1
|
Niu MY, Liu YJ, Shi JJ, Chen RY, Zhang S, Li CY, Cao JF, Yang GJ, Chen J. The Emerging Role of Ubiquitin-Specific Protease 36 (USP36) in Cancer and Beyond. Biomolecules 2024; 14:572. [PMID: 38785979 PMCID: PMC11118191 DOI: 10.3390/biom14050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Meng-Yao Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Shun Zhang
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| |
Collapse
|
2
|
Jin Z, Yang Z, Sheng Z, Teng J, Chen W, Chen F, Gong M. USP36 Facilitates the Progression of Hepatocellular Carcinoma by Upregulating Myc. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: Our study will explore the function and regulatory mechanism of USP36 in hepatocellular carcinoma (HCC). Methods: USP36-overexpressed and USP36-knockdown cells were established. The USP36 and Myc level were checked by Western blotting and the cell viability
was checked by the MTT method. The apoptotic rate was checked by flow cytometry, while the migration was detected by the Transwell assay. A xenograft model was constructed in nude mice to explore the function of USP36 in HCC. USP36-overexpressed and USP-knockdown cells were constructed by
transfecting pcDNA3.1-USP36 and siRNA-USP36 (si-USP36), respectively. Myc-overexpressed cells were constructed by transfecting pcDNA3.1-Myc. Results: Significantly declined cell viability, increased apoptotic rate, elevated number of migrated cells, downregulated Myc, and repressed
tumor growth were observed in USP36-knockdown HepG2 and HUH7 cells, while opposite results were observed in USP36-overexpressed HepG2 and HUH7 cells. The expression level of Myc was positively regulated by USP36. However, the USP36 level was not regulated by Myc. Lastly, the declined cell
viability, increased apoptotic rate, and elevated number of migrated cells in USP36-knockdown HepG2 cells were dramatically abrogated by the overexpression of Myc. Conclusion: USP36 facilitated the progression of hepatocellular carcinoma by upregulating Myc.
Collapse
Affiliation(s)
- Zhaoqing Jin
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| | - Ziqiang Yang
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| | - Zhen Sheng
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| | - Jiao Teng
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| | - Weiqing Chen
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| | - Feihua Chen
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| | - Mouchun Gong
- Department of General Surgery, First People’s Hospital of Hangzhou Lin’an District (Affiliated Lin’an People’s Hospital, Hangzhou, Medical College), Hangzhou, 310013, China
| |
Collapse
|
3
|
Multi-omics mapping of human papillomavirus integration sites illuminates novel cervical cancer target genes. Br J Cancer 2021; 125:1408-1419. [PMID: 34526665 PMCID: PMC8575955 DOI: 10.1038/s41416-021-01545-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Integration of human papillomavirus (HPV) into the host genome is a dominant feature of invasive cervical cancer (ICC), yet the tumorigenicity of cis genomic changes at integration sites remains largely understudied. METHODS Combining multi-omics data from The Cancer Genome Atlas with patient-matched long-read sequencing of HPV integration sites, we developed a strategy for using HPV integration events to identify and prioritise novel candidate ICC target genes (integration-detected genes (IDGs)). Four IDGs were then chosen for in vitro functional studies employing small interfering RNA-mediated knockdown in cell migration, proliferation and colony formation assays. RESULTS PacBio data revealed 267 unique human-HPV breakpoints comprising 87 total integration events in eight tumours. Candidate IDGs were filtered based on the following criteria: (1) proximity to integration site, (2) clonal representation of integration event, (3) tumour-specific expression (Z-score) and (4) association with ICC survival. Four candidates prioritised based on their unknown function in ICC (BNC1, RSBN1, USP36 and TAOK3) exhibited oncogenic properties in cervical cancer cell lines. Further, annotation of integration events provided clues regarding potential mechanisms underlying altered IDG expression in both integrated and non-integrated ICC tumours. CONCLUSIONS HPV integration events can guide the identification of novel IDGs for further study in cervical carcinogenesis and as putative therapeutic targets.
