1
|
Tutolo BM, Hausrath EM, Kite ES, Rampe EB, Bristow TF, Downs RT, Treiman A, Peretyazhko TS, Thorpe MT, Grotzinger JP, Roberts AL, Archer PD, Des Marais DJ, Blake DF, Vaniman DT, Morrison SM, Chipera S, Hazen RM, Morris RV, Tu VM, Simpson SL, Pandey A, Yen A, Larter SR, Craig P, Castle N, Ming DW, Meusburger JM, Fraeman AA, Burtt DG, Franz HB, Sutter B, Clark JV, Rapin W, Bridges JC, Loche M, Gasda P, Frydenvang J, Vasavada AR. Carbonates identified by the Curiosity rover indicate a carbon cycle operated on ancient Mars. Science 2025; 388:292-297. [PMID: 40245143 DOI: 10.1126/science.ado9966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Ancient Mars had surface liquid water and a dense carbon dioxide (CO2)-rich atmosphere. Such an atmosphere would interact with crustal rocks, potentially leaving a mineralogical record of its presence. We analyzed the composition of an 89-meter stratigraphic section of Gale crater, Mars, using data collected by the Curiosity rover. An iron carbonate mineral, siderite, occurs in abundances of 4.8 to 10.5 weight %, colocated with highly water-soluble salts. We infer that the siderite formed in water-limited conditions, driven by water-rock reactions and evaporation. Comparison with orbital data indicates that similar strata (deposited globally) sequestered the equivalent of 2.6 to 36 millibar of atmospheric CO2. The presence of iron oxyhydroxides in these deposits indicates that a partially closed carbon cycle on ancient Mars returned some previously sequestered CO2 to the atmosphere.
Collapse
Affiliation(s)
- Benjamin M Tutolo
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | | | - Edwin S Kite
- Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Elizabeth B Rampe
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Thomas F Bristow
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| | - Robert T Downs
- Department of Geosciences, University of Arizona, Tucson, AZ, USA
| | - Allan Treiman
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX, USA
| | | | - Michael T Thorpe
- Department of Astronomy, University of Maryland, College Park, MD, USA
- Solar System Exploration Division, NASA Godard Space Flight Center, Greenbelt, MD, USA
- Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - John P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA, Pasadena, CA, USA
| | - Amelie L Roberts
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | | | | | - David F Blake
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Shaunna M Morrison
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
- Department of Earth and Planetary Sciences, Rutgers University New Brunswick, Piscataway, NJ, USA
| | | | - Robert M Hazen
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - Richard V Morris
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Valerie M Tu
- Texas State University-Amentum Johnson Space Center Engineering, Technology, and Science II, NASA Johnson Space Center, Houston, TX, USA
| | - Sarah L Simpson
- Texas State University-Amentum Johnson Space Center Engineering, Technology, and Science II, NASA Johnson Space Center, Houston, TX, USA
| | - Aditi Pandey
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Albert Yen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Stephen R Larter
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | | | | | - Douglas W Ming
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | | | - Abigail A Fraeman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - David G Burtt
- Solar System Exploration Division, NASA Godard Space Flight Center, Greenbelt, MD, USA
| | - Heather B Franz
- Solar System Exploration Division, NASA Godard Space Flight Center, Greenbelt, MD, USA
| | - Brad Sutter
- Amentum, NASA Johnson Space Center, Houston, TX, USA
| | - Joanna V Clark
- Texas State University-Amentum Johnson Space Center Engineering, Technology, and Science II, NASA Johnson Space Center, Houston, TX, USA
| | - William Rapin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, Centre National d'Études Spatiales, Toulouse, France
| | - John C Bridges
- Space Park Leicester, University of Leicester, Leicester, UK
| | - Matteo Loche
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, Centre National d'Études Spatiales, Toulouse, France
| | | | - Jens Frydenvang
- Globe Institute, University of Copenhagen, Copenhagen K, Denmark
| | - Ashwin R Vasavada
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
2
|
Mondro CA, Fedo CM, Grotzinger JP, Lamb MP, Gupta S, Dietrich WE, Banham S, Weitz CM, Gasda P, Edgar LA, Rubin D, Bryk AB, Kite ES, Caravaca G, Schieber J, Vasavada AR. Wave ripples formed in ancient, ice-free lakes in Gale crater, Mars. SCIENCE ADVANCES 2025; 11:eadr0010. [PMID: 39813357 PMCID: PMC11734734 DOI: 10.1126/sciadv.adr0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Symmetrical wave ripples identified with NASA's Curiosity rover in ancient lake deposits at Gale crater provide a key paleoclimate constraint for early Mars: At the time of ripple formation, climate conditions must have supported ice-free liquid water on the surface of Mars. These features are the most definitive examples of wave ripples on another planet. The ripples occur in two stratigraphic intervals within the orbitally defined Layered Sulfate Unit: a thin but laterally extensive unit at the base of the Amapari member of the Mirador formation, and a sandstone lens within the Contigo member of the Mirador formation. In both locations, the ripples have an average wavelength of ~4.5 centimeters. Internal laminae and ripple morphology show an architecture common in wave-influenced environments where wind-generated surface gravity waves mobilize bottom sediment in oscillatory flows. Their presence suggests formation in a shallow-water (<2 meters) setting that was open to the atmosphere, which requires atmospheric conditions that allow stable surface water.
