1
|
Gao H, Zheng S, Liang J, Wang Y, Chen L, Li H, Chen Y, Zhang F, Shi H, Han A. m6A-induced DEAD-box RNA helicase 21 enhances lipid metabolism via 3‑hydroxy-3-methylglutaryl-CoA synthases 1 in colorectal cancer. Transl Oncol 2025; 55:102373. [PMID: 40127603 PMCID: PMC11979938 DOI: 10.1016/j.tranon.2025.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Altered lipid metabolism is a well-known hallmark of cancer. However, the underlying mechanisms of altered lipid metabolism in colorectal cancer (CRC) progression requires further investigation. Previously we have revealed that DEAD-box RNA helicase 21 (DDX21) promotes CRC metastasis via liquid-liquid phase separation. In this study, we identify DDX21 as a novel regulator of lipid metabolism in CRC. METHODS In vitro and in vivo assays illustrated the biological role of DDX21 and YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) in CRC lipid metabolism and progression. Bioinformatics analysis, ChIP, meRIP, RIP, RNA stability assay and dual-luciferase reporter assay were applied to explore the underlying molecular mechanisms. The expression levels and prognostic role of YTHDF1/DDX21/HMGCS1 axis in CRC patients were analyzed by immunohistochemical staining and Kaplan-Meier plotter. RESULTS DDX21 enhanced CRC progression via promoting lipid metabolism. Mechanistically, YTHDF1 enhanced DDX21 mRNA stability by recognizing its m6A-modified sites. DDX21 further binded to 3‑hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) promoter region and directly activated HMGCS1 transcription. Moreover, our clinical data showed that a simultaneously high expression of YTHDF1, DDX21 and HMGCS1 predicted an unfavorable overall survival in CRC patients. CONCLUSIONS Our study demonstrates that the YTHDF1/DDX21/HMGCS1 axis promotes CRC progression via regulating lipid metabolism and DDX21 might be a promising target for CRC therapy.
Collapse
Affiliation(s)
- Huabin Gao
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuai Zheng
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiangtao Liang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuting Wang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Lin Chen
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hui Li
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongyu Chen
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Fenfen Zhang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huijuan Shi
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Anjia Han
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Song A, Liu B, Li W, Chen B, Gui P, Zhang H, Zhu C, Xu Y, Jiang T, Song J. Competitive binding between DDX21 and SIRT7 enhances NAT10-mediated ac 4C modification to promote colorectal cancer metastasis and angiogenesis- DDX21 promotes colorectal cancer metastasis. Cell Death Dis 2025; 16:353. [PMID: 40301349 PMCID: PMC12041575 DOI: 10.1038/s41419-025-07656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
DExD- box helicase 21 (DDX21) is overexpressed in colorectal cancer (CRC) and is positively correlated with poor prognosis and the malignant phenotype of CRC. Functional characterization indicated that DDX21 promotes CRC metastasis and angiogenesis both in vitro and in vivo. N-acetyltransferase 10 (NAT10) is a key regulator of the N4-acetylcytidine (ac4C) modification of mRNA, regulating the stabilization of mRNA via ac4C modification. Here, we identified that DDX21 competitive binding with sirtuin 7 (SIRT7), inducing the overexpression of NAT10. Furthermore, DDX21 upregulates NAT10 expression to enhance ac4C modification and the stability of ATAD2, SOX4 and SNX5 mRNAs, which mediate CRC metastasis and angiogenesis. Overall, the present study revealed a mechanism of DDX21/NAT10-mediated mRNA stability in CRC, laying the foundation for the use of DDX21 as a therapeutic target to overcome metastasis and angiogenesis in CRC. DDX21 competitive binding with sirtuin 7 (SIRT7), inducing the overexpression of NAT10. Furthermore, DDX21 upregulates NAT10 expression to enhance ac4C modification and the stability of ATAD2, SOX4 and SNX5 mRNAs, which mediate CRC metastasis and angiogenesis.