Collapse
|
4
|
Zhu S, Hou S, Lu Y, Sheng W, Cui Z, Dong T, Feng H, Wan Q. USP36-Mediated Deubiquitination of DOCK4 Contributes to the Diabetic Renal Tubular Epithelial Cell Injury via Wnt/β-Catenin Signaling Pathway. Front Cell Dev Biol 2021; 9:638477. [PMID: 33968925 PMCID: PMC8102983 DOI: 10.3389/fcell.2021.638477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 01/11/2023] Open
Abstract
Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease but the efficacy of current treatment remains unsatisfactory. The pathogenesis of DKD needs a more in-depth research. Ubiquitin specific proteases 36 (USP36), a member of deubiquitinating enzymes family, has aroused wide concerns for its role in deubiquitinating and stabilizing target proteins. Nevertheless, the role of USP36 in diabetes has never been reported yet. Herein, we identified an increased expression of USP36 both in vitro and in vivo in diabetic renal tubular epithelial cells (TECs), and its overexpression is related to the enhanced epithelial-to-mesenchymal transition (EMT). Further investigation into the mechanisms proved that USP36 could directly bind to and mediate the deubiquitination of dedicator of cytokinesis 4 (DOCK4), a guanine nucleotide exchange factor (GEF) that could activate Wnt/β-catenin signaling pathway and induce EMT. Our study revealed a new mechanism that USP36 participates in the pathogenesis of DKD, and provided potential intervening targets accordingly.
Collapse
Affiliation(s)
- Suwei Zhu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoshuai Hou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Lu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Sheng
- Department of Cancer Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhengguo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tianyi Dong
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hong Feng
- Department of Cancer Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
5
|
Du B, Liao H, Zhang S. Expression Pattern and Prognostic Utility of PME-1 in Patients with Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:2937-2945. [PMID: 32431540 PMCID: PMC7197939 DOI: 10.2147/cmar.s252873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) remains one of the most common malignancies. While there is lack of markers capable of predicting which patients are at risk of aggressive course of the disease. Although a few protein phosphatase methyl-esterase-1 (PME-1) tumor-promoting mechanisms have been reported, the role of PME-1 in cancer including HCC occurrence and progression remains to be elucidated. The aim of this study was to explore the expression pattern and relationship between PME-1 with the pathological parameters in patients with HCC. Methods PME-1 expression was assessed from HCC tissue chips via immunohistochemistry. Chi-square test was used to identify the association between PME-1 staining and clinicopathological variables of HCC patients. Kaplan–Meier analysis and Cox regression analysis were performed to draw survival curves and verify the independent prognostic factors of HCC patients, respectively. Results We found that PME-1 expression was significantly higher in HCC tumor tissues compared with non-tumor tissues (P < 0.001). Furthermore, high expression level of PME-1 was significantly associated with differentiation (P = 0.047), tumor number (P = 0.001), intrahepatic or extrahepatic metastasis (P = 0.018), and recurrence (P = 0.001). Kaplan–Meier analysis revealed that high expression level of PME-1 was associated with shorter survival (P < 0.001). Univariate analysis with Log-rank test revealed that PME-1 expression status was significantly correlated with overall survival (P < 0.001). Furthermore, multivariate models with Cox proportional hazards analysis showed that high expression of PME-1 was a statistically independent predictive factor of poor prognosis in HCC patients (hazard ratio, 3.429; 95% confidence interval, 1.369–8.589; P = 0.009). Conclusion In conclusion, these findings indicated that PME-1 expression was associated with aggressive pathological features and worse oncological outcomes, suggesting its potential therapeutic value for patients with HCC.
