1
|
Horonyova P, Durisova I, Cermakova P, Babelova L, Buckova B, Sofrankova L, Valachovic M, Hsu YHH, Balazova M. The subtherapeutic dose of valproic acid induces the activity of cardiolipin-dependent proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149501. [PMID: 39079622 DOI: 10.1016/j.bbabio.2024.149501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
A mood-stabilizing anticonvulsant valproic acid (VPA) is a drug with a pleiotropic effect on cells. Here, we describe the impact of VPA on the metabolic function of human HAP1 cells. We show that VPA altered the biosynthetic pathway of cardiolipin (CL) and affected the activities of mitochondrial enzymes such as pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and NADH dehydrogenase. We demonstrate that a therapeutic dose of VPA (0.6 mM) has a harmful effect on cell growth and increases the production of reactive oxygen species and superoxides. On the contrary, less concentrated VPA (0.06 mM) increased the activities of CL-dependent enzymes leading to an increased level of oxidative phosphorylation and ATP production. The effect of VPA was also tested on the Barth syndrome model, which is characterized by a reduced amount of CL and an increased level of monolyso-CL. In this model, VPA treatment slightly attenuated the mitochondrial defects by altering the activities of CL-dependent enzymes. However, the presence of CL was essential for the increase in ATP production by VPA. Our findings highlight the potential therapeutic role of VPA in normalizing mitochondrial function in BTHS and shed light on the intricate interplay between lipid metabolism and mitochondrial physiology in health and disease. SUMMARY: This study investigates the dose-dependent effect of valproate, a mood-stabilizing drug, on mitochondrial function. The therapeutic concentration reduced overall cellular metabolic activity, while a subtherapeutic concentration notably improved the function of cardiolipin-dependent proteins within mitochondria. These findings shed light on novel aspects of valproate's effect and suggest potential practical applications for its use. By elucidating the differential effects of valproate doses on mitochondrial activity, this research underscores the drug's multifaceted role in cellular metabolism and highlights avenues for further exploration in therapeutic interventions.
Collapse
Affiliation(s)
- Paulina Horonyova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivana Durisova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Cermakova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lenka Babelova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Buckova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lucia Sofrankova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Slovakia
| | - Martin Valachovic
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Maria Balazova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
2
|
Kumar S, Acharya TK, Halder RR, Mahapatra P, Chang YT, Goswami C. Menthol causes mitochondrial Ca 2+-influx, affects structure-function relationship and cools mitochondria. Life Sci 2023; 331:122032. [PMID: 37604353 DOI: 10.1016/j.lfs.2023.122032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Menthol is a small bioactive compound able to cause several physiological changes and has multiple molecular targets. Therefore, cellular response against menthol is complex, and still poorly understood. In this work, we used a human osteosarcoma cell line (Saos-2) and analysed the effect of menthol, especially in terms of cellular, subcellular and molecular aspects. We demonstrate that menthol causes increased mitochondrial Ca2+ in a complex manner, which is mainly contributed by intracellular sources, including ER. Menthol also changes the Ca2+-load of individual mitochondrial particles in different conditions. Menthol increases ER-mito contact points, causes mitochondrial morphological changes, and increases mitochondrial ATP, cardiolipin, mitochondrial ROS and reduces mitochondrial membrane potential (ΔΨm). Menthol also prevents the mitochondrial quality damaged by sub-lethal and lethal doses of CCCP. In addition, menthol lowers the mitochondrial temperature within cell and also serves as a cooling agent for the isolated mitochondria in a cell free system too. Notably, menthol-induced reduction of mitochondrial temperature is observed in diverse types of cells, including neuronal, immune and cancer cells. As the higher mitochondrial temperature is a hallmark of several inflammatory, metabolic, disease and age-related disorders, we propose that menthol can serve as an active anti-aging compound against all these disorders. These findings may have relevance in case of several pharmacological and clinical applications of menthol. SIGNIFICANCE STATEMENT: Menthol is a plant-derived bioactive compound that is widely used for several physiological, behavioural, addictive, and medicinal purposes. It is a well-established "cooling and analgesic agent". However, the exact cellular and sub-cellular responses of menthol is poorly understood. In this work, we have characterized the effects of menthol on mitochondrial metabolism. Menthol regulates mitochondrial Ca2+, ATP, superoxides, cardiolipin, membrane-potential, and ER-mito contact sites. Moreover, the cooling agent menthol also cools down mitochondria and protects mitochondrial damage by certain toxins. These findings may promote use of menthol as a useful supplementary agent for anti-aging, anti-cancer, anti-inflammatory purposes where higher mitochondrial temperature is prevalent.