Collapse
Affiliation(s)
- Angxi Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bowen Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenjing Li
- Central Laboratory, Xuzhou NO.1 people's hospital, Xuzhou, China
| | - Bingyuan Chen
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Pengkun Gui
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Hao Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Can Zhu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China.
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
He Y, Li H, Shi Q, Liu Y, Pan Q, He X. The liver-specific long noncoding RNA FAM99B inhibits ribosome biogenesis and cancer progression through cleavage of dead-box Helicase 21. Cell Death Dis 2025; 16:97. [PMID: 39952918 PMCID: PMC11829061 DOI: 10.1038/s41419-025-07401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Emerging evidence has demonstrated that long noncoding RNAs (lncRNAs) are promising targets or agents for the treatment of human cancers. Most liver-specific lncRNAs exhibit loss of expression and act as tumor suppressors in liver cancer. Modulating the expression of these liver-specific lncRNAs is a potential approach for lncRNA-based gene therapy for hepatocellular carcinoma (HCC). Here, we report that the expression of the liver-specific lncRNA FAM99B is significantly decreased in HCC tissues and that FAM99B suppresses HCC cell proliferation and metastasis both in vitro and in vivo. FAM99B promotes the nuclear export of DDX21 through XPO1, leading to further cleavage of DDX21 by caspase3/6 in the cytoplasm. FAM99B inhibits ribosome biogenesis by inhibiting ribosomal RNA (rRNA) processing and RPS29/RPL38 transcription, thereby reducing global protein synthesis through downregulation of DDX21 in HCC cells. Interestingly, the FAM99B65-146 truncation exhibits tumor-suppressive effects in vivo and in vitro. Moreover, GalNAc-conjugated FAM99B65-146 inhibits the growth and metastasis of orthotopic HCC xenografts, providing a new strategy for the treatment of HCC. This is the first report of the use of a lncRNA as an agent rather than a target in tumor treatment. Graphical illustration of the mechanism of FAM99B in HCC.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- DEAD-box RNA Helicases/metabolism
- DEAD-box RNA Helicases/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Animals
- Ribosomes/metabolism
- Ribosomes/genetics
- Cell Proliferation/genetics
- Cell Line, Tumor
- Mice
- Karyopherins/metabolism
- Karyopherins/genetics
- Disease Progression
- Mice, Nude
- Gene Expression Regulation, Neoplastic
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Exportin 1 Protein
- Mice, Inbred BALB C
- Liver/metabolism
- Liver/pathology
- Male
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
Collapse
Affiliation(s)
- Yifei He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hongquan Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qili Shi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanfang Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiaochu Pan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Ji C, Zhong Q, Su H, Xue X, Yang R, Li N. DDX21 Is a Potential Biomarker for Predicting Recurrence and Prognosis in Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2025; 2025:1018820. [PMID: 39866844 PMCID: PMC11760617 DOI: 10.1155/ancp/1018820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2024] [Accepted: 01/04/2025] [Indexed: 01/28/2025] Open
Abstract
DEAD-box helicase 21 (DDX21) is a conserved Asp-Glu-Ala-Asp (DEAD) box RNA helicase with multiple functions that is involved in various cellular processes and diseases. However, the role of DDX21 in the recurrence and prognosis of hepatocellular carcinoma (HCC) patients remains unknown. In the current study, we examined the protein expression of DDX21 in HCC tissues through immunohistochemical staining and analyzed the correlation between DDX21 protein expression and clinical outcome via Kaplan-Meier survival analysis. The Cox proportional hazards regression model was used to assess the interrelationships between the outcome and variable over time. Our results showed that increased expression of DDX21 protein was observed in HCC tissues compared with paracancerous tissues and was associated with advanced BCLC stage. Recurrent HCC patients had higher levels of DDX21 protein than nonrecurrent cases. Notably, DDX21 was an independent risk factor for predicting worse overall survival and recurrence-free survival in HCC patients. Furthermore, lack of DDX21 abated the growth and mobility of Hep3B cells. Taken together, our data highlight the clinical significance of DDX21 in the recurrence and prognosis of HCC patients and indicate that targeting DDX21 may represent an effective therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Chengjie Ji