Collapse
Affiliation(s)
- Claire A. Mondro
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher M. Fedo
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael P. Lamb
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sanjeev Gupta
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - William E. Dietrich
- Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Steven Banham
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | | | - Patrick Gasda
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Lauren A. Edgar
- U.S. Geological Survey Astrogeology Science Center, Flagstaff, AZ 86001, USA
| | - David Rubin
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alexander B. Bryk
- Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Edwin S. Kite
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Gwénaël Caravaca
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse CNRS, CNES, Toulouse, France
| | - Juergen Schieber
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ashwin R. Vasavada
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
3
|
Seeger CH, Grotzinger JP. Diagenesis of the Clay-Sulfate Stratigraphic Transition, Mount Sharp Group, Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2024; 129:e2024JE008531. [PMID: 39649802 PMCID: PMC11622355 DOI: 10.1029/2024je008531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024]
Abstract
The diversity and abundance of diagenetic textures observed in sedimentary rocks of the clay-sulfate transition recorded in the stratigraphic record of Gale crater are distinctive within the rover's traverse. This study catalogs all textures observed by the MAHLI instrument, including their abundances, morphologies, and cross-cutting relationships in order to suggest a paragenetic sequence in which multiple episodes of diagenetic fluid flow were required to form co-occurring color variations, pits, and nodules; secondary nodule populations; and two generations of Ca sulfate fracture-filling vein precipitation. Spatial heterogeneities in the abundance and diversity of these textures throughout the studied stratigraphic section loosely correlate with stratigraphic unit, suggesting that grain size and compaction controls on fluid pathways influenced their formation; these patterns are especially prevalent in the Pontours member, where primary stratigraphy is entirely overprinted by a nodular fabric, and the base of the stratigraphic section, where increased textural diversity may be influenced by the underlying less permeable clay-bearing rocks of the Glen Torridon region. Correlations between quantitative nodule abundance and subtle variations in measured bulk rock chemistry (especially MgO and SO3 enrichment) by the Alpha Particle X-Ray Spectrometer instrument suggest that an increase in Mg sulfate upsection is linked to precipitation of pore-filling diagenetic cement. Due to a lack of sedimentological evidence for widespread evaporite or near-surface crust formation of these Mg sulfates, we propose three alternative hypotheses for subsurface groundwater-related remobilization of pre-existing sulfates and reprecipitation at depth in pore spaces.