Collapse
Affiliation(s)
- Shamit Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Tusar Kanta Acharya
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| | - Ramizur Rahaman Halder
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Parnasree Mahapatra
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chandan Goswami
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
3
|
Sardar A, Dewangan N, Panda B, Bhowmick D, Tarafdar PK. Lipid and Lipidation in Membrane Fusion. J Membr Biol 2022; 255:691-703. [PMID: 36102950 PMCID: PMC9472184 DOI: 10.1007/s00232-022-00267-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022]
Abstract
Membrane fusion plays a lead role in the transport of vesicles, neurotransmission, mitochondrial dynamics, and viral infection. There are fusion proteins that catalyze and regulate the fusion. Interestingly, various types of fusion proteins are present in nature and they possess diverse mechanisms of action. We have highlighted the importance of the functional domains of intracellular heterotypic fusion, homotypic endoplasmic reticulum (ER), homotypic mitochondrial, and type-I viral fusion. During intracellular heterotypic fusion, the SNAREs and four-helix bundle formation are prevalent. Type-I viral fusion is controlled by the membrane destabilizing properties of fusion peptide and six-helix bundle formation. The ER/mitochondrial homotypic fusion is controlled by GTPase activity and the membrane destabilization properties of the amphipathic helix(s). Although the mechanism of action of these fusion proteins is diverse, they have some similarities. In all cases, the lipid composition of the membrane greatly affects membrane fusion. Next, examples of lipidation of the fusion proteins were discussed. We suggest that the fatty acyl hydrophobic tail not only acts as an anchor but may also modulate the energetics of membrane fusion intermediates. Lipidation is also important to design more effective peptide-based fusion inhibitors. Together, we have shown that membrane lipid composition and lipidation are important to modulate membrane fusion.
Collapse
Affiliation(s)
- Avijit Sardar
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Nikesh Dewangan
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Bishvanwesha Panda
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Debosmita Bhowmick
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Pradip K. Tarafdar
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| |
Collapse
|
4
|
Yang B, Yao H, Li D, Liu Z. The phosphatidylglycerol phosphate synthase PgsA utilizes a trifurcated amphipathic cavity for catalysis at the membrane-cytosol interface. Curr Res Struct Biol 2021; 3:312-323. [PMID: 34901881 PMCID: PMC8640168 DOI: 10.1016/j.crstbi.2021.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/24/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Phosphatidylglycerol is a crucial phospholipid found ubiquitously in biological membranes of prokaryotic and eukaryotic cells. The phosphatidylglycerol phosphate (PGP) synthase (PgsA), a membrane-embedded enzyme, catalyzes the primary reaction of phosphatidylglycerol biosynthesis. Mutations in pgsA frequently correlate with daptomycin resistance in Staphylococcus aureus and other prevalent infectious pathogens. Here we report the crystal structures of S. aureus PgsA (SaPgsA) captured at two distinct states of the catalytic process, with lipid substrate (cytidine diphosphate-diacylglycerol, CDP-DAG) or product (PGP) bound to the active site within a trifurcated amphipathic cavity. The hydrophilic head groups of CDP-DAG and PGP occupy two different pockets in the cavity, inducing local conformational changes. An elongated membrane-exposed surface groove accommodates the fatty acyl chains of CDP-DAG/PGP and opens a lateral portal for lipid entry/release. Remarkably, the daptomycin resistance-related mutations mostly cluster around the active site, causing reduction of enzymatic activity. Our results provide detailed mechanistic insights into the dynamic catalytic process of PgsA and structural frameworks beneficial for development of antimicrobial agents targeting PgsA from pathogenic bacteria. PgsA uses a trifurcated amphipathic cavity for binding of substrates or products. Conversion of CDP-DAG to PGP induces local conformational changes in PgsA. Daptomycin-resistant mutations of PgsA mostly lead to reduced catalytic activity. A structure-based five-state model is proposed for the synthesis of PGP by PgsA.
