluster analysis suggested that the "amino acid metabolism pathway" was upregulated and that "plant hormone signal transduction and protein export" were downregulated. BR treatment also changed the phosphorylation of proteins involved in the BR, ABA, starch and sugar signal transduction pathways, such as serine/threonine-protein kinase (BSK), 14-3-3, alpha-glucan water dikinase (GWD), sucrose-phosphate synthase (SPS), sucrose synthase (SS) and alkaline/neutral invertase (A/N-INV). These results shed more light on the pattern of protein phosphorylation in BR promoting potato sprouting.
Collapse
Key Words
- 1,3-DPG, PubChem CID: 683
- 2-DPG, PubChem CID: 59
- 3-DPG, PubChem CID: 724
- Amylopectin, PubChem CID: 439207
- Amylose, PubChem CID: 53477771
- Brassinosteroids
- Glucose, PubChem CID: 107526
- PGAL, PubChem CID: 729
- Phosphoproteomics
- Potato
- Sprouting
- Sucrose, PubChem CID: 5988
- α-D-Glucose, PubChem CID: 79025
- α-D-Glucose-1P, PubChem CID: 65533
Collapse
Affiliation(s)
- Liqin Li
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Mengsheng Deng
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Chengcheng Lyu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Jie Zhang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Jie Peng
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Chengcheng Cai
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Shimin Yang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Liming Lu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Su Ni
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Fan Liu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Shunlin Zheng
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Liping Yu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Xiyao Wang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| |
Collapse
|
23
|
Li Q, Qin Y, Hu X, Li G, Ding H, Xiong X, Wang W. Transcriptome analysis uncovers the gene expression profile of salt-stressed potato (Solanum tuberosum L.). Sci Rep 2020; 10:5411. [PMID: 32214109 PMCID: PMC7096413 DOI: 10.1038/s41598-020-62057-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Potato (Solanum tuberosum L.) is an important staple food worldwide. However, its growth has been heavily suppressed by salt stress. The molecular mechanisms of salt tolerance in potato remain unclear. It has been shown that the tetraploid potato Longshu No. 5 is a salt-tolerant genotype. Therefore, in this study we conducted research to identify salt stress response genes in Longshu No. 5 using a NaCl treatment and time-course RNA sequencing. The total number of differentially expressed genes (DEGs) in response to salt stress was 5508. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, it was found that DEGs were significantly enriched in the categories of nucleic acid binding, transporter activity, ion or molecule transport, ion binding, kinase activity and oxidative phosphorylation. Particularly, the significant differential expression of encoding ion transport signaling genes suggests that this signaling pathway plays a vital role in salt stress response in potato. Finally, the DEGs in the salt response pathway were verified by Quantitative real-time PCR (qRT-PCR). These results provide valuable information on the salt tolerance of molecular mechanisms in potatoes, and establish a basis for breeding salt-tolerant cultivars.
Collapse
Affiliation(s)
- Qing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
- College of Horticulture, Hunan Agricultural University/Hunan Provincial Engineering Research Center for Potatoes/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Yuzhi Qin
- College of Horticulture, Hunan Agricultural University/Hunan Provincial Engineering Research Center for Potatoes/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Xinxi Hu
- College of Horticulture, Hunan Agricultural University/Hunan Provincial Engineering Research Center for Potatoes/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Hongying Ding
- College of Horticulture, Hunan Agricultural University/Hunan Provincial Engineering Research Center for Potatoes/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Xingyao Xiong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
- College of Horticulture, Hunan Agricultural University/Hunan Provincial Engineering Research Center for Potatoes/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China.
