1
|
Grieco A, Boneta S, Gavira JA, Pey AL, Basu S, Orlans J, de Sanctis D, Medina M, Martin‐Garcia JM. Structural dynamics and functional cooperativity of human NQO1 by ambient temperature serial crystallography and simulations. Protein Sci 2024; 33:e4957. [PMID: 38501509 PMCID: PMC10949395 DOI: 10.1002/pro.4957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
The human NQO1 (hNQO1) is a flavin adenine nucleotide (FAD)-dependent oxidoreductase that catalyzes the two-electron reduction of quinones to hydroquinones, being essential for the antioxidant defense system, stabilization of tumor suppressors, and activation of quinone-based chemotherapeutics. Moreover, it is overexpressed in several tumors, which makes it an attractive cancer drug target. To decipher new structural insights into the flavin reductive half-reaction of the catalytic mechanism of hNQO1, we have carried serial crystallography experiments at new ID29 beamline of the ESRF to determine, to the best of our knowledge, the first structure of the hNQO1 in complex with NADH. We have also performed molecular dynamics simulations of free hNQO1 and in complex with NADH. This is the first structural evidence that the hNQO1 functional cooperativity is driven by structural communication between the active sites through long-range propagation of cooperative effects across the hNQO1 structure. Both structural results and MD simulations have supported that the binding of NADH significantly decreases protein dynamics and stabilizes hNQO1 especially at the dimer core and interface. Altogether, these results pave the way for future time-resolved studies, both at x-ray free-electron lasers and synchrotrons, of the dynamics of hNQO1 upon binding to NADH as well as during the FAD cofactor reductive half-reaction. This knowledge will allow us to reveal unprecedented structural information of the relevance of the dynamics during the catalytic function of hNQO1.
Collapse
Grants
- P18-RT-2413 Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
- RTI2018-096246-B-I00 ERDF/Spanish Ministry of Science, Innovation and Universities-State Research Agency
- E35-23R Gobierno de Aragón
- B-BIO-84-UGR20 ERDF/Counseling of Economic Transformation, Industry, Knowledge and Universities
- CNS2022-135713 The European Union NextGenerationEU/PRTR
- 2019-T1/BMD-15552 Comunidad de Madrid
- MCIN/AEI/PID2022-136369NB-I00 MCIN/AEI/10.13039/501100011033/ERDF
- Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
- ERDF/Spanish Ministry of Science, Innovation and Universities‐State Research Agency
- Gobierno de Aragón
- ERDF/Counseling of Economic Transformation, Industry, Knowledge and Universities
- Comunidad de Madrid
- MCIN/AEI/10.13039/501100011033/ERDF
Collapse
Affiliation(s)
- Alice Grieco
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC)MadridSpain
| | - Sergio Boneta
- Departamento de Bioquímica y Biología Molecular y Celular e Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de ZaragozaZaragozaSpain
| | - José A. Gavira
- Laboratory of Crystallographic StudiesIACT (CSIC‐UGR)ArmillaSpain
| | - Angel L. Pey
- Departamento de Química FísicaUnidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de GranadaGranadaSpain
| | - Shibom Basu
- European Molecular Biology LaboratoryGrenobleFrance
| | | | | | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular e Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de ZaragozaZaragozaSpain
| | - Jose Manuel Martin‐Garcia
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC)MadridSpain
| |
Collapse
|
2
|
Yuhan L, Khaleghi Ghadiri M, Gorji A. Impact of NQO1 dysregulation in CNS disorders. J Transl Med 2024; 22:4. [PMID: 38167027 PMCID: PMC10762857 DOI: 10.1186/s12967-023-04802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotransmitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Parkinson's disease, Alzheimer's disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurological disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability as a target for drug development strategies in neurological disorders.
Collapse
Affiliation(s)
- Li Yuhan
- Epilepsy Research Center, Münster University, Münster, Germany
- Department of Breast Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Ali Gorji
- Epilepsy Research Center, Münster University, Münster, Germany.
- Department of Neurosurgery, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Chaaban I, Hafez H, AlZaim I, Tannous C, Ragab H, Hazzaa A, Ketat S, Ghoneim A, Katary M, Abd-Alhaseeb MM, Zouein FA, Albohy A, Amer AN, El-Yazbi AF, Belal ASF. Transforming iodoquinol into broad spectrum anti-tumor leads: Repurposing to modulate redox homeostasis. Bioorg Chem 2021; 113:105035. [PMID: 34091287 DOI: 10.1016/j.bioorg.2021.105035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
We managed to repurpose the old drug iodoquinol to a series of novel anticancer 7-iodo-quinoline-5,8-diones. Twelve compounds were identified as inhibitors of moderate to high potency on an inhouse MCF-7 cell line, of which 2 compounds (5 and 6) were capable of reducing NAD level in MCF-7 cells in concentrations equivalent to half of their IC50s, potentially due to NAD(P)H quinone oxidoreductase (NQO1) inhibition. The same 2 compounds (5 and 6) were capable of reducing p53 expression and increasing reactive oxygen species levels, which further supports the NQO-1 inhibitory activity. Furthermore, 4 compounds (compounds 5-7 and 10) were qualified by the Development Therapeutic Program (DTP) division of the National Cancer Institute (NCI) for full panel five-dose in vitro assay to determine their GI50 on the 60 cell lines. All five compounds showed broad spectrum sub-micromolar to single digit micromolar GI50 against a wide range of cell lines. Cell cycle analysis and dual staining assays with annexin V-FITC/propidium iodide on MCF-7 cells confirmed the capability of the most active compound (compound 5) to induce cell cycle arrest at Pre-G1 and G2/M phases as well as apoptosis. Both cell cycle arrest and apoptosis were affirmed at the molecular level by the ability of compound 5 to enhance the expression levels of caspase-3 and Bax together with suppressing that of CDK1 and Bcl-2. Additionally, an anti-angiogenic effect was evident with compound 5 as supported by the decreased expression of VEGF. Interesting binding modes within NQO-1 active site had been identified and confirmed by both molecular docking and dymanic experiments.