Collapse
Affiliation(s)
- C. H. Seeger
- Department of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. P. Grotzinger
- Department of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
4
|
Heydari E, Schroeder JF, Calef FJ, Parker TJ, Fairén AG. Lacustrine sedimentation by powerful storm waves in Gale crater and its implications for a warming episode on Mars. Sci Rep 2023; 13:18715. [PMID: 37907611 PMCID: PMC10618461 DOI: 10.1038/s41598-023-45068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
This investigation documents that the Rugged Terrain Unit, the Stimson formation, and the Greenheugh sandstone were deposited in a 1200 m-deep lake that formed after the emergence of Mt. Sharp in Gale crater, Mars, nearly 4 billion years ago. In fact, the Curiosity rover traversed on a surface that once was the bottom of this lake and systematically examined the strata that were deposited in its deepest waters on the crater floor to layers that formed along its shoreline on Mt. Sharp. This provided a rare opportunity to document the evolution of one aqueous episode from its inception to its desiccation and to determine the warming mechanism that caused it. Deep water lacustrine siltstones directly overlie conglomerates that were deposited by mega floods on the crater floor. This indicates that the inception phase of the lake was sudden and took place when flood waters poured into the crater. The lake expanded quickly and its shoreline moved up the slope of Mt. Sharp during the lake-level rise phase and deposited a layer of sandstone with large cross beds under the influence of powerful storm waves. The lake-level highstand phase was dominated by strong bottom currents that transported sediments downhill and deposited one of the most distinctive sedimentological features in Gale crater: a layer of sandstone with a 3 km-long field of meter-high subaqueous antidunes (the Washboard) on Mt. Sharp. Bottom current continued downhill and deposited sandstone and siltstone on the foothills of Mt. Sharp and on the crater floor, respectively. The lake-level fall phase caused major erosion of lacustrine strata that resulted in their patchy distribution on Mt. Sharp. Eroded sediments were then transported to deep waters by gravity flows and were re-deposited as conglomerate and sandstone in subaqueous channels and in debris flow fans. The desiccation phase took place in calm waters of the lake. The aqueous episode we investigated was vigorous but short-lived. Its characteristics as determined by our sedimentological study matches those predicted by an asteroid impact. This suggests that the heat generated by an impact transformed Mars into a warm, wet, and turbulent planet. It resulted in planet-wide torrential rain, giant floods on land, powerful storms in the atmosphere, and strong waves in lakes. The absence of age dates prevents the determination of how long the lake existed. Speculative rates of lake-level change suggest that the lake could have lasted for a period ranging from 16 to 240 Ky.
Collapse
Affiliation(s)
- Ezat Heydari
- Department of Physics, Atmospheric Sciences, and Geoscience, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA.
| | - Jeffrey F Schroeder
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Fred J Calef
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Timothy J Parker
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Alberto G Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Bennett KA, Fox VK, Bryk A, Dietrich W, Fedo C, Edgar L, Thorpe MT, Williams AJ, Wong GM, Dehouck E, McAdam A, Sutter B, Millan M, Banham SG, Bedford CC, Bristow T, Fraeman A, Vasavada AR, Grotzinger J, Thompson L, O’Connell‐Cooper C, Gasda P, Rudolph A, Sullivan R, Arvidson R, Cousin A, Horgan B, Stack KM, Treiman A, Eigenbrode J, Caravaca G. The Curiosity Rover's Exploration of Glen Torridon, Gale Crater, Mars: An Overview of the Campaign and Scientific Results. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2023; 128:e2022JE007185. [PMID: 37034460 PMCID: PMC10078523 DOI: 10.1029/2022je007185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/16/2023]
Abstract
The Mars Science Laboratory rover, Curiosity, explored the clay mineral-bearing Glen Torridon region for 1 Martian year between January 2019 and January 2021, including a short campaign onto the Greenheugh pediment. The Glen Torridon campaign sought to characterize the geology of the area, seek evidence of habitable environments, and document the onset of a potentially global climatic transition during the Hesperian era. Curiosity roved 5 km in total throughout Glen Torridon, from the Vera Rubin ridge to the northern margin of the Greenheugh pediment. Curiosity acquired samples from 11 drill holes during this campaign and conducted the first Martian thermochemolytic-based organics detection experiment with the Sample Analysis at Mars instrument suite. The lowest elevations within Glen Torridon represent a continuation of lacustrine Murray formation deposits, but overlying widespread cross bedded sandstones indicate an interval of more energetic fluvial environments and prompted the definition of a new stratigraphic formation in the Mount Sharp group called the Carolyn Shoemaker formation. Glen Torridon hosts abundant phyllosilicates yet remains compositionally and mineralogically comparable to the rest of the Mount Sharp group. Glen Torridon samples have a great diversity and abundance of sulfur-bearing organic molecules, which are consistent with the presence of ancient refractory organic matter. The Glen Torridon region experienced heterogeneous diagenesis, with the most striking alteration occurring just below the Siccar Point unconformity at the Greenheugh pediment. Results from the pediment campaign show that the capping sandstone formed within the Stimson Hesperian aeolian sand sea that experienced seasonal variations in wind direction.
