1
|
Taylor JN, Bando K, Tsukagoshi S, Tanaka L, Fujita K, Fujita S. Microscopic water dispersion and hydrogen-bonding structures in margarine spreads with Raman hyperspectral imaging and machine learning. Food Chem 2025; 465:142035. [PMID: 39571430 DOI: 10.1016/j.foodchem.2024.142035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
Margarine, a water-in-oil (W/O) emulsion, offers advantages such as lower costs in comparison to similar products, but large amounts of saturated fats pose health risks. Reduction of saturated fat content is difficult and often leads to "oil-off," i.e., the seepage of liquid oil from the mixture, resulting in undesirable appearance and texture. Investigations into the phenomenon have often focused on morphology at the water-oil interfaces, and this work establishes Raman imaging as a powerful application for observing microscopic morphologies of W/O emulsions. We analyze morphologies of 5 distinct margarine spreads that differ in manufacturing date, formulation, and manufacturing process. More robust H-bonding in the oil phase of the emulsions co-occurred with smaller amounts of oil-off, suggesting that H-bonding interactions between emulsifier molecules, water, and crystallized fats in the lipid phase of the W/O emulsions results in an emulsion that is less susceptible to the production of oil-off.
Collapse
Affiliation(s)
- J Nicholas Taylor
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kazuki Bando
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Department of Applied Physics Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shiori Tsukagoshi
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2, Minamidai, Kawagoe, Saitama 350-1165, Japan.
| | - Leo Tanaka
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2, Minamidai, Kawagoe, Saitama 350-1165, Japan.
| | - Katsumasa Fujita
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Department of Applied Physics Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Satoshi Fujita
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Department of Applied Physics Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Liao HX, Bando K, Li M, Fujita K. Multifocal Raman Spectrophotometer for Examining Drug-Induced and Chemical-Induced Cellular Changes in 3D Cell Spheroids. Anal Chem 2023; 95:14616-14623. [PMID: 37725051 DOI: 10.1021/acs.analchem.3c02129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Cell spheroids offer alternative in vitro cell models to monolayer cultured cells because they express complexities similar to those of in vivo tissues, such as cellular responses to drugs and chemicals. Raman spectroscopy emerged as a powerful analytical tool for detecting chemical changes in living cells because it nondestructively provides vibrational information regarding a target. Although multiple iterations are required in drug screening to determine drugs to treat cell spheroids and assess the inter-spheroid heterogeneity, current Raman applications used in spheroids analysis allow the observation of only a few spheroids owing to the low throughput of Raman spectroscopy. In this study, we developed a multifocal Raman spectrophotometer that enables simultaneous analysis of multiple spheroids in separate wells of a regular 96-well plate. By utilizing 96 focal spots excitation and parallel signal collection, our system can improve the throughput by approximately 2 orders of magnitude compared to a conventional single-focus Raman microscope. The Raman spectra of HeLa cell spheroids treated with anticancer drugs and HepG2 cell spheroids treated with free fatty acids were measured simultaneously, and concentration-dependent cellular responses were observed in both studies. Using the multifocal Raman spectrophotometer, we rapidly observed chemical changes in spheroids, and thus, this system can facilitate the application of Raman spectroscopy in analyzing the cellular responses of spheroids.