| | - Wanxing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
24
|
Gratz R, Brumbarova T, Ivanov R, Trofimov K, Tünnermann L, Ochoa-Fernandez R, Blomeier T, Meiser J, Weidtkamp-Peters S, Zurbriggen MD, Bauer P. Phospho-mutant activity assays provide evidence for alternative phospho-regulation pathways of the transcription factor FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR. THE NEW PHYTOLOGIST 2020; 225:250-267. [PMID: 31487399 PMCID: PMC6916400 DOI: 10.1111/nph.16168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/16/2019] [Indexed: 05/03/2023]
Abstract
The key basic helix-loop-helix (bHLH) transcription factor in iron (Fe) uptake, FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), is controlled by multiple signaling pathways, important to adjust Fe acquisition to growth and environmental constraints. FIT protein exists in active and inactive protein pools, and phosphorylation of serine Ser272 in the C-terminus, a regulatory domain of FIT, provides a trigger for FIT activation. Here, we use phospho-mutant activity assays and study phospho-mimicking and phospho-dead mutations of three additional predicted phosphorylation sites, namely at Ser221 and at tyrosines Tyr238 and Tyr278, besides Ser 272. Phospho-mutations at these sites affect FIT activities in yeast, plant, and mammalian cells. The diverse array of cellular phenotypes is seen at the level of cellular localization, nuclear mobility, homodimerization, and dimerization with the FIT-activating partner bHLH039, promoter transactivation, and protein stability. Phospho-mimicking Tyr mutations of FIT disturb fit mutant plant complementation. Taken together, we provide evidence that FIT is activated through Ser and deactivated through Tyr site phosphorylation. We therefore propose that FIT activity is regulated by alternative phosphorylation pathways.
Collapse
Affiliation(s)
- Regina Gratz
- Institute of Botany, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, 66123, Saarbruecken, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, 66123, Saarbruecken, Germany
| | - Ksenia Trofimov
- Institute of Botany, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Laura Tünnermann
- Institute of Botany, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Rocio Ochoa-Fernandez
- Institute of Synthetic Biology, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Tim Blomeier
- Institute of Synthetic Biology, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Johannes Meiser
- Department of Biosciences-Plant Biology, Saarland University, 66123, Saarbruecken, Germany
- Department of Oncology, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | | | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, 66123, Saarbruecken, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, 40225, Düsseldorf, Germany
| |
Collapse
|
25
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. VIP1, a bZIP protein, interacts with the catalytic subunit of protein phosphatase 2A in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2019; 15:1706026. [PMID: 31861962 PMCID: PMC7053879 DOI: 10.1080/15592324.2019.1706026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
VirE2-INTERACTING PROTEIN1 (VIP1) is a basic leucine zipper protein in Arabidopsis thaliana. VIP1 changes its subcellular localization from the cytoplasm to the nucleus when cells are exposed to mechanical or hypo-osmotic stress. The nuclear localization of VIP1 is inhibited either by inhibitors of calcium signaling or by inhibitors of protein phosphatases 1, 2A and 4 (PP1, PP2A and PP4, respectively). VIP1 binds to the PP2A B"-family subunits, which have calcium-binding EF-hand motifs and which act as the regulatory, substrate-recruiting B subunit of PP2A. The VIP1 de-phosphorylation can therefore be mediated by PP2A. However, details of the PP2A-mediated de-phosphorylation of VIP1 are unclear. Here, with yeast two-hybrid assays and in-vitro pull-down assays, we show that VIP1 does not interact with the scaffolding A subunit of PP2A, but that VIP1 does interact with the catalytic C subunits. Our data raise the possibility that not only the B"-family B subunit of PP2A but also its C subunit contributes to the PP2A-mediated de-phosphorylation of VIP1.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Nishitokyo-shi, Japan
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, P.R. China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Nishitokyo-shi, Japan
| | - Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Nishitokyo-shi, Japan
| |
Collapse
|
26
|
Tsugama D, Yoon HS, Fujino K, Liu S, Takano T. Protein phosphatase 2A regulates the nuclear accumulation of the Arabidopsis bZIP protein VIP1 under hypo-osmotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6101-6112. [PMID: 31504762 PMCID: PMC6859724 DOI: 10.1093/jxb/erz384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
VIP1 is a bZIP transcription factor in Arabidopsis thaliana. When cells are exposed to mechanical stress, VIP1 transiently accumulates in the nucleus, where it regulates the expression of its target genes and suppresses mechanical stress-induced root waving. The nuclear-cytoplasmic shuttling of VIP1 is regulated by phosphorylation and calcium-dependent signaling, but specific regulators of these processes remain to be identified. Here, inhibitors of protein phosphatase 2A (PP2A) are shown to inhibit both the mechanical stress-induced dephosphorylation and nuclear accumulation of VIP1. The PP2A B subunit, which recruits substrates of PP2A holoenzyme, is classified into B, B', B'', and B''' families. Using bimolecular fluorescence complementation, in vitro pull-down, and yeast two-hybrid assays, we show that VIP1 interacts with at least two of the six members of the Arabidopsis PP2A B''-family subunit, which have calcium-binding EF-hand motifs. VIP1AAA, a constitutively nuclear-localized VIP1 variant with substitutions in putative phosphorylation sites of VIP1, suppressed the root waving induced by VIP1-SRDX (a repression domain-fused variant of VIP1). These results support the idea that VIP1 is dephosphorylated by PP2A and that the dephosphorylation suppresses the root waving. The phosphorylation sites of VIP1 and its homologs were narrowed down by in vitro phosphorylation, yeast two-hybrid, and protein subcellular localization assays.