Collapse
Affiliation(s)
| | - Valerie K. Fox
- Department of Earth and Environmental SciencesUniversity of MinnesotaMinneapolisMNUSA
- Division of Geologic and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Alex Bryk
- Department of Earth and Planetary ScienceUniversity of California, BerkeleyBerkeleyCAUSA
| | - William Dietrich
- Department of Earth and Planetary ScienceUniversity of California, BerkeleyBerkeleyCAUSA
| | - Christopher Fedo
- Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Lauren Edgar
- Astrogeology Science CenterU.S. Geological SurveyFlagstaffAZUSA
| | | | - Amy J. Williams
- Department of Geological SciencesUniversity of FloridaGainesvilleFLUSA
| | - Gregory M. Wong
- Department of GeosciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Erwin Dehouck
- Université de LyonUCBLENSLUJMCNRSLGL‐TPEVilleurbanneFrance
| | - Amy McAdam
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| | - Brad Sutter
- Jacobs TechnologyHoustonTXUSA
- NASA Johnson Space CenterHoustonTXUSA
| | - Maëva Millan
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
- Laboratoire Atmosphère, Observations Spatiales (LATMOS), LATMOS/IPSLUVSQ Université Paris‐Saclay, Sorbonne Université, CNRSGuyancourtFrance
| | - Steven G. Banham
- Department of Earth Sciences and EngineeringImperial College LondonLondonUK
| | - Candice C. Bedford
- NASA Johnson Space CenterHoustonTXUSA
- Lunar and Planetary InstituteHoustonTXUSA
| | | | - Abigail Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Ashwin R. Vasavada
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - John Grotzinger
- Division of Geologic and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Lucy Thompson
- Planetary and Space Science CentreUniversity of New BrunswickFrederictonNBCanada
| | | | | | - Amanda Rudolph
- Earth Atmosphere and Planetary SciencePurdue UniversityWest LafayetteINUSA
| | | | - Ray Arvidson
- Department of Earth and Planetary SciencesWashington University in St. LouisSt. LouisMOUSA
| | - Agnes Cousin
- IRAPUniversité de ToulouseCNRSCNESToulouseFrance
| | - Briony Horgan
- Earth Atmosphere and Planetary SciencePurdue UniversityWest LafayetteINUSA
| | - Kathryn M. Stack
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | | | | |
Collapse
|
6
|
Khan SY, Stack KM, Yingst RA, Bergmann K. Characterization of Clasts in the Glen Torridon Region of Gale Crater Observed by the Mars Science Laboratory Curiosity Rover. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2021JE007095. [PMID: 36588802 PMCID: PMC9788136 DOI: 10.1029/2021je007095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The morphology and composition of clasts have the potential to reveal the nature and extent of erosional processes acting in a region. Dense accumulations of granule- to pebble-sized clasts covering the ground throughout the Glen Torridon region of Gale crater on Mars were studied using data acquired by the Mars Science Laboratory Curiosity rover between sols 2300 and 2593. In this study, measurements of shape, size, texture, and elemental abundance of unconsolidated granules and pebbles within northern Glen Torridon were compiled. Nine primary clast types were identified through stepwise hierarchical clustering, all of which are sedimentary and can be compositionally linked to local bedrock, suggesting relatively short transport distances. Several clast types display features associated with fragmentation along bedding planes and existing cracks in bedrock. These results indicate that Glen Torridon clasts are primarily the product of in-situ physical weathering of local bedrock.