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Laboratory Medicine, The People's Hospital of Jianyang City, Chengdu, Sichuan, China
| | - Qing Zhong
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Anesthesiology, The People's Hospital of Jianyang, Chengdu, Sichuan, China
| | - Huilan Su
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoli Xue
- Department of Laboratory Medicine, Yingshan County People's Hospital, Nanchong, Sichuan, China
| | - Renxiang Yang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Shangguan X, Huang Y, Chen C, Wu W, Ma X, You C, Chen L, Huang J. Prognostic assessment value of immune escape-related genes in patients with acute myeloid leukemia. Leuk Lymphoma 2025; 66:72-83. [PMID: 39311489 DOI: 10.1080/10428194.2024.2404957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025]
Abstract
This study explores the prognostic value of immune escape-related genes in acute myeloid leukemia (AML) patients. Using TARGET_AML and GSE37642 datasets, we identified CEP55, DNAJC13, and EMC2 as significant prognostic indicators, with high transcript abundance correlating with poor outcomes. Consensus clustering divided patients into two groups, with Cluster 1 showing worse prognosis. A prognostic signature based on these genes stratified patients into high- and low-risk groups, with the high-risk group experiencing worse outcomes. The risk score was an independent prognostic factor. Functional analysis revealed that high-risk genes could promote cell cycle progression. The selected genes were strongly associated with immune cells, particularly mast cells and CD8+ T cells. This study enriches the prognostic evaluation system for AML and suggests a new therapeutic direction.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Prognosis
- Biomarkers, Tumor/genetics
- Gene Expression Profiling
- Female
- Male
- Tumor Escape/genetics
- Middle Aged
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Xiaohui Shangguan
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yanhong Huang
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Congjie Chen
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Weihao Wu
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiaomei Ma
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Chongdeng You
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Longtian Chen
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jianqing Huang
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
6
|
Xiao Y, Fan J, Li Z, Hou Y. DDX21 at the Nexus of RNA Metabolism, Cancer Oncogenesis, and Host-Virus Crosstalk: Decoding Its Biomarker Potential and Therapeutic Implications. Int J Mol Sci 2024; 25:13581. [PMID: 39769343 PMCID: PMC11676383 DOI: 10.3390/ijms252413581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
DDX21, a member of the DEAD-box RNA helicase family, plays a pivotal role in various aspects of RNA metabolism, including ribosomal RNA (rRNA) processing, transcription, and translation. Its diverse functions in cancer progression and viral infections have attracted considerable attention. DDX21 exerts a pivotal function through ribosomal DNA (rDNA) transcription and rRNA processing. DDX21 is involved in different biological processes of mRNA transcription. It interacts with transcription factors, modulates RNA polymerase II elongation, binds R-loops to regulate transcription, and participates in alternative splicing. The elevated expression of DDX21 has been observed in most cancers, where it influences tumorigenesis by affecting ribosome biogenesis, transcription, genome stability, and cell cycle regulation. Additionally, DDX21 plays a key role in the antiviral defense of host by interacting with viral proteins to regulate essential stages of the infection process. This review provides a thorough examination of the biological functions of DDX21, its involvement in cancer progression and viral infections, and its potential as both a biomarker and a therapeutic target. Future studies should aim to clarify the specific mechanisms of the activity of DDX21, advance the development of targeted therapies, and assess its clinical relevance across various cancer types and stages.
Collapse
Affiliation(s)
- Yalan Xiao
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.X.); (J.F.)
| | - Jiankun Fan
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.X.); (J.F.)
| | - Zhigang Li
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.X.); (J.F.)
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (Y.X.); (J.F.)