Collapse
Affiliation(s)
- Baoying Du
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongfeng Liao
- Department of Pathology, Zhongshan Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Sheng Zhang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Laurent AP, Siret A, Ignacimouttou C, Panchal K, Diop M, Jenni S, Tsai YC, Roos-Weil D, Aid Z, Prade N, Lagarde S, Plassard D, Pierron G, Daudigeos E, Lecluse Y, Droin N, Bornhauser BC, Cheung LC, Crispino JD, Gaudry M, Bernard OA, Macintyre E, Barin Bonnigal C, Kotecha RS, Geoerger B, Ballerini P, Bourquin JP, Delabesse E, Mercher T, Malinge S. Constitutive Activation of RAS/MAPK Pathway Cooperates with Trisomy 21 and Is Therapeutically Exploitable in Down Syndrome B-cell Leukemia. Clin Cancer Res 2020; 26:3307-3318. [PMID: 32220889 DOI: 10.1158/1078-0432.ccr-19-3519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/20/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Children with Down syndrome (constitutive trisomy 21) that develop acute lymphoblastic leukemia (DS-ALL) have a 3-fold increased likelihood of treatment-related mortality coupled with a higher cumulative incidence of relapse, compared with other children with B-cell acute lymphoblastic leukemia (B-ALL). This highlights the lack of suitable treatment for Down syndrome children with B-ALL. EXPERIMENTAL DESIGN To facilitate the translation of new therapeutic agents into clinical trials, we built the first preclinical cohort of patient-derived xenograft (PDX) models of DS-ALL, comprehensively characterized at the genetic and transcriptomic levels, and have proven its suitability for preclinical studies by assessing the efficacy of drug combination between the MEK inhibitor trametinib and conventional chemotherapy agents. RESULTS Whole-exome and RNA-sequencing experiments revealed a high incidence of somatic alterations leading to RAS/MAPK pathway activation in our cohort of DS-ALL, as well as in other pediatric B-ALL presenting somatic gain of the chromosome 21 (B-ALL+21). In murine and human B-cell precursors, activated KRASG12D functionally cooperates with trisomy 21 to deregulate transcriptional networks that promote increased proliferation and self renewal, as well as B-cell differentiation blockade. Moreover, we revealed that inhibition of RAS/MAPK pathway activation using the MEK1/2 inhibitor trametinib decreased leukemia burden in several PDX models of B-ALL+21, and enhanced survival of DS-ALL PDX in combination with conventional chemotherapy agents such as vincristine. CONCLUSIONS Altogether, using novel and suitable PDX models, this study indicates that RAS/MAPK pathway inhibition represents a promising strategy to improve the outcome of Down syndrome children with B-cell precursor leukemia.
Collapse
Affiliation(s)
- Anouchka P Laurent
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France.,Université Paris Diderot, Paris, France
| | - Aurélie Siret
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
| | - Cathy Ignacimouttou
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
| | - Kunjal Panchal
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - M'Boyba Diop
- Gustave Roussy Institute Cancer Campus, Department of Pediatric and Adolescent Oncology, INSERM U1015, Equipe Labellisée Ligue Nationale Contre le Cancer, Université Paris-Saclay, Villejuif, France
| | - Silvia Jenni
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Yi-Chien Tsai
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Damien Roos-Weil
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
| | - Zakia Aid
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
| | - Nais Prade
- Centre of Research on Cancer of Toulouse (CRCT), CHU Toulouse, Université Toulouse III, Toulouse, France
| | - Stephanie Lagarde
- Centre of Research on Cancer of Toulouse (CRCT), CHU Toulouse, Université Toulouse III, Toulouse, France
| | | | | | - Estelle Daudigeos
- Gustave Roussy Institute Cancer Campus, Department of Pediatric and Adolescent Oncology, INSERM U1015, Equipe Labellisée Ligue Nationale Contre le Cancer, Université Paris-Saclay, Villejuif, France
| | - Yann Lecluse
- Gustave Roussy Institute Cancer Campus, Department of Pediatric and Adolescent Oncology, INSERM U1015, Equipe Labellisée Ligue Nationale Contre le Cancer, Université Paris-Saclay, Villejuif, France
| | - Nathalie Droin
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
| | - Beat C Bornhauser