Collapse
Affiliation(s)
- Sabrina Y. Khan
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyCAPasadenaUSA
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyMACambridgeUSA
- Department of Earth and Planetary SciencesJohns Hopkins UniversityMDBaltimoreUSA
| | - Kathryn M. Stack
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyCAPasadenaUSA
| | | | - Kristin Bergmann
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyMACambridgeUSA
| |
Collapse
|
7
|
Caravaca G, Mangold N, Dehouck E, Schieber J, Zaugg L, Bryk AB, Fedo CM, Le Mouélic S, Le Deit L, Banham SG, Gupta S, Cousin A, Rapin W, Gasnault O, Rivera‐Hernández F, Wiens RC, Lanza NL. From Lake to River: Documenting an Environmental Transition Across the Jura/Knockfarril Hill Members Boundary in the Glen Torridon Region of Gale Crater (Mars). JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2021JE007093. [PMID: 36246083 PMCID: PMC9541347 DOI: 10.1029/2021je007093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 06/16/2023]
Abstract
Between January 2019 and January 2021, the Mars Science Laboratory team explored the Glen Torridon (GT) region in Gale crater (Mars), known for its orbital detection of clay minerals. Mastcam, Mars Hand Lens Imager, and ChemCam data are used in an integrated sedimentological and geochemical study to characterize the Jura member of the upper Murray formation and the Knockfarril Hill member of the overlying Carolyn Shoemaker formation in northern GT. The studied strata show a progressive transition represented by interfingering beds of fine-grained, recessive mudstones of the Jura member and coarser-grained, cross-stratified sandstones attributed to the Knockfarril Hill member. Whereas the former are interpreted as lacustrine deposits, the latter are interpreted as predominantly fluvial deposits. The geochemical composition seen by the ChemCam instrument show K2O-rich mudstones (∼1-2 wt.%) versus MgO-rich sandstones (>6 wt.%), relative to the average composition of the underlying Murray formation. We document consistent sedimentary and geochemical data sets showing that low-energy mudstones of the Jura member are associated with the K-rich endmember, and that high-energy cross-stratified sandstones of the Knockfarril Hill member are associated with the Mg-rich endmember, regardless of stratigraphic position. The Jura to Knockfarril Hill transition therefore marks a significant paleoenvironmental change, where a long-lived and comparatively quiescent lacustrine setting progressively changes into a more energetic fluvial setting, as a consequence of shoreline regression due to either increased sediment supply or lake-level drop.
Collapse
Affiliation(s)
- Gwénaël Caravaca
- UMR 5277 CNRSUPSCNES Institut de Recherche en Astrophysique et PlanétologieUniversité Paul Sabatier Toulouse IIIToulouseFrance
- UMR 6112 CNRS Laboratoire de Planétologie et GéosciencesNantes UniversitéUniversité d’AngersNantesFrance
- Now at Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| | - Nicolas Mangold
- UMR 6112 CNRS Laboratoire de Planétologie et GéosciencesNantes UniversitéUniversité d’AngersNantesFrance
| | - Erwin Dehouck
- Université de LyonUCBLENSLUJMCNRSLGL‐TPEVilleurbanneFrance
| | - Juergen Schieber
- Department of Geological SciencesIndiana University BloomingtonBloomingtonINUSA
| | - Louis Zaugg
- UMR 6112 CNRS Laboratoire de Planétologie et GéosciencesNantes UniversitéUniversité d’AngersNantesFrance
| | | | - Christopher M. Fedo
- Department of Earth & Planetary SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Stéphane Le Mouélic
- UMR 6112 CNRS Laboratoire de Planétologie et GéosciencesNantes UniversitéUniversité d’AngersNantesFrance
| | - Laetitia Le Deit
- UMR 6112 CNRS Laboratoire de Planétologie et GéosciencesNantes UniversitéUniversité d’AngersNantesFrance
| | - Steven G. Banham
- Department of Earth Sciences and EngineeringImperial College LondonLondonUK
| | - Sanjeev Gupta
- Department of Earth Sciences and EngineeringImperial College LondonLondonUK
| | - Agnès Cousin
- UMR 5277 CNRSUPSCNES Institut de Recherche en Astrophysique et PlanétologieUniversité Paul Sabatier Toulouse IIIToulouseFrance
| | - William Rapin
- UMR 5277 CNRSUPSCNES Institut de Recherche en Astrophysique et PlanétologieUniversité Paul Sabatier Toulouse IIIToulouseFrance
| | - Olivier Gasnault
- UMR 5277 CNRSUPSCNES Institut de Recherche en Astrophysique et PlanétologieUniversité Paul Sabatier Toulouse IIIToulouseFrance
| | | | - Roger C. Wiens
- Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | | |
Collapse
|
8
|