Collapse
Affiliation(s)
- Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Midori-cho, Nishitokyo-shi, Tokyo, Japan
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, Japan
- Correspondence:
| | - Hyuk Sung Yoon
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Midori-cho, Nishitokyo-shi, Tokyo, Japan
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, Japan
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, PR China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Midori-cho, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
27
|
The Recovery from Sulfur Starvation Is Independent from the mRNA Degradation Initiation Enzyme PARN in Arabidopsis. PLANTS 2019; 8:plants8100380. [PMID: 31569782 PMCID: PMC6843384 DOI: 10.3390/plants8100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/23/2022]
Abstract
When plants are exposed to sulfur limitation, they upregulate the sulfate assimilation pathway at the expense of growth-promoting measures. Upon cessation of the stress, however, protective measures are deactivated, and growth is restored. In accordance with these findings, transcripts of sulfur-deficiency marker genes are rapidly degraded when starved plants are resupplied with sulfur. Yet it remains unclear which enzymes are responsible for the degradation of transcripts during the recovery from starvation. In eukaryotes, mRNA decay is often initiated by the cleavage of poly(A) tails via deadenylases. As mutations in the poly(A) ribonuclease PARN have been linked to altered abiotic stress responses in Arabidopsis thaliana, we investigated the role of PARN in the recovery from sulfur starvation. Despite the presence of putative PARN-recruiting AU-rich elements in sulfur-responsive transcripts, sulfur-depleted PARN hypomorphic mutants were able to reset their transcriptome to pre-starvation conditions just as readily as wildtype plants. Currently, the subcellular localization of PARN is disputed, with studies reporting both nuclear and cytosolic localization. We detected PARN in cytoplasmic speckles and reconciled the diverging views in literature by identifying two PARN splice variants whose predicted localization is in agreement with those observations.
Collapse
|
28
|
Holmes TR, Dindu S, Hansen LA. Aberrant localization of signaling proteins in skin cancer: Implications for treatment. Mol Carcinog 2019; 58:1631-1639. [PMID: 31062427 DOI: 10.1002/mc.23036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Aberrant subcellular localization of signaling proteins can provide cancer cells with advantages such as resistance to apoptotic cell death, increased invasiveness and more rapid proliferation. Nuclear to cytoplasmic shifts in tumor-promoting proteins can lead to worse patient outcomes, providing opportunities to target cancer-specific processes. Herein, we review the significance of dysregulated protein localization with a focus on skin cancer. Altered localization of signaling proteins controlling cell cycle progression or cell death is a common feature of cancer. In some instances, aberrant subcellular localization results in an acquired prosurvival function. Taking advantage of this knowledge reveals novel targets useful in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Thomas R Holmes
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Shravya Dindu
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Laura A Hansen
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| |
Collapse
|
29
|
Liu D, Shi S, Hao Z, Xiong W, Luo M. OsbZIP81, A Homologue of Arabidopsis VIP1, May Positively Regulate JA Levels by Directly Targetting the Genes in JA Signaling and Metabolism Pathway in Rice. Int J Mol Sci 2019; 20:ijms20092360. [PMID: 31086007 PMCID: PMC6539606 DOI: 10.3390/ijms20092360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the most important food crops in the world. In plants, jasmonic acid (JA) plays essential roles in response to biotic and abiotic stresses. As one of the largest transcription factors (TFs), basic region/leucine zipper motif (bZIP) TFs play pivotal roles through the whole life of plant growth. However, the relationship between JA and bZIP TFs were rarely reported, especially in rice. In this study, we found two rice homologues of Arabidopsis VIP1 (VirE2-interacting protein 1), OsbZIP81, and OsbZIP84. OsbZIP81 has at least two alternative transcripts, OsbZIP81.1 and OsbZIP81.2. OsbZIP81.1 and OsbZIP84 are typical bZIP TFs, while OsbZIP81.2 