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Wang S, Yang R, Song M, Li J, Zhou Y, Dai C, Song T. Current understanding of the role of DDX21 in orchestrating gene expression in health and diseases. Life Sci 2024; 349:122716. [PMID: 38762067 DOI: 10.1016/j.lfs.2024.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
RNA helicases are involved in almost all biological events, and the DDXs family is one of the largest subfamilies of RNA helicases. Recently, studies have reported that RNA helicase DDX21 is involved in several biological events, specifically in orchestrating gene expression. Hence, in this review, we provide a comprehensive overview of the function of DDX21 in health and diseases. In the genome, DDX21 contributes to genome stability by promoting DNA damage repair and resolving R-loops. It also facilitates transcriptional regulation by directly binding to promoter regions, interacting with transcription factors, and enhancing transcription through non-coding RNA. Moreover, DDX21 is involved in various RNA metabolism such as RNA processing, translation, and decay. Interestingly, the activity and function of DDX21 are regulated by post-translational modifications, which affect the localization and degradation of DDX21. Except for its role of RNA helicase, DDX21 also acts as a non-enzymatic function in unwinding RNA, regulating transcriptional modifications and promoting transcription. Next, we discuss the potential application of DDX21 as a clinical predictor for diseases, which may facilitate providing novel pharmacological targets for molecular therapy.
Collapse
Affiliation(s)
- Shaoshuai Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqi Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengzhen Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Li
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; City of Hope Medical Center, Duarte, CA 91010, USA; Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA
| | - Yanrong Zhou
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Chang M, Cui X, Sun Q, Wang Y, Liu J, Sun Z, Ren J, Sun Y, Han L, Li W. Lnc-PLCB1 is stabilized by METTL14 induced m6A modification and inhibits Helicobacter pylori mediated gastric cancer by destabilizing DDX21. Cancer Lett 2024; 588:216746. [PMID: 38387756 DOI: 10.1016/j.canlet.2024.216746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Helicobacter pylori (H. pylori) infection is considered to be an important factor in gastric cancer (GC). Long noncoding RNA (lncRNA) and m6A modification are involved in the occurrence and development of GC, but the role of lncRNA m6A modification in the development of GC mediated by H. pylori is still unclear. Here, we found that H. pylori infection downregulated the expression of lnc-PLCB1 through METTL14-mediated m6A modification and IRF2-mediated transcriptional regulation. Overexpression of lnc-PLCB1 inhibited the proliferation and migration of GC cells, while downregulation of lnc-PLCB1 promoted the proliferation and migration ability of GC cells. In addition, clinical analysis showed that lnc-PLCB1 is lower in GC tissues than in normal tissues. Further study found that lnc-PLCB1 reduced the protein stability of its binding protein DEAD-box helicase 21 (DDX21) and then downregulated the expression of CCND1 and Slug, thereby playing tumour suppressing role in the occurrence and development of GC. In conclusion, the METTL14/lnc-PLCB1/DDX21 axis plays an important role in H. pylori-mediated GC, and lnc-PLCB1 can be used as a new target for GC treatment.