Collapse
Affiliation(s)
- Bowei Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hebang Yao
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 201210, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 201210, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Káňovičová P, Čermáková P, Kubalová D, Bábelová L, Veselá P, Valachovič M, Zahumenský J, Horváth A, Malínský J, Balážová M. Blocking phosphatidylglycerol degradation in yeast defective in cardiolipin remodeling results in a new model of the Barth syndrome cellular phenotype. J Biol Chem 2021; 298:101462. [PMID: 34864056 PMCID: PMC8728584 DOI: 10.1016/j.jbc.2021.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/01/2022] Open
Abstract
Barth syndrome (BTHS) is an inherited mitochondrial disorder characterized by a decrease in total cardiolipin and the accumulation of its precursor monolysocardiolipin due to the loss of the transacylase enzyme tafazzin. However, the molecular basis of BTHS pathology is still not well understood. Here we characterize the double mutant pgc1Δtaz1Δ of Saccharomyces cerevisiae deficient in phosphatidylglycerol-specific phospholipase C and tafazzin as a new yeast model of BTHS. Unlike the taz1Δ mutant used to date, this model accumulates phosphatidylglycerol, thus better approximating the human BTHS cells. We demonstrate that increased phosphatidylglycerol in this strain leads to more pronounced mitochondrial respiratory defects and an increased incidence of aberrant mitochondria compared to the single taz1Δ mutant. We also show that the mitochondria of the pgc1Δtaz1Δ mutant exhibit a reduced rate of respiration due to decreased cytochrome c oxidase and ATP synthase activities. Finally, we determined that the mood-stabilizing anticonvulsant valproic acid has a positive effect on both lipid composition and mitochondrial function in these yeast BTHS models. Overall, our results show that the pgc1Δtaz1Δ mutant better mimics the cellular phenotype of BTHS patients than taz1Δ cells, both in terms of lipid composition and the degree of disruption of mitochondrial structure and function. This favors the new model for use in future studies.
Collapse
Affiliation(s)
- Paulína Káňovičová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Čermáková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Dominika Kubalová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lenka Bábelová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Veselá
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Valachovič
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jakub Zahumenský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jan Malínský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Mária Balážová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
6
|
Mahajan M, Bharambe N, Shang Y, Lu B, Mandal A, Madan Mohan P, Wang R, Boatz JC, Manuel Martinez Galvez J, Shnyrova AV, Qi X, Buck M, van der Wel PCA, Ramachandran R. NMR identification of a conserved Drp1 cardiolipin-binding motif essential for stress-induced mitochondrial fission. Proc Natl Acad Sci U S A 2021; 118:e2023079118. [PMID: 34261790 PMCID: PMC8307854 DOI: 10.1073/pnas.2023079118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondria form tubular networks that undergo coordinated cycles of fission and fusion. Emerging evidence suggests that a direct yet unresolved interaction of the mechanoenzymatic GTPase dynamin-related protein 1 (Drp1) with mitochondrial outer membrane-localized cardiolipin (CL), externalized under stress conditions including mitophagy, catalyzes essential mitochondrial hyperfragmentation. Here, using a comprehensive set of structural, biophysical, and cell biological tools, we have uncovered a CL-binding motif (CBM) conserved between the Drp1 variable domain (VD) and the unrelated ADP/ATP carrier (AAC/ANT) that intercalates into the membrane core to effect specific CL interactions. CBM mutations that weaken VD-CL interactions manifestly impair Drp1-dependent fission under stress conditions and induce "donut" mitochondria formation. Importantly, VD membrane insertion and GTP-dependent conformational rearrangements mediate only transient CL nonbilayer topological forays and high local membrane constriction, indicating that Drp1-CL interactions alone are insufficient for fission. Our studies establish the structural and mechanistic bases of Drp1-CL interactions in stress-induced mitochondrial fission.
