1
|
Huang B, Yang Y, Liu J, Zhang B, Lin N. Ubiquitination regulation of mitochondrial homeostasis: a new sight for the treatment of gastrointestinal tumors. Front Immunol 2025; 16:1533007. [PMID: 40134432 PMCID: PMC11933043 DOI: 10.3389/fimmu.2025.1533007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Mitochondrial homeostasis (MH) refers to the dynamic balance of mitochondrial number, function, and quality within cells. Maintaining MH is significant in the occurrence, development, and clinical treatment of Gastrointestinal (GI) tumors. Ubiquitination, as an important post-translational modification mechanism of proteins, plays a central role in the regulation of MH. Over the past decade, research on the regulation of MH by ubiquitination has focused on mitochondrial biogenesis, mitochondrial dynamics, Mitophagy, and mitochondrial metabolism during these processes. This review summarizes the mechanism and potential therapeutic targets of ubiquitin (Ub)-regulated MH intervention in GI tumors.
Collapse
Affiliation(s)
- Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yulin Yang
- School of Clinical Chinese Medicine, Gansu University of Chinese Medicine, Gansu, China
| | - Jinming Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
2
|
Yao K, Zhang S, Zhu B, Sun Y, Tian K, Yan Y, Hu Y, Ren L, Zhang C. Single-cell programmed cell death regulator patterns guide intercellular communication of cancer-associated fibroblasts that contribute to colorectal cancer progression. Transl Cancer Res 2025; 14:434-460. [PMID: 39974383 PMCID: PMC11833379 DOI: 10.21037/tcr-24-1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/26/2024] [Indexed: 02/21/2025]
Abstract
Background The significance of programmed cell death (PCD) in the context of cancer development and progression is widely acknowledged, yet its specific impact on cancer-associated fibroblasts (CAFs) remains a topic of ongoing investigation. Therefore, the study aims to explore the role of PCD in regulating CAFs and its potential implications for CRC progression. Methods CAFs from single-cell data of 23 colorectal cancer (CRC) patients were clustered by non-negative matrix factorization (NMF) and the impact of these subpopulations on the prognosis of CRC patients was predicted using public database cohorts. Results In total, we screened eight PCDs that are associated with significant prognostic impacts for CRC patients, and based on PCD regulators, we defined multiple subpopulations of CAFs associated with PCDs. Additionally, we found that the PCD key regulators may be closely related to the clinical and biological characteristics of CRC and the pseudotime trajectory of major CAFs subpopulations. Bulk RNA sequencing analyses revealed that subpopulations of CAFs mediated by PCD hold prognostic value for CRC patients. CellChat analysis further illustrated the extensive interactions between PCD-associated CAFs subpopulations and tumor epithelial cells. Following Cox regression and survival analyses, it was determined that the paraptosis-mediated CAFs subpopulation had the most pronounced impact on CRC patient prognosis, with DDIT3 identified as a marker protein influencing patient outcomes. Conclusions Our study reveals for the first time how PCD-mediated communication between CAFs regulates tumor growth in CRC patients and influences their prognosis, and has identified that DDIT3+ CAFs associated with paraptosis exhibit the most pronounced influence on the prognosis of individuals with CRC.
Collapse
Affiliation(s)
- Kai Yao
- School of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Shuo Zhang
- School of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Bo Zhu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, China
| | - Yun Sun
- School of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Ke Tian
- School of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Yan Yan
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, China
| | - Yongquan Hu
- Department of Nuclear Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, China
| | - Li Ren
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Congli Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, China
| |
Collapse
|
3
|
Bai J, Wang Z, Yang M, Xiang J, Liu Z. Disrupting CENP-N mediated SEPT9 methylation as a strategy to inhibit aerobic glycolysis and liver metastasis in colorectal cancer. Clin Exp Metastasis 2024; 41:971-988. [PMID: 39424682 DOI: 10.1007/s10585-024-10316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy with a high mortality rate, primarily due to liver metastasis. This study explores the role of centromere protein N (CENP-N) in mediating the methylation of septin 9 (SEPT9) and its subsequent effects on aerobic glycolysis and liver metastasis in CRC. We employed in vitro and in vivo experiments, including single-cell RNA sequencing, methylation-specific PCR (MSP), ChIP assays, and various functional assays to assess the impact of CENP-N and SEPT9 on CRC cell proliferation, migration, invasion, and metabolic reprogramming. Our data reveal that CENP-N directly interacts with SEPT9, enhancing its methylation at specific lysine residues. This modification significantly upregulates key glycolytic enzymes, thereby promoting aerobic glycolysis, CRC cell proliferation, and migration. In vivo studies further demonstrate that the CENP-N/SEPT9 axis facilitates liver metastasis of CRC, as confirmed by fluorescence imaging and histological analysis. This study identifies a novel pathway where CENP-N-mediated methylation of SEPT9 drives metabolic reprogramming and metastasis in CRC. These findings suggest potential therapeutic targets for inhibiting CRC progression and liver metastasis, offering new insights into CRC pathogenesis.