Collapse
Affiliation(s)
- Mingjie Chang
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xixi Cui
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Qiyu Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuqiong Wang
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jiayi Liu
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zenghui Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Juchao Ren
- Department of Urology, Qilu Hospital, Shandong University, Jinan, PR China
| | - Yundong Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Lihui Han
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Wenjuan Li
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
9
|
Liu H, Chi X, Yang N, Shan M, Xiao Y, Zhang M, Hao Y, Hou S, Liu Y, Wang Y. Joint effect of RRP9 and DDX21 on development of colorectal cancer and keloid. Aging (Albany NY) 2023; 15:14703-14719. [PMID: 37988222 PMCID: PMC10781455 DOI: 10.18632/aging.205240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignancy in the gastrointestinal tract. Keloid refers to abnormal scar tissue that forms on the skin or mucous membrane. The relationship between RRP9 and DDX21 and the two diseases is unclear. METHODS Download the colorectal cancer dataset GSE134834, GSE206800, GSE209892 and keloid dataset GSE44270 from the GEO database. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. The construction and analysis of protein-protein interaction (PPI) network, functional enrichment analysis, gene set enrichment analysis (GSEA). Gene expression heat map was drawn. The comparative toxicogenomics database (CTD) analysis was performed to find diseases most related to core genes. TargetScan screened miRNAs that regulated central DEGs. We conducted experimental validation using Western blotting and Polymerase Chain Reaction (PCR). RESULTS In the colorectal cancer dataset and the scar tissue dataset, we identified 1380 DEGs and 1000 DEGs, respectively. The enrichment pattern for scar tissue was similar to that of colorectal cancer. We identified two core genes, RRP9 and DDX21. CTD analysis indicated that RRP9 and DDX21 are associated with proliferation, scar tissue, colorectal tumors, scleroderma, and inflammation. We found that the core genes (RRP9 and DDX21) were highly expressed in colorectal cancer and scar tissue samples, while their expression was lower in normal samples. This was further validated through Western blotting (WB) and Polymerase Chain Reaction (PCR). CONCLUSIONS The higher the expression of RRP9 and DDX21 in colorectal cancer and keloid, the worse the prognosis.
Collapse
Affiliation(s)
- Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xiaoqian Chi
- Department of General Surgery, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Ning Yang
- Department of General Surgery, The First Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yiding Xiao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Shiyang Hou
- Department of General Surgery, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yabin Liu
- Department of General Surgery, The Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
10
|
Huang M, Zhong F, Chen M, Hong L, Chen W, Abudukeremu X, She F, Chen Y. CEP55 as a promising biomarker and therapeutic target on gallbladder cancer. Front Oncol 2023; 13:1156177. [PMID: 37274251 PMCID: PMC10232967 DOI: 10.3389/fonc.2023.1156177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Gallbladder cancer (GBC) is a highly malignant biliary tumor with a poor prognosis. As existing therapies for advanced metastatic GBC are rarely effective, there is an urgent need to identify more effective targets for treatment. Methods Hub genes of GBC were identified by bioinformatics analysis and their expression in GBC was analyzed by tissue validation. The biological role of CEP55 in GBC cell and the underlying mechanism of the anticancer effect of CEP55 knockdown were evaluated via CCK8, colony formation assay, EDU staining, flow cytometry, western blot, immunofluorescence, and an alkaline comet assay. Results We screened out five hub genes of GBC, namely PLK1, CEP55, FANCI, NEK2 and PTTG1. CEP55 is not only overexpressed in the GBC but also correlated with advanced TNM stage, differentiation grade and poorer survival. After CEP55 knockdown, the proliferation of GBC cells was inhibited with cell cycle arrest in G2/M phase and DNA damage. There was a marked increase in the apoptosis of GBC cells in the siCEP55 group. Besides, in vivo, CEP55 inhibition attenuated the growth and promoted apoptosis of GBC cells. Mechanically, the tumor suppressor effect of CEP55 knockdown is associated with dysregulation of the AKT and ERK signaling networks. Discussion These data not only demonstrate that CEP55 is identified as a potential independent predictor crucial to the diagnosis and prognosis of gallbladder cancer but also reveal the possibility for CEP55 to be used as a promising target in the treatment of GBC.