Collapse
Affiliation(s)
- Mukesh Mahajan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Nikhil Bharambe
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Yutong Shang
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Bin Lu
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Abhishek Mandal
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Pooja Madan Mohan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Rihua Wang
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Jennifer C Boatz
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Juan Manuel Martinez Galvez
- Instituto Biofisika and Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - Anna V Shnyrova
- Instituto Biofisika and Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH 44106
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Zernike Institute for Advanced Materials, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106;
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
7
|
TTAPE-Me dye is not selective to cardiolipin and binds to common anionic phospholipids nonspecifically. Biophys J 2021; 120:3776-3786. [PMID: 34280369 DOI: 10.1016/j.bpj.2021.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
Identification, visualization, and quantitation of cardiolipin (CL) in biological membranes is of great interest because of the important structural and physiological roles of this lipid. Selective fluorescent detection of CL using noncovalently bound fluorophore 1,1,2,2-tetrakis[4-(2-trimethylammonioethoxy)-phenylethene (TTAPE-Me) has been recently proposed. However, this dye was only tested on wild-type mitochondria or liposomes containing negligible amounts of other anionic lipids, such as phosphatidylglycerol (PG) and phosphatidylserine (PS). No clear preference of TTAPE-Me for binding to CL compared to PG and PS was found in our experiments on artificial liposomes, Escherichia coli inside-out vesicles, or Saccharomyces cerevisiae mitochondria in vitro or in situ, respectively. The shapes of the emission spectra for these anionic phospholipids were also found to be indistinguishable. Thus, TTAPE-Me is not suitable for detection, visualization, and localization of CL in the presence of other anionic lipids present in substantial physiological amounts. Our experiments and complementary molecular dynamics simulations suggest that fluorescence intensity of TTAPE-Me is regulated by dynamic equilibrium between emitting dye aggregates, stabilized by unspecific but thermodynamically favorable electrostatic interactions with anionic lipids, and nonemitting dye monomers. These results should be taken into consideration when interpreting past and future results of CL detection and localization studies with this probe in vitro and in vivo. Provided methodology emphasizes minimal experimental requirements, which should be considered as a guideline during the development of novel lipid-specific probes.
Collapse
|
8
|
Zhen H, Teng Q, Mosley JD, Collette TW, Yue Y, Bradley PM, Ekman DR. Untargeted Lipidomics for Determining Cellular and Subcellular Responses in Zebrafish ( Danio rerio) Liver Cells Following Exposure to Complex Mixtures in U.S. Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8180-8190. [PMID: 34096267 PMCID: PMC8453666 DOI: 10.1021/acs.est.1c01132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Surface waters often contain a variety of chemical contaminants potentially capable of producing adverse outcomes in both humans and wildlife due to impacts from industrial, urban, and agricultural activity. Here, we report the results of a zebrafish liver (ZFL) cell-based lipidomics approach to assess the potential ecotoxicological effects of complex contaminant mixtures using water collected from eight impacted streams across the United States mainland and Puerto Rico. We initially characterized the ZFL lipidome using high resolution mass spectrometry, resulting in the annotation of 508 lipid species covering 27 classes. We then identified lipid changes induced by all streamwater samples (nonspecific stress indicators) as well as those unique to water samples taken from specific streams. Subcellular impacts were classified based on organelle-specific lipid changes, including increased lipid saturation (endoplasmic reticulum stress), elevated bis(monoacylglycero)phosphate (lysosomal overload), decreased ubiquinone (mitochondrial dysfunction), and elevated ether lipids (peroxisomal stress). Finally, we demonstrate how these results can uniquely inform environmental monitoring and risk assessments of surface waters.
Collapse
Affiliation(s)
- Huajun Zhen
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Athens, Georgia 30605, United States
| | - Quincy Teng
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Athens, Georgia 30605, United States
| | - Jonathan D Mosley
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Athens, Georgia 30605, United States
| | - Timothy W Collette
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Athens, Georgia 30605, United States
| | - Yang Yue
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Athens, Georgia 30605, United States
| | - Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, South Carolina 29210, United States
| | - Drew R Ekman
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Athens, Georgia 30605, United States
| |
Collapse
|
9
|
Cretin E, Lopes P, Vimont E, Tatsuta T, Langer T, Gazi A, Sachse M, Yu‐Wai‐Man P, Reynier P, Wai T. High-throughput screening identifies suppressors of mitochondrial fragmentation in OPA1 fibroblasts. EMBO Mol Med 2021; 13:e13579. [PMID: 34014035 PMCID: PMC8185549 DOI: 10.15252/emmm.202013579] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Mutations in OPA1 cause autosomal dominant optic atrophy (DOA) as well as DOA+, a phenotype characterized by more severe neurological deficits. OPA1 deficiency causes mitochondrial fragmentation and also disrupts cristae, respiration, mitochondrial DNA (mtDNA) maintenance, and cell viability. It has not yet been established whether phenotypic severity can be modulated by genetic modifiers of OPA1. We screened the entire known mitochondrial proteome (1,531 genes) to identify genes that control mitochondrial morphology using a first-in-kind imaging pipeline. We identified 145 known and novel candidate genes whose depletion promoted elongation or fragmentation of the mitochondrial network in control fibroblasts and 91 in DOA+ patient fibroblasts that prevented mitochondrial fragmentation, including phosphatidyl glycerophosphate synthase (PGS1). PGS1 depletion reduces CL content in mitochondria and rebalances mitochondrial dynamics in OPA1-deficient fibroblasts by inhibiting mitochondrial fission, which improves defective respiration, but does not rescue mtDNA depletion, cristae dysmorphology, or apoptotic sensitivity. Our data reveal that the multifaceted roles of OPA1 in mitochondria can be functionally uncoupled by modulating mitochondrial lipid metabolism, providing novel insights into the cellular relevance of mitochondrial fragmentation.