Collapse
Affiliation(s)
- Junge Bai
- Department of Biochemistry and Molecular Biology, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Zhexue Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Jun Xiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
4
|
Li X, Chen M, Chen X, He X, Li X, Wei H, Tan Y, Min J, Azam T, Xue M, Zhang Y, Dong M, Yin Q, Zheng L, Jiang H, Huo D, Wang X, Chen S, Ji Y, Chen H. TRAP1 drives smooth muscle cell senescence and promotes atherosclerosis via HDAC3-primed histone H4 lysine 12 lactylation. Eur Heart J 2024; 45:4219-4235. [PMID: 39088352 PMCID: PMC11481199 DOI: 10.1093/eurheartj/ehae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/12/2023] [Accepted: 06/03/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cell (VSMC) senescence is crucial for the development of atherosclerosis, characterized by metabolic abnormalities. Tumour necrosis factor receptor-associated protein 1 (TRAP1), a metabolic regulator associated with ageing, might be implicated in atherosclerosis. As the role of TRAP1 in atherosclerosis remains elusive, this study aimed to examine the function of TRAP1 in VSMC senescence and atherosclerosis. METHODS TRAP1 expression was measured in the aortic tissues of patients and mice with atherosclerosis using western blot and RT-qPCR. Senescent VSMC models were established by oncogenic Ras, and cellular senescence was evaluated by measuring senescence-associated β-galactosidase expression and other senescence markers. Chromatin immunoprecipitation (ChIP) analysis was performed to explore the potential role of TRAP1 in atherosclerosis. RESULTS VSMC-specific TRAP1 deficiency mitigated VSMC senescence and atherosclerosis via metabolic reprogramming. Mechanistically, TRAP1 significantly increased aerobic glycolysis, leading to elevated lactate production. Accumulated lactate promoted histone H4 lysine 12 lactylation (H4K12la) by down-regulating the unique histone lysine delactylase HDAC3. H4K12la was enriched in the senescence-associated secretory phenotype (SASP) promoter, activating SASP transcription and exacerbating VSMC senescence. In VSMC-specific Trap1 knockout ApoeKO mice (ApoeKOTrap1SMCKO), the plaque area, senescence markers, H4K12la, and SASP were reduced. Additionally, pharmacological inhibition and proteolysis-targeting chimera (PROTAC)-mediated TRAP1 degradation effectively attenuated atherosclerosis in vivo. CONCLUSIONS This study reveals a novel mechanism by which mitonuclear communication orchestrates gene expression in VSMC senescence and atherosclerosis. TRAP1-mediated metabolic reprogramming increases lactate-dependent H4K12la via HDAC3, promoting SASP expression and offering a new therapeutic direction for VSMC senescence and atherosclerosis.
Collapse
Affiliation(s)
- Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Minghong Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xian He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xinyu Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Huiyuan Wei
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yongkang Tan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiao Min
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tayyiba Azam
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mengdie Xue
- Department of Medicinal Chemistry, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yunjia Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Mengdie Dong
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Quanwen Yin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Longbin Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hong Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Da Huo
- Department of Medicinal Chemistry, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
5
|
Bruno G, Pietrafesa M, Crispo F, Piscazzi A, Maddalena F, Giordano G, Conteduca V, Garofoli M, Porras A, Esposito F, Landriscina M. TRAP1 modulates mitochondrial biogenesis via PGC-1α/TFAM signalling pathway in colorectal cancer cells. J Mol Med (Berl) 2024; 102:1285-1296. [PMID: 39210159 PMCID: PMC11416412 DOI: 10.1007/s00109-024-02479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Metabolic rewiring promotes cancer cell adaptation to a hostile microenvironment, representing a hallmark of cancer. This process involves mitochondrial function and is mechanistically linked to the balance between mitochondrial biogenesis (MB) and mitophagy. The molecular chaperone TRAP1 is overexpressed in 60-70% of human colorectal cancers (CRC) and its over-expression correlates with poor clinical outcome, being associated with many cancer cell functions (i.e. adaptation to stress, protection from apoptosis and drug resistance, protein synthesis quality control, metabolic rewiring from glycolysis to mitochondrial respiration and vice versa). Here, the potential new role of TRAP1 in regulating mitochondrial dynamics was investigated in CRC cell lines and human CRCs. Our results revealed an inverse correlation between TRAP1 and mitochondrial-encoded respiratory chain proteins both at transcriptional and translational levels. Furthermore, TRAP1 silencing is associated with increased mitochondrial mass and mitochondrial DNA copy number (mtDNA-CN) as well as enhanced MB through PGC-1α/TFAM signalling pathway, promoting the formation of new functioning mitochondria and, likely, underlying the metabolic shift towards oxidative phosphorylation. These results suggest an involvement of TRAP1 in regulating MB process in human CRC cells. KEY MESSAGES: TRAP1 inversely correlates with protein-coding mitochondrial gene expression in CRC cells and tumours. TRAP1 silencing correlates with increased mitochondrial mass and mtDNA copy number in CRC cells. TRAP1 silencing favours mitochondrial biogenesis in CRC cells.
Collapse
Affiliation(s)
- Giuseppina Bruno
- Medical Oncology and Biomolecular Therapy Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Potenza, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Potenza, Italy
| | - Annamaria Piscazzi
- Medical Oncology and Biomolecular Therapy Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Potenza, Italy
| | - Guido Giordano
- Medical Oncology and Biomolecular Therapy Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| | - Vincenza Conteduca
- Medical Oncology and Biomolecular Therapy Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| | - Marianna Garofoli
- Medical Oncology and Biomolecular Therapy Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| | - Almudena Porras
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Matteo Landriscina
- Medical Oncology and Biomolecular Therapy Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
6
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
7
|
Qian J, Jiang Y, Hu H. Ginsenosides: an immunomodulator for the treatment of colorectal cancer. Front Pharmacol 2024; 15:1408993. [PMID: 38939839 PMCID: PMC11208871 DOI: 10.3389/fphar.2024.1408993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Ginsenosides, the primary bioactive ingredients derived from the root of Panax ginseng, are eagerly in demand for tumor patients as a complementary and alternative drug. Ginsenosides have increasingly become a "hot topic" in recent years due to their multifunctional role in treating colorectal cancer (CRC) and regulating tumor microenvironment (TME). Emerging experimental research on ginsenosides in the treatment and immune regulation of CRC has been published, while no review sums up its specific role in the CRC microenvironment. Therefore, this paper systematically introduces how ginsenosides affect the TME, specifically by enhancing immune response, inhibiting the activation of stromal cells, and altering the hallmarks of CRC cells. In addition, we discuss their impact on the physicochemical properties of the tumor microenvironment. Furthermore, we discuss the application of ginsenosides in clinical treatment as their efficacy in enhancing tumor patient immunity and prolonging survival. The future perspectives of ginsenoside as a complementary and alternative drug of CRC are also provided. This review hopes to open up a new horizon for the cancer treatment of Traditional Chinese Medicine monomers.