Collapse
Affiliation(s)
- Maotuan Huang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Fuxiu Zhong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Department of Nursing, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Mingyuan Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Lingju Hong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Weihong Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiahenazi Abudukeremu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Wang H, Wang L, Sun G. MiRNA and Potential Prognostic Value in Non-Smoking Females with Lung Adenocarcinoma by High-Throughput Sequencing. Int J Gen Med 2023; 16:683-696. [PMID: 36860345 PMCID: PMC9969804 DOI: 10.2147/ijgm.s401544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Background Non-smoking females with lung adenocarcinoma (LUAD) account for a unique disease entity and miRNA play critical roles in cancer development and progression. The purpose of this study is to explore prognosis-related differentially expressed miRNA (DEmiRNA) and establish a prognostic model for non-smoking females with LUAD. Methods Eight specimens were collected from thoracic surgery of non-smoking females with LUAD and implemented the miRNA sequencing. The intersection of our miRNA sequencing data and TCGA database were identified as common DEmiRNA. Then, we predicted the target genes of the common DEmiRNAs (DETGs) and explored the functional enrichment and prognosis of DETGs. A risk model by overall survival (OS)-related DEmiRNA was constructed based on multivariate Cox regression analyses. Results A total of 34 overlapping DEmiRNA were obtained. The DETGs were enriched in pathways including "Cell cycle" and "miRNAs in cancer". The DETGs (KPNA2, CEP55, TRIP13, MYBL2) were risk factors, significantly related to OS, progression-free survival (PFS), and were also hub genes. ScRNA-seq data also validated the expression of the four DETGs. Hsa-mir-200a, hsa-mir-21, and hsa-mir-584 were significantly associated with OS. The prognostic prediction model constructed by the 3 DEmiRNA could effectively predict OS and can be used as an independent prognostic factor of non-smoking females with LUAD. Conclusion Hsa-mir-200a, hsa-mir-21, and hsa-mir-584 can serve as potential prognostic predictors in non-smoking females with LUAD. A novel prognostic model based on the three DEmiRNAs was also constructed to predict the survival of non-smoking females with LUAD and showed good performance. The result of our paper can be helpful for treatment and prognosis prediction for non-smoking females with LUAD.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Lijun Wang
- Department of Respiratory Disease, Tongling People’s Hospital, Tongling, People’s Republic of China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China,Correspondence: Gengyun Sun, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, 230022, People’s Republic of China, Email
| |
Collapse
|
12
|
Arna AB, Patel H, Singh RS, Vizeacoumar FS, Kusalik A, Freywald A, Vizeacoumar FJ, Wu Y. Synthetic lethal interactions of DEAD/H-box helicases as targets for cancer therapy. Front Oncol 2023; 12:1087989. [PMID: 36761420 PMCID: PMC9905851 DOI: 10.3389/fonc.2022.1087989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
DEAD/H-box helicases are implicated in virtually every aspect of RNA metabolism, including transcription, pre-mRNA splicing, ribosomes biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA editing. Most of these helicases are upregulated in various cancers and mutations in some of them are associated with several malignancies. Lately, synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where genetic interactions of cancer-related genes are exploited as therapeutic targets, are emerging as a leading area of cancer research. Several DEAD/H-box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1), and DDX41 (Sacy-1), have been subjected to SL analyses in humans and different model organisms. It remains to be explored whether SDL can be utilized to identity druggable targets in DEAD/H-box helicase overexpressing cancers. In this review, we analyze gene expression data of a subset of DEAD/H-box helicases in multiple cancer types and discuss how their SL/SDL interactions can be used for therapeutic purposes. We also summarize the latest developments in clinical applications, apart from discussing some of the challenges in drug discovery in the context of targeting DEAD/H-box helicases.