Collapse
Affiliation(s)
- Ibrahim Chaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Haidy Hafez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Cynthia Tannous
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Hanan Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Aly Hazzaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Salma Ketat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Asser Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Mohamed Katary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Ahmed Noby Amer
- Microbiology Department, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
4
|
Banford S, McCorvie TJ, Pey AL, Timson DJ. Galactosemia: Towards Pharmacological Chaperones. J Pers Med 2021; 11:jpm11020106. [PMID: 33562227 PMCID: PMC7914515 DOI: 10.3390/jpm11020106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Galactosemia is a rare inherited metabolic disease resulting from mutations in the four genes which encode enzymes involved in the metabolism of galactose. The current therapy, the removal of galactose from the diet, is inadequate. Consequently, many patients suffer lifelong physical and cognitive disability. The phenotype varies from almost asymptomatic to life-threatening disability. The fundamental biochemical cause of the disease is a decrease in enzymatic activity due to failure of the affected protein to fold and/or function correctly. Many novel therapies have been proposed for the treatment of galactosemia. Often, these are designed to treat the symptoms and not the fundamental cause. Pharmacological chaperones (PC) (small molecules which correct the folding of misfolded proteins) represent an exciting potential therapy for galactosemia. In theory, they would restore enzyme function, thus preventing downstream pathological consequences. In practice, no PCs have been identified for potential application in galactosemia. Here, we review the biochemical basis of the disease, identify opportunities for the application of PCs and describe how these might be discovered. We will conclude by considering some of the clinical issues which will affect the future use of PCs in the treatment of galactosemia.
Collapse
Affiliation(s)
- Samantha Banford
- South Eastern Health and Social Care Trust, Downpatrick BT30 6RL, UK;
| | - Thomas J. McCorvie
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK;
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain;
| | - David J. Timson
- School of Pharmacy and Biomolecular Sciences, The University of Brighton, Brighton BN2 4GJ, UK
- Correspondence:
| |
Collapse
|
5
|
dos Santos Maia M, Rodrigues GCS, de Sousa NF, Scotti MT, Scotti L, Mendonça-Junior FJB. Identification of New Targets and the Virtual Screening of Lignans against Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3098673. [PMID: 32879651 PMCID: PMC7448245 DOI: 10.1155/2020/3098673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive disturbance in cognition and affects approximately 36 million people, worldwide. However, the drugs used to treat this disease are only moderately effective and do not alter the course of the neurodegenerative process. This is because the pathogenesis of AD is mainly associated with oxidative stress, and current drugs only target two enzymes involved in neurotransmission. Therefore, the present study sought to identify potential multitarget compounds for enzymes that are directly or indirectly involved in the oxidative pathway, with minimal side effects, for AD treatment. A set of 159 lignans were submitted to studies of QSAR and molecular docking. A combined analysis was performed, based on ligand and structure, followed by the prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. The results showed that the combined analysis was able to select 139 potentially active and multitarget lignans targeting two or more enzymes, among them are c-Jun N-terminal kinase 3 (JNK-3), protein tyrosine phosphatase 1B (PTP1B), nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), NADPH quinone oxidoreductase 1 (NQO1), phosphodiesterase 5 (PDE5), nuclear factor erythroid 2-related factor 2 (Nrf2), cycloxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS). The authors conclude that compounds (06) austrobailignan 6, (11) anolignan c, (19) 7-epi-virolin, (64) 6-[(2R,3R,4R,5R)-3,4-dimethyl-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]-4-methoxy-1,3-benzodioxole, (116) ococymosin, and (135) mappiodoinin b have probabilities that confer neuroprotection and antioxidant activity and represent potential alternative AD treatment drugs or prototypes for the development of new drugs with anti-AD properties.
Collapse
Affiliation(s)
- Mayara dos Santos Maia
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Natália Ferreira de Sousa
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | |
Collapse
|
6
|
Zaboli M, Zaboli M, Torkzadeh-Mahani M. From in vitro to in silico: Modeling and recombinant production of DT-Diaphorase enzyme. Int J Biol Macromol 2019; 143:213-223. [PMID: 31812741 DOI: 10.1016/j.ijbiomac.2019.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
DT-Diaphorase (DTD) belonging to the oxidoreductase family, is among the most important enzymes and is of great significance in present-day biotechnology. Also, it has potential applications in glucose and pyruvate biosensors. Another important role of the DTD enzyme is in the detection of Phenylketonuria disease. According to the above demands, at first, we tried to study molecular cloning and production of recombinant DTD in E. coli BL21 strain. We have successfully cloned, expressed, and purified functionally active diaphorase. The amount of enzyme was increased in 10-h using IPTG induction, and the recombinant protein was purified by Ni-NTA agarose affinity chromatography. After that, the kinetic and thermodynamic parameters of the enzyme, optimum temperature and pH were also investigated to find more in-depth information. In the end, to represent the connections between the structures and function of this enzyme, the molecular dynamics simulations have been considered at two temperatures in which DTD had maximum and minimum activity (310 and 293 K, respectively). The results of MD simulations indicated that the interaction between NADH with phenylalanine 232 residue at 310 K is more severe than other residues. So, to investigate the interaction details of NADH/PHE 232 the DFT calculations were done.
Collapse
Affiliation(s)
- Mahdiye Zaboli
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Maryam Zaboli
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|