Collapse
Affiliation(s)
- Jianan Qian
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Xie Y, Jiang H. The exploration of mitochondrial-related features helps to reveal the prognosis and immunotherapy methods of colorectal cancer. Cancer Rep (Hoboken) 2024; 7:e1914. [PMID: 37903487 PMCID: PMC10809275 DOI: 10.1002/cnr2.1914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Cancer cell survival, proliferation, and metabolism are all intertwined with mitochondria. However, a complete description of how the features of mitochondria relate to the tumor microenvironment (TME) and immunological landscape of colorectal cancer (CRC) has yet to be made. We performed subgroup analysis on CRC patient data obtained from the databases using non-negative matrix factorization (NMF) clustering. Construct a prognostic model using the mitochondrial-related gene (MRG) risk score, and then compare it to other models for accuracy. Comprehensive analyses of the risk score, in conjunction with the TME and immune landscape, were performed, and the relationship between the model and different types of cell death, radiation and chemotherapy, and drug resistance was investigated. Results from immunohistochemistry and single-cell sequencing were utilized to verify the model genes, and a drug sensitivity analysis was conducted to evaluate possible therapeutic medicines. The pan-cancer analysis is utilized to further investigate the role of genes in a wider range of malignancies. METHODS AND RESULTS We found that CRC patients based on MRG were divided into two groups with significant differences in survival outcomes and TME between groups. The predictive power of the risk score was further shown by building a prognostic model and testing it extensively in both internal and external cohorts. Multiple immune therapeutic responses and the expression of immunological checkpoints demonstrate that the risk score is connected to immunotherapy success. The correlation analysis of the risk score provide more ideas and guidance for prognostic models in clinical treatment. CONCLUSION The TME, immune cell infiltration, and responsiveness to immunotherapy in CRC were all thoroughly evaluated on the basis of MRG features. The comparative validation of multiple queues and models combined with clinical data ensures the effectiveness and clinical practicality of MRG features. Our studies help clinicians create individualized treatment programs for individuals with cancer.
Collapse
Affiliation(s)
- Yun‐hui Xie
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduChina
| | - Hui‐zhong Jiang
- College of GraduateGuizhou University of Traditional Chinese MedicineGuiyangChina
| |
Collapse
|
9
|
Bhasin N, Dabra P, Senavirathna L, Pan S, Chen R. Inhibition of TRAP1 Accelerates the DNA Damage Response, Activation of the Heat Shock Response and Metabolic Reprogramming in Colon Cancer Cells. FRONT BIOSCI-LANDMRK 2023; 28:227. [PMID: 37796715 PMCID: PMC10727129 DOI: 10.31083/j.fbl2809227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. The tumor microenvironment plays a significant role in CRC development, progression and metastasis. Oxidative stress in the colon is a major etiological factor impacting tumor progression. Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial member of the heat shock protein 90 (HSP90) family that is involved in modulating apoptosis in colon cancer cells under oxidative stress. We undertook this study to provide mechanistic insight into the role of TRAP1 under oxidative stress in colon cells. METHODS We first assessed the The Cancer Genome Atlas (TCGA) CRC gene expression dataset to evaluate the expression of TRAP1 and its association with oxidative stress and disease progression. We then treated colon HCT116 cells with hydrogen peroxide to induce oxidative stress and with the TRAP1 inhibitor gamitrinib-triphenylphosphonium (GTPP) to inhibit TRAP1. We examined the cellular proteomic landscape using liquid chromatography tandem mass spectrometry (LC-MS/MS) in this context compared to controls. We further examined the impact of treatment on DNA damage and cell survival. RESULTS TRAP1 expression under oxidative stress is associated with the disease outcomes of colorectal cancer. TRAP1 inhibition under oxidative stress induced metabolic reprogramming and heat shock factor 1 (HSF1)-dependent transactivation. In addition, we also observed enhanced induction of DNA damage and cell death in the cells under oxidative stress and TRAP1 inhibition in comparison to single treatments and the nontreatment control. CONCLUSIONS These findings provide new insights into TRAP1-driven metabolic reprogramming in response to oxidative stress.
Collapse
Affiliation(s)
- Nobel Bhasin
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Prerna Dabra
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, University of Texas at Houston Health Science Center, Houston, TX, United States
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas at Houston Health Science Center, Houston, TX, United States
| | - Ru Chen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Zhang S, Zhang Y, Zou H, Li X, Zou H, Wang Z, Zou C. FDP-Na-induced enhancement of glycolysis impacts larval growth and development and chitin biosynthesis in fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105560. [PMID: 37666596 DOI: 10.1016/j.pestbp.2023.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
Fructose 1, 6-diphosphate (FDP) is an endogenous intermediate in the glycolytic pathway, as well as an allosteric activator of phosphofructokinase (PFK). Based on the role in promoting glycolysis, FDP has been widely used as a therapeutic agent for mitigating the damage of endotoxemia and ischemia/reperfusion in clinical practice. However, the effect of exogenous FDP-induced glycolysis activation on insect carbohydrate metabolism and chitin synthesis remains largely unclear. Here, we investigated for the first time the effects of FDP-Na, an allosteric activator of PFK, on the growth and development of Hyphantria cunea larvae, a serious defoliator in agriculture and forestry, especially on glycolysis and chitin synthesis. The results showed that FDP-Na significantly restrained the growth and development of H. cunea larvae and resulted in larval lethality. After treatment with FDP-Na, hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) were significantly activated, and HcHK2, HcPFK, HcPK were dramatically upregulated, which suggested that FDP-Na enhanced glycolysis in H. cunea larvae. Meanwhile, FDP-Na also distinctly impacted chitin biosynthesis by disturbing transcriptions of genes in the chitin synthesis pathway, resulting in changes of chitin contents in the midgut and epidermis of H. cunea larvae. Therefore, we considered that FDP-Na caused the growth and development arrest, and impacted chitin biosynthesis, probably by disturbing in vivo glycolysis and carbohydrate metabolism in H. cunea larvae. The findings provide a new perspective on the mechanism by which glycolysis regulates insect growth and development, and lay the foundation for exploring the potential application of glycolysis activators in pest control as well.