Collapse
Affiliation(s)
- Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hardikkumar Patel
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan and Saskatchewan Cancer Agency, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| |
Collapse
|
13
|
CEP55 predicts the poor prognosis and promotes tumorigenesis in endometrial cancer by regulating the Foxo1 signaling. Mol Cell Biochem 2022; 478:1561-1571. [DOI: 10.1007/s11010-022-04607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/28/2022] [Indexed: 11/26/2022]
|
14
|
Hu A, Wang Y, Tian J, Chen Z, Chen R, Han X, Chen Y, Liu T, Chen Q. Pan-cancer analysis reveals DDX21 as a potential biomarker for the prognosis of multiple tumor types. Front Oncol 2022; 12:947054. [PMID: 36505822 PMCID: PMC9730287 DOI: 10.3389/fonc.2022.947054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Background DExD-box helicase 21 (DDX21) is an essential member of the RNA helicase family. DDX21 is involved in the carcinogenesis of various malignancies, but there has been no comprehensive research on its involvement in different types of cancer. Method This study used TCGA, CPTAC, GTEx, GEO, FANTOM5, BioGRID, TIMER2, GEPIA2, cBioPortal, STRING, and Metascape databases and Survival ROC software to evaluate DDX21 gene expression, protein expression, immunohistochemistry, gene mutation, immune infiltration, and protein phosphorylation in 33 TCGA tumor types, as well as the prognostic relationship between DDX21 and different tumors, by survival analysis and similar gene enrichment analysis. Furthermore, Cell Counting Kit-8 (CCK-8) and Transwell studies were employed to assess the effect of DDX21 expression on lung adenocarcinoma (LUAD) cell proliferation and migration. Result The DDX21 gene was highly expressed in most cancers, and overexpression was associated with poor overall survival (OS) and disease-free survival (DFS). DDX21 mutations were most common in uterine corpus endometrial carcinoma (UCEC; >5%), and DDX21 expression was positively correlated with the degree of infiltration of CAF and CD8+ cells in several tumor types. Numerous genes were co-expressed with DDX21. Gene enrichment analysis revealed close links between DDX21, RNA metabolism, and ribosomal protein production. In vitro analysis of LUAD cells showed that DDX21 expression was positively correlated with cell proliferation and migration capacity, consistent with prior bioinformatics studies. Conclusions DDX21 is overexpressed in a variety of cancers, and overexpression in some cancers is associated with poor prognosis. Immune infiltration and DDX21-related gene enrichment analyses indicated that DDX21 may affect cancer development through mechanisms that regulate tumor immunity, RNA metabolism, and ribosomal protein synthesis. This pan-cancer study revealed the prognostic value and the oncogenic role of DDX21.
Collapse
Affiliation(s)
- Ankang Hu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yonghui Wang
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiahao Tian
- Clinical Medicine Science, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zihan Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xufeng Han
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tingjun Liu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Quangang Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Yan H, Zhai B, Yang F, Chen Z, Zhou Q, Paiva-Santos AC, Yuan Z, Zhou Y. Nanotechnology-Based Diagnostic and Therapeutic Strategies for Neuroblastoma. Front Pharmacol 2022; 13:908713. [PMID: 35721107 PMCID: PMC9201105 DOI: 10.3389/fphar.2022.908713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma (NB), as the most common extracranial solid tumor in childhood, is one of the critical culprits affecting children's health. Given the heterogeneity and invisibility of NB tumors, the existing diagnostic and therapeutic approaches are inadequate and ineffective in early screening and prognostic improvement. With the rapid innovation and development of nanotechnology, nanomedicines have attracted widespread attention in the field of oncology research for their excellent physiological and chemical properties. In this review, we first explored the current common obstacles in the diagnosis and treatment of NB. Then we comprehensively summarized the advancements in nanotechnology-based multimodal synergistic diagnosis and treatment of NB and elucidate the underlying mechanisms. In addition, a discussion of the pending challenges in biocompatibility and toxicity of nanomedicine was conducted. Finally, we described the development and application status of nanomaterials against some of the recognized targets in the field of NB research, and pointed out prospects for nanomedicine-based precision diagnosis and therapy of NB.