Stack KM, Dietrich WE, Lamb MP, Sullivan RJ, Christian JR, Newman CE, O’Connell‐Cooper CD, Sneed JW, Day M, Baker M, Arvidson RE, Fedo CM, Khan S, Williams RME, Bennett KA, Bryk AB, Cofield S, Edgar LA, Fox VK, Fraeman AA, House CH, Rubin DM, Sun VZ, Van Beek JK. Orbital and In-Situ Investigation of Periodic Bedrock Ridges in Glen Torridon, Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2021JE007096. [PMID: 35865672 PMCID: PMC9286800 DOI: 10.1029/2021je007096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Gale crater, the field site for NASA's Mars Science Laboratory Curiosity rover, contains a diverse and extensive record of aeolian deposition and erosion. This study focuses on a series of regularly spaced, curvilinear, and sometimes branching bedrock ridges that occur within the Glen Torridon region on the lower northwest flank of Aeolis Mons, the central mound within Gale crater. During Curiosity's exploration of Glen Torridon between sols ∼2300-3080, the rover drove through this field of ridges, providing the opportunity for in situ observation of these features. This study uses orbiter and rover data to characterize ridge morphology, spatial distribution, compositional and material properties, and association with other aeolian features in the area. Based on these observations, we find that the Glen Torridon ridges are consistent with an origin as wind-eroded bedrock ridges, carved during the exhumation of Mount Sharp. Erosional features like the Glen Torridon ridges observed elsewhere on Mars, termed periodic bedrock ridges (PBRs), have been interpreted to form transverse to the dominant wind direction. The size and morphology of the Glen Torridon PBRs are consistent with transverse formative winds, but the orientation of nearby aeolian bedforms and bedrock erosional features raise the possibility of PBR formation by a net northeasterly wind regime. Although several formation models for the Glen Torridon PBRs are still under consideration, and questions persist about the nature of PBR-forming paleowinds, the presence of PBRs at this site provides important constraints on the depositional and erosional history of Gale crater.
Collapse
Affiliation(s)
- Kathryn M. Stack
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - William E. Dietrich
- Department of Earth and Planetary ScienceUniversity of California, BerkeleyBerkeleyCAUSA
| | - Michael P. Lamb
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Robert J. Sullivan
- Cornell Center for Astrophysics & Planetary ScienceCornell UniversityIthacaNYUSA
| | - John R. Christian
- Department of Earth and Planetary SciencesWashington University in St. LouisSt. LouisMOUSA
| | | | | | - Jonathan W. Sneed
- Department of Earth, Planetary, and Space SciencesUniversity of California, Los AngelesLos AngelesCAUSA
| | - Mackenzie Day
- Department of Earth, Planetary, and Space SciencesUniversity of California, Los AngelesLos AngelesCAUSA
| | - Mariah Baker
- Center for Earth & Planetary StudiesNational Air & Space MuseumSmithsonian InstitutionWashingtonDCUSA
| | - Raymond E. Arvidson
- Department of Earth and Planetary SciencesWashington University in St. LouisSt. LouisMOUSA
| | - Christopher M. Fedo
- Department of Earth and Planetary SciencesUniversity of Tennessee, KnoxvilleKnoxvilleTNUSA
| | - Sabrina Khan
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | | | | | - Alexander B. Bryk
- Department of Earth and Planetary ScienceUniversity of California, BerkeleyBerkeleyCAUSA
| | - Shannon Cofield
- U.S. Department of the InteriorBureau of Ocean Energy ManagementWashingtonDCUSA
| | - Lauren A. Edgar
- Astrogeology Science CenterU.S. Geological SurveyFlagstaffAZUSA
| | - Valerie K. Fox
- Earth and Environmental SciencesUniversity of MinnesotaMinneapolisMNUSA
| | - Abigail A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - David M. Rubin
- Earth and Planetary SciencesUniversity of California, Santa CruzSanta CruzCAUSA
| | - Vivian Z. Sun
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Jason K. Van Beek
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
9
|