is not. OsbZIP81.1 can directly bind OsPIOX and activate its expression. In OsbZIP81.1 overexpression transgenic rice plant, JA (Jasmonic Acid) and SA (Salicylic acid) were up-regulated, while ABA (Abscisic acid) was down-regulated. Moreover, Agrobacterium, Methyl Jasmonic Acid (MeJA), and PEG6000 can largely induce OsbZIP81. Based on ChIP-Seq and Random DNA Binding Selection Assay (RDSA), we identified a novel cis-element OVRE (Oryza VIP1 response element). Combining ChIP-Seq and RNA-Seq, we obtained 1332 targeted genes that were categorized in biotic and abiotic responses, including α-linolenic acid metabolism and fatty acid degradation. Together, these results suggest that OsbZIP81 may positively regulate JA levels by directly targeting the genes in JA signaling and metabolism pathway in rice.
Collapse
Affiliation(s)
- Defang Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shaopeng Shi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhijun Hao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wentao Xiong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meizhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
Li H, Li Y, Zhao Q, Li T, Wei J, Li B, Shen W, Yang C, Zeng Y, Rodriguez PL, Zhao Y, Jiang L, Wang X, Gao C. The plant ESCRT component FREE1 shuttles to the nucleus to attenuate abscisic acid signalling. NATURE PLANTS 2019; 5:512-524. [PMID: 30962512 DOI: 10.1038/s41477-019-0400-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/05/2019] [Indexed: 05/21/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery has been well documented for its function in endosomal sorting in eukaryotes. Here, we demonstrate an up-to-now unknown and non-endosomal function of the ESCRT component in plants. We show that FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body biogenesis, plays additional functions in the nucleus in transcriptional inhibition of abscisic acid (ABA) signalling. Following ABA treatment, SNF1-related protein kinase 2 (SnRK2) kinases phosphorylate FREE1, a step requisite for ABA-induced FREE1 nuclear import. In the nucleus, FREE1 interacts with the basic leucine zipper transcription factors ABA-RESPONSIVE ELEMENTS BINDING FACTOR4 and ABA-INSENSITIVE5 to reduce their binding to the cis-regulatory sequences of downstream genes. Collectively, our study demonstrates the crosstalk between endomembrane trafficking and ABA signalling at the transcriptional level and highlights the moonlighting properties of the plant ESCRT subunit FREE1, which has evolved unique non-endosomal functions in the nucleus besides its roles in membrane trafficking in the cytoplasm.
Collapse
Affiliation(s)
- Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Yingzhu Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tingting Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Juan Wei
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China.
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China.
| |
Collapse
|
31
|
Li H, Li Y, Zhao Q, Li T, Wei J, Li B, Shen W, Yang C, Zeng Y, Rodriguez PL, Zhao Y, Jiang L, Wang X, Gao C. The plant ESCRT component FREE1 shuttles to the nucleus to attenuate abscisic acid signalling. NATURE PLANTS 2019; 5:512-524. [PMID: 30962512 DOI: 10.1038/s41477-019-0400-405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/05/2019] [Indexed: 05/28/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery has been well documented for its function in endosomal sorting in eukaryotes. Here, we demonstrate an up-to-now unknown and non-endosomal function of the ESCRT component in plants. We show that FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body biogenesis, plays additional functions in the nucleus in transcriptional inhibition of abscisic acid (ABA) signalling. Following ABA treatment, SNF1-related protein kinase 2 (SnRK2) kinases phosphorylate FREE1, a step requisite for ABA-induced FREE1 nuclear import. In the nucleus, FREE1 interacts with the basic leucine zipper transcription factors ABA-RESPONSIVE ELEMENTS BINDING FACTOR4 and ABA-INSENSITIVE5 to reduce their binding to the cis-regulatory sequences of downstream genes. Collectively, our study demonstrates the crosstalk between endomembrane trafficking and ABA signalling at the transcriptional level and highlights the moonlighting properties of the plant ESCRT subunit FREE1, which has evolved unique non-endosomal functions in the nucleus besides its roles in membrane trafficking in the cytoplasm.