Collapse
Affiliation(s)
- Hao-Xiang Liao
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuki Bando
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- AIST Advanced Photonics and Biosensing Open Innovation Laboratory, Suita, Osaka 565-0871, Japan
| | - Menglu Li
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- AIST Advanced Photonics and Biosensing Open Innovation Laboratory, Suita, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- AIST Advanced Photonics and Biosensing Open Innovation Laboratory, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Taylor JN, Pélissier A, Mochizuki K, Hashimoto K, Kumamoto Y, Harada Y, Fujita K, Bocklitz T, Komatsuzaki T. Correction for Extrinsic Background in Raman Hyperspectral Images. Anal Chem 2023; 95:12298-12305. [PMID: 37561910 PMCID: PMC10448497 DOI: 10.1021/acs.analchem.3c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Raman hyperspectral microscopy is a valuable tool in biological and biomedical imaging. Because Raman scattering is often weak in comparison to other phenomena, prevalent spectral fluctuations and contaminations have brought advancements in analytical and chemometric methods for Raman spectra. These chemometric advances have been key contributors to the applicability of Raman imaging to biological systems. As studies increase in scale, spectral contamination from extrinsic background, intensity from sources such as the optical components that are extrinsic to the sample of interest, has become an emerging issue. Although existing baseline correction schemes often reduce intrinsic background such as autofluorescence originating from the sample of interest, extrinsic background is not explicitly considered, and these methods often fail to reduce its effects. Here, we show that extrinsic background can significantly affect a classification model using Raman images, yielding misleadingly high accuracies in the distinction of benign and malignant samples of follicular thyroid cell lines. To mitigate its effects, we develop extrinsic background correction (EBC) and demonstrate its use in combination with existing methods on Raman hyperspectral images. EBC isolates regions containing the smallest amounts of sample materials that retain extrinsic contributions that are specific to the device or environment. We perform classification both with and without the use of EBC, and we find that EBC retains biological characteristics in the spectra while significantly reducing extrinsic background. As the methodology used in EBC is not specific to Raman spectra, correction of extrinsic effects in other types of hyperspectral and grayscale images is also possible.
Collapse
Affiliation(s)
- J. Nicholas Taylor
- Research
Institute for Electronic Science, Hokkaido
University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
- Advanced
Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aurélien Pélissier
- Research
Institute for Electronic Science, Hokkaido
University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
- IBM
Research Europe, 8803 Rüschlikon, Switzerland
| | - Kentaro Mochizuki
- Department
of Pathology and Cell Regulation, Kyoto
Prefectural University of Medicine, Kajii-cho 465, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kosuke Hashimoto
- Department
of Pathology and Cell Regulation, Kyoto
Prefectural University of Medicine, Kajii-cho 465, Kamigyo-ku, Kyoto 602-8566, Japan
- Department
of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Yasuaki Kumamoto
- Department
of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshinori Harada
- Department
of Pathology and Cell Regulation, Kyoto
Prefectural University of Medicine, Kajii-cho 465, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Katsumasa Fujita
- Advanced
Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Department
of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Thomas Bocklitz
- Leibniz
Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich Schiller University, D-07443 Jena, Germany
| | - Tamiki Komatsuzaki
- Research
Institute for Electronic Science, Hokkaido
University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
- Advanced
Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Graduate
School of Chemical Sciences and Engineering Materials Chemistry and
Energy Course, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
- The
Institute of Scientific and Industrial Research, Osaka University, Mihogaoka,
Ibaraki, 8-1, Osaka 567-0047, Japan
| |
Collapse
|
4
|
Alkhuder K. Raman Scattering-Based Optical Sensing Of Chronic Liver Diseases. Photodiagnosis Photodyn Ther 2023; 42:103505. [PMID: 36965755 DOI: 10.1016/j.pdpdt.2023.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/27/2023]
Abstract
Chronic liver diseases (CLDs) are a major public health problem. Despite the progress achieved in fighting against viral hepatitis, the emergence of non-alcoholic fatty liver disease might pose a serious challenge to the public's health in the coming decades. Medical management of CLDs represents a substantial burden on the public health infrastructures. The health care cost of these diseases is an additional burden that weighs heavily on the economies of developing countries. Effective management of CLDs requires the adoption of reliable and cost-effective screening and diagnosing methods to ensure early detection and accurate clinical assessment of these diseases. Vibrational spectroscopies have emerged as universal analytical methods with promising applications in various industrial and biomedical fields. These revolutionary analytical techniques rely on analyzing the interaction between a light beam and the test sample to generate a spectral fingerprint. This latter is defined by the analyte's chemical structure and the molecular vibrations of its functional groups. Raman spectroscopy and surface-enhanced Raman spectroscopy have been used in combination with various chemometric tests to diagnose a wide range of malignant, metabolic and infectious diseases. The aim of the current review is to cast light on the use of these optical sensing methods in the diagnosis of CLDs. The vast majority of research works that investigated the potential application of these spectroscopic techniques in screening and detecting CLDs were discussed here. The advantages and limitations of these modern analytical methods, as compared with the routine and gold standard diagnostic approaches, were also reviewed in details.