Collapse
Affiliation(s)
- Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Yu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Haifeng Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- Jilin Agricultural University, Jilin 132013, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Ze Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
11
|
Avolio R, Agliarulo I, Criscuolo D, Sarnataro D, Auriemma M, De Lella S, Pennacchio S, Calice G, Ng MY, Giorgi C, Pinton P, Cooperman BS, Landriscina M, Esposito F, Matassa DS. Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins. Genome Res 2023; 33:1242-1257. [PMID: 37487647 PMCID: PMC10547376 DOI: 10.1101/gr.277755.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.
Collapse
Affiliation(s)
- Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Ilenia Agliarulo
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"-IEOS, National Research Council of Italy (CNR), Naples 80131, Italy
| | - Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Margherita Auriemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Sabrina De Lella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Sara Pennacchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture 85028, Italy
| | - Martin Y Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Matteo Landriscina
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"-IEOS, National Research Council of Italy (CNR), Naples 80131, Italy
- Department Medical and Surgical Science, University of Foggia, Foggia 71122, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy;
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy;
| |
Collapse
|
12
|
Chen X, Li M, Wang D, Wang Q, Wei X, Liu X, Yang J, Kalvakolanu DV, Guo B, Zhang L. Histone chaperone SSRP1 is required for apoptosis inhibition and mitochondrial function in HCC via transcriptional promotion of TRAP1. Biochem Cell Biol 2023; 101:361-376. [PMID: 37084412 DOI: 10.1139/bcb-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Epigenetic regulation contributes to human health and disease, especially cancer, but the mechanisms of many epigenetic regulators remain obscure. Most research is focused on gene regulatory processes, such as mRNA translation and DNA damage repair, rather than the effects on biological functions like mitochondrial activity and oxidative phosphorylation. Here, we identified an essential role for the histone chaperone structure-specific recognition protein 1 (SSRP1) in mitochondrial oxidative respiration in hepatocellular carcinoma, and found that SSRP1 suppression led to mitochondrial damage and decreased oxidative respiration. Further, we focused on TNF receptor-associated protein 1 (TRAP1), the only member of the heat shock protein 90 (HSP90) family, which directly interacts with selected respiratory complexes and affects their stability and activity. We confirmed that SSRP1 downregulation caused a decrease in TRAP1 expression at both the mRNA and protein levels. A chromatin immunoprecipitation assay also showed that SSRP1 could deposit in the TRAP1 promoter region, indicating that SSRP1 maintains mitochondrial function and reactive oxygen species levels through TRAP1. Additionally, rescue experiments and animal experiments confirmed the mechanism of SSRP1 and TRAP1 interaction. In summary, we identified a new mechanism that connects mitochondrial respiration and apoptosis, via SSRP1.
Collapse
Affiliation(s)
- Xuyang Chen
- Key Laboratory of Pathobiology, Ministry of Education, and Department of pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Mengxin Li
- Key Laboratory of Pathobiology, Ministry of Education, and Department of pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ding Wang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Qian Wang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiaodong Wei
- Key Laboratory of Pathobiology, Ministry of Education, and Department of pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiaorui Liu
- Key Laboratory of Pathobiology, Ministry of Education, and Department of pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jiaying Yang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, MD, USA
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
13
|
Badarni M, Gabbay S, Elkabets M, Rotblat B. Gene Expression and Drug Sensitivity Analysis of Mitochondrial Chaperones Reveals That HSPD1 and TRAP1 Expression Correlates with Sensitivity to Inhibitors of DNA Replication and Mitosis. BIOLOGY 2023; 12:988. [PMID: 37508418 PMCID: PMC10376793 DOI: 10.3390/biology12070988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Mitochondria-critical metabolic hubs in eukaryotic cells-are involved in a wide range of cellular functions, including differentiation, proliferation, and death. Mitochondria import most of their proteins from the cytosol in a linear form, after which they are folded by mitochondrial chaperones. However, despite extensive research, the extent to which the function of particular chaperones is essential for maintaining specific mitochondrial and cellular functions remains unknown. In particular, it is not known whether mitochondrial chaperones influence the sensitivity to drugs used in the treatment of cancers. By mining gene expression and drug sensitivity data for cancer cell lines from publicly available databases, we identified mitochondrial chaperones whose expression is associated with sensitivity to oncology drugs targeting particular cellular pathways in a cancer-type-dependent manner. Importantly, we found the expression of TRAP1 and HSPD1 to be associated with sensitivity to inhibitors of DNA replication and mitosis. We confirmed experimentally that the expression of HSPD1 is associated with an increased sensitivity of ovarian cancer cells to drugs targeting mitosis and a reduced sensitivity to drugs promoting apoptosis. Taken together, our results support a model in which particular mitochondrial pathways hinge upon specific mitochondrial chaperones and provide the basis for understanding selectivity in mitochondrial chaperone-substrate specificity.