Collapse
Affiliation(s)
- Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Yingzhu Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tingting Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Juan Wei
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China.
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China.
| |
Collapse
|
32
|
Cimini S, Gualtieri C, Macovei A, Balestrazzi A, De Gara L, Locato V. Redox Balance-DDR-miRNA Triangle: Relevance in Genome Stability and Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:989. [PMID: 31428113 PMCID: PMC6688120 DOI: 10.3389/fpls.2019.00989] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 05/05/2023]
Abstract
Plants are continuously faced with complex environmental conditions which can affect the oxidative metabolism and photosynthetic efficiency, thus leading to the over-production of reactive oxygen species (ROS). Over a certain threshold, ROS can damage DNA. DNA damage, unless repaired, can affect genome stability, thus interfering with cell survival and severely reducing crop productivity. A complex network of pathways involved in DNA damage response (DDR) needs to be activated in order to maintain genome integrity. The expression of specific genes belonging to these pathways can be used as indicators of oxidative DNA damage and effective DNA repair in plants subjected to stress conditions. Managing ROS levels by modulating their production and scavenging systems shifts the role of these compounds from toxic molecules to key messengers involved in plant tolerance acquisition. Oxidative and anti-oxidative signals normally move among the different cell compartments, including the nucleus, cytosol, and organelles. Nuclei are dynamically equipped with different redox systems, such as glutathione (GSH), thiol reductases, and redox regulated transcription factors (TFs). The nuclear redox network participates in the regulation of the DNA metabolism, in terms of transcriptional events, replication, and repair mechanisms. This mainly occurs through redox-dependent regulatory mechanisms comprising redox buffering and post-translational modifications, such as the thiol-disulphide switch, glutathionylation, and S-nitrosylation. The regulatory role of microRNAs (miRNAs) is also emerging for the maintenance of genome stability and the modulation of antioxidative machinery under adverse environmental conditions. In fact, redox systems and DDR pathways can be controlled at a post-transcriptional level by miRNAs. This review reports on the interconnections between the DDR pathways and redox balancing systems. It presents a new dynamic picture by taking into account the shared regulatory mechanism mediated by miRNAs in plant defense responses to stress.
Collapse
Affiliation(s)
- Sara Cimini
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Carla Gualtieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
- *Correspondence: Vittoria Locato,
| |
Collapse
|
33
|
Tsugama D, Liu S, Fujino K, Takano T. Calcium signalling regulates the functions of the bZIP protein VIP1 in touch responses in Arabidopsis thaliana. ANNALS OF BOTANY 2018; 122:1219-1229. [PMID: 30010769 PMCID: PMC6324745 DOI: 10.1093/aob/mcy125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/12/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS VIP1 is a bZIP transcription factor in Arabidopsis thaliana. VIP1 and its close homologues transiently accumulate in the nucleus when cells are exposed to hypo-osmotic and/or mechanical stress. Touch-induced root bending is enhanced in transgenic plants overexpressing a repression domain-fused form of VIP1 (VIP1-SRDXox), suggesting that VIP1, possibly with its close homologues, suppresses touch-induced root bending. The aim of this study was to identify regulators of these functions of VIP1 in mechanical stress responses. METHODS Co-immunoprecipitation analysis using VIP1-GFP fusion protein expressed in Arabidopsis plants identified calmodulins as VIP1-GFP interactors. In vitro crosslink analysis was performed using a hexahistidine-tagged calmodulin and glutathione S-transferase-fused forms of VIP1 and its close homologues. Plants expressing GFP-fused forms of VIP1 and its close homologues (bZIP59 and bZIP29) were submerged in hypotonic solutions containing divalent cation chelators, EDTA and EGTA, and a potential calmodulin inhibitor, chlorpromazine, to examine their effects on the nuclear-cytoplasmic shuttling of those proteins. VIP1-SRDXox plants were grown on medium containing 40 mm CaCl2, 40 mm MgCl2 or 80 mm NaCl. MCA1 and MCA2 are mechanosensitive calcium channels, and the hypo-osmotic stress-dependent nuclear-cytoplasmic shuttling of VIP1-GFP in the mca1 mca2 double knockout mutant background was examined. KEY RESULTS In vitro crosslink products were detected in the presence of CaCl2, but not in its absence. EDTA, EGTA and chlorpromazine all inhibited both the nuclear import and the nuclear export of VIP1-GFP, bZIP59-GFP and bZIP29-GFP. Either 40 mm CaCl2or 80 mm NaCl enhanced the VIP-SRDX-dependent root bending. The nuclear-cytoplasmic shuttling of VIP1 was observed even in the mca1 mca2 mutant. CONCLUSIONS VIP1 and its close homologues can interact with calmodulins. Their nuclear-cytoplasmic shuttling requires neither MCA1 nor MCA2, but does require calcium signalling. Salt stress affects the VIP1-dependent regulation of root bending.