Collapse
|
5
|
Mochizuki K, Kumamoto Y, Maeda S, Tanuma M, Kasai A, Takemura M, Harada Y, Hashimoto H, Tanaka H, Smith NI, Fujita K. High-throughput line-illumination Raman microscopy with multislit detection. BIOMEDICAL OPTICS EXPRESS 2023; 14:1015-1026. [PMID: 36950233 PMCID: PMC10026569 DOI: 10.1364/boe.480611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Raman microscopy is an emerging tool for molecular imaging and analysis of living samples. Use of Raman microscopy in life sciences is, however, still limited because of its slow measurement speed for spectral imaging and analysis. We developed a multiline-illumination Raman microscope to achieve ultrafast Raman spectral imaging. A spectrophotometer equipped with a periodic array of confocal slits detects Raman spectra from a sample irradiated by multiple line illuminations. A comb-like Raman hyperspectral image is formed on a two-dimensional detector in the spectrophotometer, and a hyperspectral Raman image is acquired by scanning the sample with multiline illumination array. By irradiating a sample with 21 simultaneous illumination lines, we achieved high-throughput Raman hyperspectral imaging of mouse brain tissue, acquiring 1108800 spectra in 11.4 min. We also measured mouse kidney and liver tissue as well as conducted label-free live-cell molecular imaging. The ultrafast Raman hyperspectral imaging enabled by the presented technique will expand the possible applications of Raman microscopy in biological and medical fields.
Collapse
Affiliation(s)
- Kentaro Mochizuki
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- These authors contributed equally
| | - Yasuaki Kumamoto
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- These authors contributed equally
| | - Shunsuke Maeda
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masashi Takemura
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hitoshi Hashimoto
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
- Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Nicholas Isaac Smith
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Biophotonics Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Helal KM, Cahyadi H, Taylor JN, Okajima A, Tabata K, Kumamoto Y, Mochizuki K, Itoh Y, Takamatsu T, Tanaka H, Fujita K, Komatsuzaki T, Harada Y. Raman imaging of rat nonalcoholic fatty liver tissues reveals distinct biomolecular states. FEBS Lett 2023. [PMID: 36807196 DOI: 10.1002/1873-3468.14600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 02/20/2023]
Abstract
An essential challenge in diagnosing states of nonalcoholic fatty liver disease (NAFLD) is the early prediction of progression from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) before the disease progresses. Histological diagnoses of NAFLD rely on the appearance of anomalous tissue morphologies, and it is difficult to segment the biomolecular environment of the tissue through a conventional histopathological approach. Here, we show that hyperspectral Raman imaging provides diagnostic information on NAFLD in rats, as spectral changes among disease states can be detected before histological characteristics emerge. Our results demonstrate that Raman imaging of NAFLD can be a useful tool for histopathologists, offering biomolecular distinctions among tissue states that cannot be observed through standard histopathological means.