Collapse
Affiliation(s)
- Emma Cretin
- Mitochondrial Biology GroupInstitut PasteurCNRS UMR 3691ParisFrance
- Université de ParisParisFrance
| | - Priscilla Lopes
- Mitochondrial Biology GroupInstitut PasteurCNRS UMR 3691ParisFrance
| | - Elodie Vimont
- Mitochondrial Biology GroupInstitut PasteurCNRS UMR 3691ParisFrance
| | | | - Thomas Langer
- Max‐Planck‐Institute for Biology of AgeingCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Anastasia Gazi
- UTechS Ultrastructural Bio ImagingInstitut PasteurParisFrance
| | - Martin Sachse
- UTechS Ultrastructural Bio ImagingInstitut PasteurParisFrance
| | - Patrick Yu‐Wai‐Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology UnitDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge Eye UnitAddenbrooke's HospitalCambridge University HospitalsCambridgeUK
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
| | - Pascal Reynier
- Laboratoire de Biochimie et biologie moléculaireCentre Hospitalier UniversitaireAngersFrance
- Unité Mixte de Recherche MITOVASCCNRS 6015INSERM U1083Université d'AngersAngersFrance
| | - Timothy Wai
- Mitochondrial Biology GroupInstitut PasteurCNRS UMR 3691ParisFrance
- Université de ParisParisFrance
| |
Collapse
|
10
|
Thorne LS, Rochford G, Williams TD, Southam AD, Rodriguez-Blanco G, Dunn WB, Hodges NJ. Cytoglobin protects cancer cells from apoptosis by regulation of mitochondrial cardiolipin. Sci Rep 2021; 11:985. [PMID: 33441751 PMCID: PMC7806642 DOI: 10.1038/s41598-020-79830-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Cytoglobin is important in the progression of oral squamous cell carcinoma but the molecular and cellular basis remain to be elucidated. In the current study, we develop a new cell model to study the function of cytoglobin in oral squamous carcinoma and response to cisplatin. Transcriptomic profiling showed cytoglobin mediated changes in expression of genes related to stress response, redox metabolism, mitochondrial function, cell adhesion, and fatty acid metabolism. Cellular and biochemical studies show that cytoglobin expression results in changes to phenotype associated with cancer progression including: increased cellular proliferation, motility and cell cycle progression. Cytoglobin also protects cells from cisplatin-induced apoptosis and oxidative stress with levels of the antioxidant glutathione increased and total and mitochondrial reactive oxygen species levels reduced. The mechanism of cisplatin resistance involved inhibition of caspase 9 activation and cytoglobin protected mitochondria from oxidative stress-induced fission. To understand the mechanism behind these phenotypic changes we employed lipidomic analysis and demonstrate that levels of the redox sensitive and apoptosis regulating cardiolipin are significantly up-regulated in cells expressing cytoglobin. In conclusion, our data shows that cytoglobin expression results in important phenotypic changes that could be exploited by cancer cells in vivo to facilitate disease progression.
Collapse
Affiliation(s)
- Lorna S Thorne
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Garret Rochford
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Timothy D Williams
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew D Southam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Giovanny Rodriguez-Blanco
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Warwick B Dunn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nikolas J Hodges
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
11
|
Royes J, Biou V, Dautin N, Tribet C, Miroux B. Inducible intracellular membranes: molecular aspects and emerging applications. Microb Cell Fact 2020; 19:176. [PMID: 32887610 PMCID: PMC7650269 DOI: 10.1186/s12934-020-01433-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).