Collapse
Affiliation(s)
- Mai Badarni
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shani Gabbay
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Life Sciences, Faculty of Life Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Moshe Elkabets
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Barak Rotblat
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Life Sciences, Faculty of Life Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
14
|
Yuan Y, Sun X, Liu M, Li S, Dong Y, Hu K, Zhang J, Xu B, Ma S, Jiang H, Hou P, Lin Y, Gan L, Liu T. Negative correlation between acetyl-CoA acyltransferase 2 and cetuximab resistance in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1467-1478. [PMID: 37310146 PMCID: PMC10520478 DOI: 10.3724/abbs.2023111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/30/2023] [Indexed: 06/14/2023] Open
Abstract
The emergence of anti-EGFR therapy has revolutionized the treatment of colorectal cancer (CRC). However, not all patients respond consistently well. Therefore, it is imperative to conduct further research to identify the molecular mechanisms underlying the development of cetuximab resistance in CRC. In this study, we find that the expressions of many metabolism-related genes are downregulated in cetuximab-resistant CRC cells compared to their sensitive counterparts. Specifically, acetyl-CoA acyltransferase 2 (ACAA2), a key enzyme in fatty acid metabolism, is downregulated during the development of cetuximab resistance. Silencing of ACAA2 promotes proliferation and increases cetuximab tolerance in CRC cells, while overexpression of ACAA2 exerts the opposite effect. RTK-Kras signaling might contribute to the downregulation of ACAA2 expression in CRC, and ACAA2 predicts CRC prognosis in patients with Kras mutations. Collectively, our data suggest that modulating ACAA2 expression contributes to secondary cetuximab resistance in Kras wild-type CRC patients. ACAA2 expression is related to Kras mutation and demonstrates a prognostic role in CRC patients with Kras mutation. Thus, ACAA2 is a potential target in CRC with Kras mutation.
Collapse
Affiliation(s)
- Yitao Yuan
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Xun Sun
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Mengling Liu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Suyao Li
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yu Dong
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Keshu Hu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiayu Zhang
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Bei Xu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Sining Ma
- Department of Obstetrics and GynecologyZhongshan HospitalShanghai200032China
| | - Hesheng Jiang
- Department of SurgerySouthwest HealthcareSouthern California Medical Education ConsortiumTemecula Valley HospitalTemeculaUSA
| | - Pengcong Hou
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Institute of Precision MedicineShanghai Ninth People’s HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Yufu Lin
- Department of OncologyZhongshan Hospital (Xiamen)Fudan UniversityXiamen361004China
| | - Lu Gan
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Fudan Zhangjiang InstituteShanghai200032China
| | - Tianshu Liu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Center of Evidence Based MedicineFudan UniversityShanghai200032China
| |
Collapse
|
15
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
16
|
Ren SN, Zhang ZY, Guo RJ, Wang DR, Chen FF, Chen XB, Fang XD. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer. World J Gastroenterol 2023; 29:1911-1941. [PMID: 37155531 PMCID: PMC10122790 DOI: 10.3748/wjg.v29.i13.1911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most common digestive malignancy across the world. Its first-line treatments applied in the routine clinical setting include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, resistance to therapy has been identified as the major clinical challenge that fails the treatment method, leading to recurrence and distant metastasis. An increasing number of studies have been attempting to explore the underlying mechanisms of the resistance of CRC cells to different therapies, which can be summarized into two aspects: (1) The intrinsic characters and adapted alterations of CRC cells before and during treatment that regulate the drug metabolism, drug transport, drug target, and the activation of signaling pathways; and (2) the suppressive features of the tumor microenvironment (TME). To combat the issue of therapeutic resistance, effective strategies are warranted with a focus on the restoration of CRC cells’ sensitivity to specific treatments as well as reprogramming impressive TME into stimulatory conditions. To date, nanotechnology seems promising with scope for improvement of drug mobility, treatment efficacy, and reduction of systemic toxicity. The instinctive advantages offered by nanomaterials enable the diversity of loading cargoes to increase drug concentration and targeting specificity, as well as offer a platform for trying the combination of different treatments to eventually prevent tumor recurrence, metastasis, and reversion of therapy resistance. The present review intends to summarize the known mechanisms of CRC resistance to chemotherapy, radiotherapy, immunotherapy, and targeted therapy, as well as the process of metastasis. We have also emphasized the recent application of nanomaterials in combating therapeutic resistance and preventing metastasis either by combining with other treatment approaches or alone. In summary, nanomedicine is an emerging technology with potential for CRC treatment; hence, efforts should be devoted to targeting cancer cells for the restoration of therapeutic sensitivity as well as reprogramming the TME. It is believed that the combined strategy will be beneficial to achieve synergistic outcomes contributing to control and management of CRC in the future.
Collapse
Affiliation(s)
- Sheng-Nan Ren
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zhan-Yi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Rui-Jie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Da-Ren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Fang-Fang Chen
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Bo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Dong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
17
|
Avolio R, Agliarulo I, Criscuolo D, Sarnataro D, Auriemma M, Pennacchio S, Calice G, Ng MY, Giorgi C, Pinton P, Cooperman B, Landriscina M, Esposito F, Matassa DS. Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524708. [PMID: 36712063 PMCID: PMC9882373 DOI: 10.1101/2023.01.19.524708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein we identify the molecular mechanisms involved, demonstrating that TRAP1: i) binds both mitochondrial and cytosolic ribosomes as well as translation elongation factors, ii) slows down translation elongation rate, and iii) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.