Collapse
Affiliation(s)
- Khalifa Mohammad Helal
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Sapporo, Japan.,Department of Mathematics, Comilla University, Cumilla, Bangladesh
| | - Harsono Cahyadi
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - J Nicholas Taylor
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Akira Okajima
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Japan
| | - Koji Tabata
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Yasuaki Kumamoto
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Japan
| | - Tetsuro Takamatsu
- Department of Medical Photonics, Kyoto Prefectural University of Medicine, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Japan.,Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan.,Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Japan
| | - Tamiki Komatsuzaki
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Sapporo, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan.,Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, Dijon Cedex, France
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
7
|
Hayakawa M, Taylor JN, Nakao R, Mochizuki K, Sawai Y, Hashimoto K, Tabata K, Kumamoto Y, Fujita K, Konishi E, Hirano S, Tanaka H, Komatsuzaki T, Harada Y. Lipid droplet accumulation and adipophilin expression in follicular thyroid carcinoma. Biochem Biophys Res Commun 2023; 640:192-201. [PMID: 36521425 DOI: 10.1016/j.bbrc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022]
Abstract
Follicular neoplasms of the thyroid include follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FTA). However, the differences in cytological findings between FTC and FTA remain undetermined. Here, we aimed to evaluate the accumulation of lipid droplets (LDs) and the expression of adipophilin (perilipin 2/ADRP/ADFP), a known LD marker, in cultured FTC cells. We also immunohistochemically compared adipophilin expression in the FTC and FTA of resected human thyroid tissues. Cultured FTC (FTC-133 and RO82W-1) possessed increased populations of LDs compared to thyroid follicular epithelial (Nthy-ori 3-1) cells. In vitro treatment with phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling inhibitors (LY294002, MK2206, and rapamycin) in FTC-133 cells downregulated the PI3K/Akt/mTOR/sterol regulatory element-binding protein 1 (SREBP1) signaling pathway, resulting in a significant reduction in LD accumulation. SREBP1 is a master transcription factor that controls lipid metabolism. Fluorescence immunocytochemistry revealed adipophilin expression in the LDs of FTC-133 cells. Immunohistochemical analysis of surgically resected human thyroid tissues revealed significantly increased expression of adipophilin in FTC compared with FTA and adjacent non-tumorous thyroid epithelia. Taken together, LDs and adipophilin were abundant in cultured FTC; the evaluation of adipophilin expression can help distinguish FTC from FTA in surgical specimens.
Collapse
Affiliation(s)
- Michiyo Hayakawa
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - J Nicholas Taylor
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Ryuta Nakao
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Yuki Sawai
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Kosuke Hashimoto
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho Kamigyo-Ku, Kyoto, 602-8566, Japan; Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330 Japan
| | - Koji Tabata
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Yasuaki Kumamoto
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho Kamigyo-Ku, Kyoto, 602-8566, Japan; Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan; Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Tamiki Komatsuzaki
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo, 001-0020, Japan.
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho Kamigyo-Ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
8
|
Li Y, Wang X, Zhang J, Zhang S, Jiao J. Applications of artificial intelligence (AI) in researches on non-alcoholic fatty liver disease(NAFLD) : A systematic review. Rev Endocr Metab Disord 2022; 23:387-400. [PMID: 34396467 DOI: 10.1007/s11154-021-09681-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most important causes of chronic liver disease in the world, it has been found that cardiovascular and renal risks and diseases are also highly prevalent in adults with NAFLD. Diagnosis and treatment of NAFLD face many challenges, although the medical science has been very developed. Efficiency, accuracy and individualization are the main goals to be solved. Evaluation of the severity of NAFLD involves a variety of clinical parameters, how to optimize non-invasive evaluation methods is a necessary issue that needs to be discussed in this field. Artificial intelligence (AI) has become increasingly widespread in healthcare applications, and it has been also brought many new insights into better analyzing chronic liver disease, including NAFLD. This paper reviewed AI related researches in NAFLD field published recently, summarized diagnostic models based on electronic health record and lab test, ultrasound and radio imaging, and liver histopathological data, described the application of therapeutic models in personalized lifestyle guidance and the development of drugs for NAFLD. In addition, we also analyzed present AI models in distinguishing healthy VS NAFLD/NASH, and fibrosis VS non-fibrosis in the evaluation of NAFLD progression. We hope to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Yifang Li
- Department of Gastroenterolgy & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Xuetao Wang
- Department of Gastroenterolgy & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Jun Zhang
- Department of Gastroenterolgy & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Shanshan Zhang
- Department of Gastroenterolgy & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Jian Jiao
- Department of Gastroenterolgy & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| |
Collapse
|
9
|
Takemura M, Mochizuki K, Harada Y, Okajima A, Hayakawa M, Dai P, Itoh Y, Tanaka H. Label-free Assessment of the Nascent State of Rat Non-alcoholic Fatty Liver Disease Using Spontaneous Raman Microscopy. Acta Histochem Cytochem 2022; 55:57-66. [PMID: 35509867 PMCID: PMC9043435 DOI: 10.1267/ahc.22-00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
Spontaneous Raman microscopy, which can detect molecular vibrations in cells and tissues, could be a useful tool for the label-free assessment of non-alcoholic fatty liver disease (NAFLD). However, it is unclear whether it can be used to evaluate the nascent state of NAFLD. To address this, we analyzed the Raman spectra of rat liver tissues in the nascent state of NAFLD upon excitation at 532 nm. Raman and histochemical analyses were performed of liver tissues from rats fed a high-fat, high-cholesterol diet (HFHCD). Raman microscopic imaging analysis of formalin-fixed thin tissue slices showed hepatic steatosis, as revealed by the Raman band at 2,854 cm-1, whereas lipid droplets were not detectable by hematoxylin-eosin staining of images until 3 days after feeding a HFHCD. Raman signals of retinol at 1,588 cm-1 emitted from hepatic stellate cells were distributed alongside hepatic cords; the retinol content rapidly decreased after feeding a HFHCD, whereas hepatic lipid content increased inversely. Raman microscopic analysis of the surface of fresh ex vivo livers enabled early detection of lipid accumulation after a 1-day feeding a HFHCD. In conclusion, spontaneous Raman microscopy can be applied to the label-free evaluation of the nascent state of NAFLD liver tissues.