Collapse
Affiliation(s)
- Jorge Royes
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France. .,Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France.
| | - Valérie Biou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Christophe Tribet
- Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France.
| |
Collapse
|
12
|
Ma Y, Zhang Y, Xiao Y, Xiao F. Increased Mitochondrial Fragmentation Mediated by Dynamin-Related Protein 1 Contributes to Hexavalent Chromium-Induced Mitochondrial Respiratory Chain Complex I-Dependent Cytotoxicity. TOXICS 2020; 8:E50. [PMID: 32751088 PMCID: PMC7560259 DOI: 10.3390/toxics8030050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 05/17/2023]
Abstract
Hexavalent chromium (Cr(VI)) pollution is a severe public health problem in the world. Although it is believed that mitochondrial fragmentation is a common phenomenon in apoptosis, whether excessive fission is crucial for apoptosis remains controversial. We previously confirmed that Cr(VI) mainly targeted mitochondrial respiratory chain complex I (MRCC I) to induce reactive oxygen species (ROS)-mediated apoptosis, but the related mechanism was unclear. In this study, we found Cr(VI) targeted MRCC I to induce ROS accumulation and triggered mitochondria-related cytotoxicity. Cr(VI)-induced cytotoxicity was alleviated by pretreatment of Glutamate/malate (Glu/Mal; MRCC I substrates), and was aggravated by cotreatment of rotenone (ROT; MRCC I inhibitor). Cr(VI) induced excessive mitochondrial fragmentation and mitochondrial dynamin-related protein 1 (Drp1) translocation, the application of Drp1-siRNA alleviated Cr(VI)-induced apoptosis. The cytotoxicity in the Drp1-si plus Cr(VI) treatment group was alleviated by the application of Glu/Mal, and was aggravated by the application of ROT. Drp1 siRNA promoted the inhibition of Glu/Mal on Cr(VI)-induced cytotoxicity, and alleviated the aggravation of ROT on Cr(VI)-induced cytotoxicity. Taken together, Cr(VI)-induced Drp1 modulation was dependent on MRCC I inhibition-mediated ROS production, and Drp1-mediated mitochondrial fragmentation contributed to Cr(VI)-induced MRCC I-dependent cytotoxicity, which provided the experimental basis for further elucidating Cr(VI)-induced cytotoxicity.
Collapse
Affiliation(s)
| | | | | | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, China; (Y.M.); (Y.Z.); (Y.X.)
| |
Collapse
|
13
|
Moon Y, Jun Y. The Effects of Regulatory Lipids on Intracellular Membrane Fusion Mediated by Dynamin-Like GTPases. Front Cell Dev Biol 2020; 8:518. [PMID: 32671068 PMCID: PMC7326814 DOI: 10.3389/fcell.2020.00518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 12/04/2022] Open
Abstract
Membrane fusion mediates a number of fundamental biological processes such as intracellular membrane trafficking, fertilization, and viral infection. Biological membranes are composed of lipids and proteins; while lipids generally play a structural role, proteins mediate specific functions in the membrane. Likewise, although proteins are key players in the fusion of biological membranes, there is emerging evidence supporting a functional role of lipids in various membrane fusion events. Intracellular membrane fusion is mediated by two protein families: SNAREs and membrane-bound GTPases. SNARE proteins are involved in membrane fusion between transport vesicles and their target compartments, as well as in homotypic fusion between organelles of the same type. Membrane-bound GTPases mediate mitochondrial fusion and homotypic endoplasmic reticulum fusion. Certain membrane lipids, known as regulatory lipids, regulate these membrane fusion events by directly affecting the function of membrane-bound GTPases, instead of simply changing the biophysical and biochemical properties of lipid bilayers. In this review, we provide a summary of the current understanding of how regulatory lipids affect GTPase-mediated intracellular membrane fusion by focusing on the functions of regulatory lipids that directly affect fusogenic GTPases.