Collapse
Affiliation(s)
- Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Ilenia Agliarulo
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” - IEOS, National Research Council of Italy (CNR), Naples, 80131, Italy
| | - Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Margherita Auriemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Sara Pennacchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Giovanni Calice
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, 85028, Italy
| | - Martin Y. Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Carlotta Giorgi
- Dept. of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Paolo Pinton
- Dept. of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Barry Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Matteo Landriscina
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” - IEOS, National Research Council of Italy (CNR), Naples, 80131, Italy
- Department Medical and Surgical Science, University of Foggia, Foggia, 71122, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| |
Collapse
|
18
|
Matassa DS, Criscuolo D, Avolio R, Agliarulo I, Sarnataro D, Pacelli C, Scrima R, Colamatteo A, Matarese G, Capitanio N, Landriscina M, Esposito F. Regulation of mitochondrial complex III activity and assembly by TRAP1 in cancer cells. Cancer Cell Int 2022; 22:402. [PMID: 36510251 PMCID: PMC9743594 DOI: 10.1186/s12935-022-02788-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Metabolic reprogramming is an important issue in tumor biology. A recently-identified actor in this regard is the molecular chaperone TRAP1, that is considered an oncogene in several cancers for its high expression but an oncosuppressor in others with predominant oxidative metabolism. TRAP1 is mainly localized in mitochondria, where it interacts with respiratory complexes, although alternative localizations have been described, particularly on the endoplasmic reticulum, where it interacts with the translational machinery with relevant roles in protein synthesis regulation. RESULTS Herein we show that, inside mitochondria, TRAP1 binds the complex III core component UQCRC2 and regulates complex III activity. This decreases respiration rate during basal conditions but allows sustained oxidative phosphorylation when glucose is limiting, a condition in which the direct TRAP1-UQCRC2 binding is disrupted, but not TRAP1-complex III binding. Interestingly, several complex III components and assembly factors show an inverse correlation with survival and response to platinum-based therapy in high grade serous ovarian cancers, where TRAP1 inversely correlates with stage and grade and directly correlates with survival. Accordingly, drug-resistant ovarian cancer cells show high levels of complex III components and high sensitivity to complex III inhibitory drug antimycin A. CONCLUSIONS These results shed new light on the molecular mechanisms involved in TRAP1-dependent regulation of cancer cell metabolism and point out a potential novel target for metabolic therapy in ovarian cancer.
Collapse
Affiliation(s)
- Danilo Swann Matassa
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Daniela Criscuolo
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Avolio
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Ilenia Agliarulo
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cellular Biology, National Research Council of Italy (CNR), 80131 Naples, Italy
| | - Daniela Sarnataro
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Consiglia Pacelli
- grid.10796.390000000121049995Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Rosella Scrima
- grid.10796.390000000121049995Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Alessandra Colamatteo
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Matarese
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy ,grid.5326.20000 0001 1940 4177Institute Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (IEOS-CNR), 80131 Naples, Italy
| | - Nazzareno Capitanio
- grid.10796.390000000121049995Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Matteo Landriscina
- grid.10796.390000000121049995Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy ,Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Franca Esposito
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
19
|
Chiappetta G, Gamberi T, Faienza F, Limaj X, Rizza S, Messori L, Filomeni G, Modesti A, Vinh J. Redox proteome analysis of auranofin exposed ovarian cancer cells (A2780). Redox Biol 2022; 52:102294. [PMID: 35358852 PMCID: PMC8966199 DOI: 10.1016/j.redox.2022.102294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023] Open
Abstract
The effects of Auranofin (AF) on protein expression and protein oxidation in A2780 cancer cells were investigated through a strategy based on simultaneous expression proteomics and redox proteomics determinations. Bioinformatics analysis of the proteomics data supports the view that the most critical cellular changes elicited by AF treatment consist of thioredoxin reductase inhibition, alteration of the cell redox state, impairment of the mitochondrial functions, metabolic changes associated with conversion to a glycolytic phenotype, induction of ER stress. The occurrence of the above cellular changes was extensively validated by performing direct biochemical assays. Our data are consistent with the concept that AF produces its effects through a multitarget mechanism that mainly affects the redox metabolism and the mitochondrial functions and results into severe ER stress. Results are discussed in the context of the current mechanistic knowledge existing on AF. Redox proteomics allows to underline cell adaptation mechanisms in response to Auranofin treatment in ovarian cancer cells. BRCA1 is one of the major candidates of the ovarian cancer cell adaptation to Auranofin treatment. Auranofin alters the oxidative phosphorylation and mitochondrial protein import machinery. TRAP1 C501 modulates Auranofin toxicity. Auranofin induces severe stress of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics Group, SMBP, PDC CNRS UMR, 8249, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005, Paris, France.
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134, Florence, Italy.
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Xhesika Limaj
- Biological Mass Spectrometry and Proteomics Group, SMBP, PDC CNRS UMR, 8249, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005, Paris, France
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Luigi Messori
- Metmed Lab, Department of Chemistry, University of Florence, via della lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Giuseppe Filomeni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, University of Copenhagen, Denmark
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134, Florence, Italy
| | - Joelle Vinh
- Biological Mass Spectrometry and Proteomics Group, SMBP, PDC CNRS UMR, 8249, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
20
|
Bruno G, Bergolis VL, Piscazzi A, Crispo F, Condelli V, Zoppoli P, Maddalena F, Pietrafesa M, Giordano G, Matassa DS, Esposito F, Landriscina M. TRAP1 regulates the response of colorectal cancer cells to hypoxia and inhibits ribosome biogenesis under conditions of oxygen deprivation. Int J Oncol 2022; 60:79. [PMID: 35543151 PMCID: PMC9097768 DOI: 10.3892/ijo.2022.5369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Metabolic rewiring fuels rapid cancer cell proliferation by promoting adjustments in energetic resources, and increasing glucose uptake and its conversion into lactate, even in the presence of oxygen. Furthermore, solid tumors often contain hypoxic areas and can rapidly adapt to low oxygen conditions by activating hypoxia inducible factor (HIF)‑1α and several downstream pathways, thus sustaining cell survival and metabolic reprogramming. Since TNF receptor‑associated protein 1 (TRAP1) is a HSP90 molecular chaperone upregulated in several human malignancies and is involved in cancer cell adaptation to unfavorable environments and metabolic reprogramming, in the present study, its role was investigated in the adaptive response to hypoxia in human colorectal cancer (CRC) cells and organoids. In the present study, glucose uptake, lactate production and the expression of key metabolic genes were evaluated in TRAP1‑silenced CRC cell models under conditions of hypoxia/normoxia. Whole genome gene expression profiling was performed in TRAP1‑silenced HCT116 cells exposed to hypoxia to establish the role of TRAP1 in adaptive responses to oxygen deprivation. The results revealed that TRAP1 was involved in regulating hypoxia‑induced HIF‑1α stabilization and glycolytic metabolism and that glucose transporter 1 expression, glucose uptake and lactate production were partially impaired in TRAP1‑silenced CRC cells under hypoxic conditions. At the transcriptional level, the gene expression reprogramming of cancer cells driven by HIF‑1α was partially inhibited in TRAP1‑silenced CRC cells and organoids exposed to hypoxia. Moreover, Gene Set Enrichment Analysis of TRAP1‑silenced HCT116 cells exposed to hypoxia demonstrated that TRAP1 was involved in the regulation of ribosome biogenesis and this occurred with the inhibition of the mTOR pathway. Therefore, as demonstrated herein, TRAP1 is a key factor in maintaining HIF‑1α‑induced genetic/metabolic program under hypoxic conditions and may represent a promising target for novel metabolic therapies.