Collapse
Affiliation(s)
- Masashi Takemura
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
- Department of Molecular Gatroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Akira Okajima
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
- Department of Molecular Gatroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Michiyo Hayakawa
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gatroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| |
Collapse
|
10
|
Ikemoto K, Hashimoto K, Harada Y, Kumamoto Y, Hayakawa M, Mochizuki K, Matsuo K, Yashiro K, Yaku H, Takamatsu T, Tanaka H. Raman Spectroscopic Assessment of Myocardial Viability in Langendorff-Perfused Ischemic Rat Hearts. Acta Histochem Cytochem 2021; 54:65-72. [PMID: 34012178 PMCID: PMC8116620 DOI: 10.1267/ahc.21-00016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Spontaneous Raman spectroscopy, which senses changes in cellular contents of reduced cytochrome c, could be a powerful tool for label-free evaluation of ischemic hearts. However, undetermined is whether it is applicable to evaluation of myocardial viability in ischemic hearts. To address this issue, we investigated sequential changes in Raman spectra of the subepicardial myocardium in the Langendorff-perfused rat heart before and during ligation of the left coronary artery and its subsequent release and re-ligation. Under 532-nm wavelength excitation, the Raman peak intensity of reduced cytochrome c at 747 cm-1 increased quickly after the coronary ligation, and reached a quasi-steady state within 30 min. Subsequent reperfusion of the heart after a short-term (30-min) ligation that simulates reversible conditions resulted in quick recovery of the peak intensity to the baseline. Further re-ligation resulted in resurgence of the peak intensity to nearly the identical value to the first ischemia value. In contrast, reperfusion after prolonged (120-min) ligation that assumes irreversible states resulted in incomplete recovery of the peak intensity, and re-ligation resulted in inadequate resurgence. Electron microscopic observations confirmed the spectral findings. Together, the Raman spectroscopic measurement for cytochrome c could be applicable to evaluation of viability of the ischemic myocardium without labeling.
Collapse
Affiliation(s)
- Koki Ikemoto
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
- Department of Cardiovascular Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Kosuke Hashimoto
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
- Present address: Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Yasuaki Kumamoto
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
- Present address: Department of Applied Physics, Graduate School of Engineering, Osaka University
| | - Michiyo Hayakawa
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Kazuhiko Matsuo
- Department of Anatomy and Developmental Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Kenta Yashiro
- Department of Anatomy and Developmental Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Hitoshi Yaku
- Department of Cardiovascular Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Tetsuro Takamatsu
- Department of Medical Photonics, Kyoto Prefectural University of Medicine
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
11
|
Sugiyama T, Hobro AJ, Pavillon N, Umakoshi T, Verma P, Smith N. Label-free Raman mapping of saturated and unsaturated fatty acid uptake, storage, and return toward baseline levels in macrophages. Analyst 2021; 146:1268-1280. [PMID: 33346264 DOI: 10.1039/d0an02077j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Macrophage uptake and metabolism of fatty acids is involved in a large number of important biological pathways including immune activation and regulation of macrophages, as well as pathological conditions including obesity, atherosclerosis, and others lifestyle diseases. There are few methods available to directly probe both the uptake and later redistribution/metabolism of fatty acids within living cells as well as the potential changes induced within the cells themselves. We use Raman imaging and analysis to evaluate the effects of different fatty acids following their uptake in macrophages. The label-free nature of the methods means that we can evaluate the fatty acid dynamics without modifying endogenous cellular behavior and metabolism.