Collapse
Affiliation(s)
- Yeojin Moon
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Youngsoo Jun
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
14
|
Kubalová D, Káňovičová P, Veselá P, Awadová T, Džugasová V, Daum G, Malínský J, Balážová M. The lipid droplet protein Pgc1 controls the subcellular distribution of phosphatidylglycerol. FEMS Yeast Res 2020; 19:5524364. [PMID: 31247640 DOI: 10.1093/femsyr/foz045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The biosynthesis of yeast phosphatidylglycerol (PG) takes place in the inner mitochondrial membrane. Outside mitochondria, the abundance of PG is low. Here, we present evidence that the subcellular distribution of PG is maintained by the locally controlled enzymatic activity of the PG-specific phospholipase, Pgc1. A fluorescently labeled Pgc1 protein accumulates on the surface of lipid droplets (LD). We show, however, that LD are not only dispensable for Pgc1-mediated PG degradation, but do not even host any phospholipase activity of Pgc1. Our in vitro assays document the capability of LD-accumulated Pgc1 to degrade PG upon entry to the membranes of the endoplasmic reticulum, mitochondria and even of artificial phospholipid vesicles. Fluorescence recovery after photobleaching analysis confirms the continuous exchange of GFP-Pgc1 within the individual LD in situ, suggesting that a steady-state equilibrium exists between LD and membranes to regulate the immediate phospholipase activity of Pgc1. In this model, LD serve as a storage place and shelter Pgc1, preventing its untimely degradation, while both phospholipase activity and degradation of the enzyme occur in the membranes.
Collapse
Affiliation(s)
- Dominika Kubalová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| | - Paulína Káňovičová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| | - Petra Veselá
- Department of Microscopy, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic,14220 Prague, Czech Republic
| | - Thuraya Awadová
- Department of Microscopy, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic,14220 Prague, Czech Republic
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Jan Malínský
- Department of Microscopy, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic,14220 Prague, Czech Republic
| | - Mária Balážová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| |
Collapse
|
15
|
El-Hafidi M, Correa F, Zazueta C. Mitochondrial dysfunction in metabolic and cardiovascular diseases associated with cardiolipin remodeling. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165744. [PMID: 32105822 DOI: 10.1016/j.bbadis.2020.165744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/21/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Cardiolipin (CL) is an acidic phospholipid almost exclusively found in the inner mitochondrial membrane, that not only stabilizes the structure and function of individual components of the mitochondrial electron transport chain, but regulates relevant mitochondrial processes, like mitochondrial dynamics and cristae structure maintenance among others. Alterations in CL due to peroxidation, correlates with loss of such mitochondrial activities and disease progression. In this review it is recapitulated the current state of knowledge of the role of cardiolipin remodeling associated with mitochondrial dysfunction in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología I. Ch. 14080, Ciudad de México, México
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología I. Ch. 14080, Ciudad de México, México
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología I. Ch. 14080, Ciudad de México, México.
| |
Collapse
|
16
|
Feng ST, Wang ZZ, Yuan YH, Wang XL, Sun HM, Chen NH, Zhang Y. Dynamin-related protein 1: A protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson’s disease. Pharmacol Res 2020; 151:104553. [DOI: 10.1016/j.phrs.2019.104553] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 01/14/2023]
|
17
|
Abstract
Synthesis and regulation of lipid levels and identities is critical for a wide variety of cellular functions, including structural and morphological properties of organelles, energy storage, signaling, and stability and function of membrane proteins. Proteolytic cleavage events regulate and/or influence some of these lipid metabolic processes and as a result help modulate their pleiotropic cellular functions. Proteins involved in lipid regulation are proteolytically cleaved for the purpose of their relocalization, processing, turnover, and quality control, among others. The scope of this review includes proteolytic events governing cellular lipid dynamics. After an initial discussion of the classic example of sterol regulatory element-binding proteins, our focus will shift to the mitochondrion, where a range of proteolytic events are critical for normal mitochondrial phospholipid metabolism and enforcing quality control therein. Recently, mitochondrial phospholipid metabolic pathways have been implicated as important for the proliferative capacity of cancers. Thus, the assorted proteases that regulate, monitor, or influence the activity of proteins that are important for phospholipid metabolism represent attractive targets to be manipulated for research purposes and clinical applications.
Collapse
Affiliation(s)
- Pingdewinde N. Sam
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Erica Avery
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven M. Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
18
|
Ban T, Kohno H, Ishihara T, Ishihara N. Relationship between OPA1 and cardiolipin in mitochondrial inner-membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:951-957. [DOI: 10.1016/j.bbabio.2018.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/10/2018] [Accepted: 05/25/2018] [Indexed: 12/28/2022]
|