Collapse
Affiliation(s)
- Hui Yan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Bo Zhai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Fang Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhenliang Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qiang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ana Cláudia Paiva-Santos
- Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Yu B, Zhou S, Long D, Ning Y, Yao H, Zhou E, Wang Y. DDX55 promotes HCC progression via interacting with BRD4 and participating in exosome-mediated cell-cell communication. Cancer Sci 2022; 113:3002-3017. [PMID: 35514200 PMCID: PMC9459289 DOI: 10.1111/cas.15393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/27/2022] Open
Abstract
The involvement of DEAD‐box helicase 55 (DDX55) in oncogenesis has been suggested, but its biological role in hepatocellular carcinoma (HCC) remains unknown. The present study verified the upregulation of DDX55 in HCC tissues compared with non‐tumor controls. DDX55 displayed the highest prognostic values among the DEAD‐box protein family for recurrence‐free survival and overall survival of HCC patients. In addition, the effects of DDX55 in the promotion of HCC cell proliferation, migration, and invasion were determined ex vivo and in vivo. Mechanistically, we revealed that DDX55 could interact with BRD4 to form a transcriptional regulatory complex that positively regulated PIK3CA transcription. Following that, β‐catenin signaling was activated in a PI3K/Akt/GSK‐3β dependent manner, thus inducing cell cycle progression and epithelial–mesenchymal transition. Intriguingly, both DDX55 mRNA and protein were identified in the exosomes derived from HCC cells. Exosomal DDX55 was implicated in intercellular communication between HCC cells with high or low DDX55 levels and between HCC cells and endothelial cells, thereby promoting the malignant phenotype of HCC cells and angiogenesis. In conclusion, DDX55 may be a valuable prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Bin Yu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Dakun Long
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Yuxiang Ning
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Hanlin Yao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| |
Collapse
|
17
|
Li M, Liu Y, Jiang X, Hang Y, Wang H, Liu H, Chen Z, Xiao Y. Inhibition of miR-144-3p exacerbates non-small cell lung cancer progression by targeting CEP55. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1398-1407. [PMID: 34435195 DOI: 10.1093/abbs/gmab118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence has indicated that microRNA dysregulation is closely related to the occurrence and development of cancers. Herein, we investigated the relationship between miR-144-3p and CEP55 expression. We then evaluated the association between miR-144-3p and CEP55 expression and proliferation, invasion and apoptosis of non-small cell lung cancer (NSCLC) cells. Real-time quantitative PCR results revealed that CEP55 was over-expressed whereas miR-144-3p was under-expressed in NSCLC tissues. CCK-8 assay, wound healing assay, and flow cytometry further revealed that overexpression of miR-144-3p significantly inhibited proliferation and migration, but promoted apoptosis of A549 cells. Conversely, inhibition of miR-144-3p promoted proliferation and migration but suppressed apoptosis of H460 cells. Dual-luciferase reporter assay revealed that miR-144-3p modulated malignant properties of cancer cells by targeting CEP55. Overexpression of CEP55 partially blocked the inhibitory effect of miR-144-3p on proliferation and migration of A549 cells and induced apoptosis of A549 cells. CEP55 knockdown modulated the increase in proliferation and migration and the decrease in apoptosis of H460 cells following miR-144-3p inhibition. These findings demonstrated that miR-144-3p suppresses NSCLC development by inhibiting CEP55 expression.
Collapse
Affiliation(s)
- Ming Li
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
- Scientific Research Institute, Hunan Yueyang Maternal & Child Health-Care Hospital, Yueyang 414000, China
- Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine, Guilin Medical University and Yueyang Women & Children’s Medical Center, Yueyang 414000, China
| | - Yannan Liu
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Xinglin Jiang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Yuanxin Hang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Haiying Wang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Hang Liu
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Zhuo Chen
- Scientific Research Institute, Hunan Yueyang Maternal & Child Health-Care Hospital, Yueyang 414000, China
- Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine, Guilin Medical University and Yueyang Women & Children’s Medical Center, Yueyang 414000, China
| | - Yubo Xiao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
18
|
DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells 2021; 10:cells10061540. [PMID: 34207140 PMCID: PMC8234093 DOI: 10.3390/cells10061540] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regulation has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis. In this review, we discuss the essential roles and mechanisms of RNA helicases in the regulation of the cell cycle at different phases. For that, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. We also discuss the different targeting strategies against RNA helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on specific RNA helicases, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
|