Collapse
Affiliation(s)
- Daisuke Tsugama
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
- For correspondence. E-mail:
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, PR China
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
34
|
Atabekova AK, Lazareva EA, Strelkova OS, Solovyev AG, Morozov SY. Mechanical stress-induced subcellular re-localization of N-terminally truncated tobacco Nt-4/1 protein. Biochimie 2018; 144:98-107. [PMID: 29097279 DOI: 10.1016/j.biochi.2017.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
The Nicotiana tabacum 4/1 protein (Nt-4/1) of unknown function expressed in plant vasculature has been shown to localize to cytoplasmic bodies associated with endoplasmic reticulum. Here, we analyzed molecular interactions of an Nt-4/1 mutant with a deletion of 90 N-terminal amino acid residues (Nt-4/1d90) having a diffuse GFP-like localization. Upon transient co-expression with VAP27, a membrane protein known to localize to the ER, ER-plasma membrane contact sites and plasmodesmata, Nt-4/1d90 was concentrated around the cortical ER tubules, forming a network matching the shape of the cortical ER. Additionally, in response to mechanical stress, Nt-4/1d90 was re-localized to small spherical bodies, whereas the subcellular localization of VAP27 remained essentially unaffected. The Nt-4/1d90-containing bodies associated with microtubules, which underwent noticeable bundling under the conditions of mechanical stress. The Nt-4/1d90 re-localization to spherical bodies could also be induced by incubation at an elevated temperature, although under heat shock conditions the re-localization was less efficient and incomplete. An Nt-4/1d90 mutant, which had phosphorylation-mimicking mutations in a predicted cluster of four potentially phosphorylated residues, was found to both inefficiently re-localize to spherical bodies and tend to revert back to the initial diffuse localization. The presented data show that Nt-4/1 has a potential for response to stresses that is manifested by its deletion mutant Nt-4/1d90, and this response can be mediated by protein dephosphorylation.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia
| | - Olga S Strelkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
35
|
Tsugama D, Liu S, Fujino K, Takano T. Possible inhibition of Arabidopsis VIP1-mediated mechanosensory signaling by streptomycin. PLANT SIGNALING & BEHAVIOR 2018; 13:e1521236. [PMID: 30235047 PMCID: PMC6204804 DOI: 10.1080/15592324.2018.1521236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 05/21/2023]
Abstract
VIP1 (VIRE2-INTERACTING PROTEIN 1) and its close homologues are Arabidopsis thaliana bZIP proteins regulating stress responses and root tropisms. They are present in the cytoplasm under steady conditions, but transiently accumulate in the nucleus when cells are exposed to mechanical stress such as hypo-osmotic stress and touch. This pattern of changes in subcellular localization is unique to VIP1 and its close homologues, and can be useful to further characterize mechanical stress signaling in plants. A recent study showed that calcium signaling regulates this pattern of subcellular localization. Here, we show that a possible calcium channel inhibitor, streptomycin, also inhibits the nuclear accumulation of VIP1. Candidates for the specific regulators of the mechanosensitive calcium signaling are further discussed.
Collapse
Affiliation(s)
- Daisuke Tsugama
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
- CONTACT Daisuke Tsugama
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, P.R. China
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|