Collapse
Affiliation(s)
- Giuseppina Bruno
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Valeria Li Bergolis
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Annamaria Piscazzi
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Pietro Zoppoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| |
Collapse
|
21
|
Tumor Cell Glycolysis—At the Crossroad of Epithelial–Mesenchymal Transition and Autophagy. Cells 2022; 11:cells11061041. [PMID: 35326492 PMCID: PMC8947107 DOI: 10.3390/cells11061041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Upregulation of glycolysis, induction of epithelial–mesenchymal transition (EMT) and macroautophagy (hereafter autophagy), are phenotypic changes that occur in tumor cells, in response to similar stimuli, either tumor cell-autonomous or from the tumor microenvironment. Available evidence, herein reviewed, suggests that glycolysis can play a causative role in the induction of EMT and autophagy in tumor cells. Thus, glycolysis has been shown to induce EMT and either induce or inhibit autophagy. Glycolysis-induced autophagy occurs both in the presence (glucose starvation) or absence (glucose sufficiency) of metabolic stress. In order to explain these, in part, contradictory experimental observations, we propose that in the presence of stimuli, tumor cells respond by upregulating glycolysis, which will then induce EMT and inhibit autophagy. In the presence of stimuli and glucose starvation, upregulated glycolysis leads to adenosine monophosphate-activated protein kinase (AMPK) activation and autophagy induction. In the presence of stimuli and glucose sufficiency, upregulated glycolytic enzymes (e.g., aldolase or glyceraldehyde 3-phosphate dehydrogenase) or decreased levels of glycolytic metabolites (e.g., dihydroxyacetone phosphate) may mimic a situation of metabolic stress (herein referred to as “pseudostarvation”), leading, directly or indirectly, to AMPK activation and autophagy induction. We also discuss possible mechanisms, whereby glycolysis can induce a mixed mesenchymal/autophagic phenotype in tumor cells. Subsequently, we address unresolved problems in this field and possible therapeutic consequences.
Collapse
|
22
|
Xie Y, Wang M, Xia M, Guo Y, Zu X, Zhong J. Ubiquitination regulation of aerobic glycolysis in cancer. Life Sci 2022; 292:120322. [PMID: 35031261 DOI: 10.1016/j.lfs.2022.120322] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/18/2022]
Abstract
Aerobic glycolysis, or the Warburg effect, is regarded as a critical part of metabolic reprogramming and plays a crucial role in the occurrence and development of tumours. Ubiquitination and deubiquitination, essential post-translational modifications, have attracted increasing attention with regards to the regulation of metabolic reprogramming in cancer. However, the mechanism of ubiquitination in glycolysis remains unclear. In this review, we discuss the roles of ubiquitination and deubiquitination in regulating glycolysis, and their involvement in regulating important signalling pathways, enzymes, and transcription factors. Focusing on potential mechanisms may provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Yao Xie
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Clinical Laboratory, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Mu Wang
- Clinical Research Institute, the NanHua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Min Xia
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yinping Guo
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Jing Zhong
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
23
|
Huang C, Radi RH, Arbiser JL. Mitochondrial Metabolism in Melanoma. Cells 2021; 10:cells10113197. [PMID: 34831420 PMCID: PMC8618235 DOI: 10.3390/cells10113197] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma and its associated alterations in cellular pathways have been growing areas of interest in research, especially as specific biological pathways are being elucidated. Some of these alterations include changes in the mitochondrial metabolism in melanoma. Many mitochondrial metabolic changes lead to differences in the survivability of cancer cells and confer resistance to targeted therapies. While extensive work has gone into characterizing mechanisms of resistance, the role of mitochondrial adaptation as a mode of resistance is not completely understood. In this review, we wish to explore mitochondrial metabolism in melanoma and how it impacts modes of resistance. There are several genes that play a major role in melanoma mitochondrial metabolism which require a full understanding to optimally target melanoma. These include BRAF, CRAF, SOX2, MCL1, TRAP1, RHOA, SRF, SIRT3, PTEN, and AKT1. We will be discussing the role of these genes in melanoma in greater detail. An enhanced understanding of mitochondrial metabolism and these modes of resistance may result in novel combinatorial and sequential therapies that may lead to greater therapeutic benefit.