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Laurence C Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Muriel Gaudry
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
| | - Olivier A Bernard
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
| | - Elizabeth Macintyre
- Hematology, Université de Paris, Institut Necker-Enfants Malades and Assistance Publique-Hopitaux de Paris, Paris, France
| | | | - Rishi S Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Department of Clinical Haematology, Oncology and Bone Marrow Transplantation, Perth Children's Hospital, Perth, Australia
| | - Birgit Geoerger
- Gustave Roussy Institute Cancer Campus, Department of Pediatric and Adolescent Oncology, INSERM U1015, Equipe Labellisée Ligue Nationale Contre le Cancer, Université Paris-Saclay, Villejuif, France
| | - Paola Ballerini
- Laboratoire d'Hématologie, Hôpital Trousseau, APHP, Paris-Sorbonne, Paris, France
| | - Jean-Pierre Bourquin
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Eric Delabesse
- Centre of Research on Cancer of Toulouse (CRCT), CHU Toulouse, Université Toulouse III, Toulouse, France
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Sebastien Malinge
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France. .,Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| |
Collapse
|
7
|
Liu Q, Sheng W, Ma Y, Zhen J, Roy S, Alvira Jafar C, Xin W, Wan Q. USP36 protects proximal tubule cells from ischemic injury by stabilizing c-Myc and SOD2. Biochem Biophys Res Commun 2019; 513:502-508. [PMID: 30975468 DOI: 10.1016/j.bbrc.2019.03.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
Acute kidney injury (AKI) is a progressive renal injury with high morbidity and mortality, however, the mechanism is far from being clarified and effective clinical interventions are lacking. USP36 is a deubiquitination enzyme involved in a variety of cellular biological processes, but its involvement in renal cell apoptosis and kidney disease is largely unknown. In the present study, we confirmed the decreased expression of USP36 both in vivo in mouse and human AKI samples and in vitro ischemic human renal proximal tubular cells, which are extremely sensitive to the damage of ischemic injury. Importantly, we found that overexpression of USP36 markedly decreased ischemia-induced apoptosis and oxidative stress in HK-2 cells, which was accompanied by elevated c-Myc and SOD2 protein levels with alleviated ischemia-induced ubiquitination of both proteins. Our findings revealed a novel role of USP36 in inhibiting apoptosis of human renal tubular cells induced by ischemia, and provided a potential therapeutic target for AKI treatment.
Collapse
Affiliation(s)
- Qing Liu
- Weifang Medical University, 261000, Weifang, Shandong Province, China
| | - Wei Sheng
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, China
| | - Yuan Ma
- School of Medicine, Shandong University, Jinan, 250012, China
| | - Junhui Zhen
- Department of Pathology, Shandong University School of Medicine, Jinan, 250012, China
| | - Satyajit Roy
- Department of Nephrology and Dialysis Unit, Bangabondhu Memorial Hospital Affiliated to University of Science & Technology, Chittagong, Bangladesh
| | | | - Wei Xin
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, China.
| | - Qiang Wan
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, China.
| |
Collapse
|
8
|
Kim SY, Baek KH. TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci 2019; 76:653-665. [PMID: 30349992 PMCID: PMC11105597 DOI: 10.1007/s00018-018-2949-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Ubiquitination is a reversible cellular process mediated by ubiquitin-conjugating enzymes, whereas deubiquitinating enzymes (DUBs) detach the covalently conjugated ubiquitin from target substrates to counter ubiquitination. DUBs play a crucial role in regulating various signal transduction pathways and biological processes including apoptosis, cell proliferation, DNA damage repair, metastasis, differentiation, etc. Since the transforming growth factor-β (TGF-β) signaling pathway participates in various cellular functions such as inflammation, metastasis and embryogenesis, aberrant regulation of TGF-β signaling induces abnormal cellular functions resulting in numerous diseases. This review focuses on DUBs regulating the TGF-β signaling pathway. We discuss the molecular mechanisms of DUBs involved in TGF-β signaling pathway, and biological and therapeutic implications for various diseases.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|