Collapse
Affiliation(s)
- Takeshi Sugiyama
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Fang J, Swain A, Unni R, Zheng Y. Decoding Optical Data with Machine Learning. LASER & PHOTONICS REVIEWS 2021; 15:2000422. [PMID: 34539925 PMCID: PMC8443240 DOI: 10.1002/lpor.202000422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 05/24/2023]
Abstract
Optical spectroscopy and imaging techniques play important roles in many fields such as disease diagnosis, biological study, information technology, optical science, and materials science. Over the past decade, machine learning (ML) has proved promising in decoding complex data, enabling rapid and accurate analysis of optical spectra and images. This review aims to shed light on various ML algorithms for optical data analysis with a focus on their applications in a wide range of fields. The goal of this work is to sketch the validity of ML-based optical data decoding. The review concludes with an outlook on unaddressed problems and opportunities in this emerging subject that interfaces optics, data science and ML.
Collapse
Affiliation(s)
- Jie Fang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anand Swain
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rohit Unni
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Minamikawa T, Ichimura-Shimizu M, Takanari H, Morimoto Y, Shiomi R, Tanioka H, Hase E, Yasui T, Tsuneyama K. Molecular imaging analysis of microvesicular and macrovesicular lipid droplets in non-alcoholic fatty liver disease by Raman microscopy. Sci Rep 2020; 10:18548. [PMID: 33122711 PMCID: PMC7596489 DOI: 10.1038/s41598-020-75604-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Predominant evidence of non-alcoholic fatty liver disease (NAFLD) is the accumulation of excess lipids in the liver. A small group with NAFLD may have a more serious condition named non-alcoholic steatohepatitis (NASH). However, there is a lack of investigation of the accumulated lipids with spatial and molecular information. Raman microscopy has the potential to characterise molecular species and structures of lipids based on molecular vibration and can achieve high spatial resolution at the organelle level. In this study, we aim to demonstrate the feasibility of Raman microscopy for the investigation of NAFLD based on the molecular features of accumulated lipids. By applying the Raman microscopy to the liver of the NASH model mice, we succeeded in visualising the distribution of lipid droplets (LDs) in hepatocytes. The detailed analysis of Raman spectra revealed the difference of molecular structural features of the LDs, such as the degree of saturation of lipids in the LDs. We also found that the inhomogeneous distribution of cholesterol in the LDs depending on the histology of lipid accumulation. We visualised and characterised the lipids of NASH model mice by Raman microscopy at organelle level. Our findings demonstrated that the Raman imaging analysis was feasible to characterise the NAFLD in terms of the molecular species and structures of lipids.
Collapse
Affiliation(s)
- Takeo Minamikawa
- Department of Post-LED Photonics Research, Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506, Japan. .,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan. .,PRESTO, Japan Science and Technology Agency (JST), 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan. .,Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.
| | - Mayuko Ichimura-Shimizu
- Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.,Department of Pathology and Laboratory Medicine, Graduate School of Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Hiroki Takanari
- Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Yuki Morimoto
- Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.,Department of Pathology and Laboratory Medicine, Graduate School of Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Ryosuke Shiomi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Hiroki Tanioka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Eiji Hase
- Department of Post-LED Photonics Research, Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506, Japan.,Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Takeshi Yasui
- Department of Post-LED Photonics Research, Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506, Japan.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.,Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Koichi Tsuneyama
- Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.,Department of Pathology and Laboratory Medicine, Graduate School of Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan.,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| |
Collapse
|
14
|
Biophysical research in Hokkaido University, Japan. Biophys Rev 2020; 12:233-236. [PMID: 32347462 DOI: 10.1007/s12551-020-00649-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 10/24/2022] Open
|