Collapse
Affiliation(s)
- Christina Huang
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
| | - Rakan H. Radi
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
| | - Jack L. Arbiser
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
- Atlanta Veterans Administration Medical Center, Decatur, GA 30033, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-(404)-727-5063; Fax: +1-(404)-727-0923
| |
Collapse
|
24
|
Wang X, Wu W, Zheng Z, Chi P. Exploring Better Strategies for RAS Mutation-Associated EGFR-Targeted Resistance in Colorectal Cancer: From the Perspective of Cancer Community Ecology. Front Oncol 2021; 11:754220. [PMID: 34745987 PMCID: PMC8568953 DOI: 10.3389/fonc.2021.754220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
RAS is the most common mutated gene in colorectal cancer (CRC), and its occurrence is associated with primary and acquired resistance to anti-epidermal growth factor receptor (EGFR) blockade. Cancer community ecology, such as the competitive exclusion principle, is a valuable focus and would contribute to the understanding of drug resistance. We have presented several articles on RAS mutant clonal evolution monitoring during anti-EGFR treatment in CRC. In these articles, the availability of serially collected samples provided a unique opportunity to model the tumor evolutionary process from the perspective of cancer community ecology in those patients upon treatment. In this perspective article, we presented a theoretical basis and evidence from several experimental or phase II clinical trials for the contemporary application of ecological mechanisms in CRC treatment. In general, a reduction in targetable RAS wild-type cells to a maximum tolerated extent, such as continuous treatment, might lead to the competitive release of inextirpable RAS mutant cells and cancer progression. A full understanding of subclonal competition might be beneficial in managing CRC. Several ecological strategies, including anti-EGFR treatment reintroduced at an appropriate point of time for RAS mutant patients, intermittent treatment instead of continuous treatment, the appropriate sequence of nonselective targeted therapy, and combination therapy, were proposed.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhifang Zheng
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
25
|
Kłos P, Dabravolski SA. The Role of Mitochondria Dysfunction in Inflammatory Bowel Diseases and Colorectal Cancer. Int J Mol Sci 2021; 22:11673. [PMID: 34769108 PMCID: PMC8584106 DOI: 10.3390/ijms222111673] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) is one of the leading gut chronic inflammation disorders, especially prevalent in Western countries. Recent research suggests that mitochondria play a crucial role in IBD development and progression to the more severe disease-colorectal cancer (CRC). In this review, we focus on the role of mitochondrial mutations and dysfunctions in IBD and CRC. In addition, main mitochondria-related molecular pathways involved in IBD to CRC transition are discussed. Additionally, recent publications dedicated to mitochondria-targeted therapeutic approaches to cure IBD and prevent CRC progression are discussed.
Collapse
Affiliation(s)
- Patrycja Kłos
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 72 Al. Powstańców Wlkp., 70-111 Szczecin, Poland;
| | - Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
| |
Collapse
|
26
|
Zhou J, Ji Q, Li Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:328. [PMID: 34663410 PMCID: PMC8522158 DOI: 10.1186/s13046-021-02130-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/22/2021] [Indexed: 12/28/2022]
Abstract
Cetuximab and panitumumab are monoclonal antibodies (mAbs) against epidermal growth factor receptor (EGFR) that are effective agents for metastatic colorectal cancer (mCRC). Cetuximab can prolong survival by 8.2 months in RAS wild-type (WT) mCRC patients. Unfortunately, resistance to targeted therapy impairs clinical use and efficiency. The mechanisms of resistance refer to intrinsic and extrinsic alterations of tumours. Multiple therapeutic strategies have been investigated extensively to overcome resistance to anti-EGFR mAbs. The intrinsic mechanisms include EGFR ligand overexpression, EGFR alteration, RAS/RAF/PI3K gene mutations, ERBB2/MET/IGF-1R activation, metabolic remodelling, microsatellite instability and autophagy. For intrinsic mechanisms, therapies mainly cover the following: new EGFR-targeted inhibitors, a combination of multitargeted inhibitors, and metabolic regulators. In addition, new cytotoxic drugs and small molecule compounds increase the efficiency of cetuximab. Extrinsic alterations mainly disrupt the tumour microenvironment, specifically immune cells, cancer-associated fibroblasts (CAFs) and angiogenesis. The directions include the modification or activation of immune cells and suppression of CAFs and anti-VEGFR agents. In this review, we focus on the mechanisms of resistance to anti-EGFR monoclonal antibodies (anti-EGFR mAbs) and discuss diverse approaches to reverse resistance to this therapy in hopes of identifying more mCRC treatment possibilities.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
27
|
Li S, He P, Wang Z, Liang M, Liao W, Huang Y, Chi M, Liu F, Zen N, Su R, Chen S, Liu Z, Hong H. RNAi-mediated knockdown of PFK1 decreases the invasive capability and metastasis of nasopharyngeal carcinoma cell line, CNE-2. Cell Cycle 2021; 20:154-165. [PMID: 33404290 PMCID: PMC7889105 DOI: 10.1080/15384101.2020.1866279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most prevailing malignancy of the head and neck with unique geographic distribution. Southern China has one of the highest incidence rates of NPC in the world. Although radiotherapy and chemotherapy are the most important treatment modalities for NPC, recurrence, and metastasis severely interfere with the survival quality of patients. It is much-needed to find an effective method of NPC treatment with a good prognosis such as gene therapy. PFK1, a key regulatory enzyme of glycolysis, is frequently shown to be amplified and overexpressed in a variety of human cancers. However, the function of PFK1 and molecular mechanism in NPC is elusive. Here, we knockdown PFK1 expression by utilizing DNA vector-based RNA Interference. Western blotting and real-time PCR show that the expression of PFK1 is efficiently down-regulated in both protein and mRNA levels by stable transfection with PFK1 siRNA expression vector. In addition, stable knockdown of PFK1 expression inhibits cell growth, induces apoptosis, decreases the invasive capability and metastasis in the CNE2 human NPC cell line. This present study finds the importance of PFK1 which can be worked as a novel target in NPC treatment and holds great potential to be extended to other malignant cancers.
Collapse
Affiliation(s)
- Shuo Li
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Peng He
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhiwei Wang
- Department of Otolaryngology Head and Neck Surgery, Zhuhai People’ Hospital (Zhuhai Hospital Affiliated with Ji’nan University), Zhuhai, China
| | - Meng Liang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei Liao
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yili Huang
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Mengshi Chi
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fei Liu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Nan Zen
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Rongfei Su
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shulin Chen
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhigang Liu
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University; Phase I Clinical Trial Laboratory, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Haiyu Hong
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|