Vasavada AR. Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations. SPACE SCIENCE REVIEWS 2022; 218:14. [PMID: 35399614 PMCID: PMC8981195 DOI: 10.1007/s11214-022-00882-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED NASA's Mars Science Laboratory mission, with its Curiosity rover, has been exploring Gale crater (5.4° S, 137.8° E) since 2012 with the goal of assessing the potential of Mars to support life. The mission has compiled compelling evidence that the crater basin accumulated sediment transported by marginal rivers into lakes that likely persisted for millions of years approximately 3.6 Ga ago in the early Hesperian. Geochemical and mineralogical assessments indicate that environmental conditions within this timeframe would have been suitable for sustaining life, if it ever were present. Fluids simultaneously circulated in the subsurface and likely existed through the dry phases of lake bed exposure and aeolian deposition, conceivably creating a continuously habitable subsurface environment that persisted to less than 3 Ga in the early Amazonian. A diversity of organic molecules has been preserved, though degraded, with evidence for more complex precursors. Solid samples show highly variable isotopic abundances of sulfur, chlorine, and carbon. In situ studies of modern wind-driven sediment transport and multiple large and active aeolian deposits have led to advances in understanding bedform development and the initiation of saltation. Investigation of the modern atmosphere and environment has improved constraints on the timing and magnitude of atmospheric loss, revealed the presence of methane and the crater's influence on local meteorology, and provided measurements of high-energy radiation at Mars' surface in preparation for future crewed missions. Rover systems and science instruments remain capable of addressing all key scientific objectives. Emphases on advance planning, flexibility, operations support work, and team culture have allowed the mission team to maintain a high level of productivity in spite of declining rover power and funding. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11214-022-00882-7.
Collapse
Affiliation(s)
- Ashwin R. Vasavada
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
10
|
Recognition of Sedimentary Rock Occurrences in Satellite and Aerial Images of Other Worlds—Insights from Mars. REMOTE SENSING 2021. [DOI: 10.3390/rs13214296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sedimentary rocks provide records of past surface and subsurface processes and environments. The first step in the study of the sedimentary rock record of another world is to learn to recognize their occurrences in images from instruments aboard orbiting, flyby, or aerial platforms. For two decades, Mars has been known to have sedimentary rocks; however, planet-wide identification is incomplete. Global coverage at 0.25–6 m/pixel, and observations from the Curiosity rover in Gale crater, expand the ability to recognize Martian sedimentary rocks. No longer limited to cases that are light-toned, lightly cratered, and stratified—or mimic original depositional setting (e.g., lithified deltas)—Martian sedimentary rocks include dark-toned examples, as well as rocks that are erosion-resistant enough to retain small craters as well as do lava flows. Breakdown of conglomerates, breccias, and even some mudstones, can produce a pebbly regolith that imparts a “smooth” appearance in satellite and aerial images. Context is important; sedimentary rocks remain challenging to distinguish from primary igneous rocks in some cases. Detection of ultramafic, mafic, or andesitic compositions do not dictate that a rock is igneous, and clast genesis should be considered separately from the depositional record. Mars likely has much more sedimentary rock than previously recognized.
Collapse
|
11
|
Long-Distance 3D Reconstructions Using Photogrammetry with Curiosity’s ChemCam Remote Micro-Imager in Gale Crater (Mars). REMOTE SENSING 2021. [DOI: 10.3390/rs13204068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Mars Science Laboratory rover Curiosity landed in Gale crater (Mars) in August 2012. It has since been studying the lower part of the 5 km-high sedimentary pile that composes Gale’s central mound, Aeolis Mons. To assess the sedimentary record, the MSL team mainly uses a suite of imagers onboard the rover, providing various pixel sizes and fields of view from close to long-range observations. For this latter, we notably use the Remote Micro Imager (RMI), a subsystem of the ChemCam instrument that acts as 700 mm-focal length telescope, providing the smallest angular pixel size of the set of cameras on the Remote Sensing Mast. The RMI allows observations of remote outcrops up to a few kilometers away from the rover. As retrieving 3D information is critical to characterize the structures of the sedimentary deposits, we describe in this work an experiment aiming at computing for the first time with RMI Digital Outcrop Models of these distant outcrops. We show that Structure-from-Motion photogrammetry can successfully be applied to suitable sets of individual RMI frames to reconstruct the 3D shape and relief of these distant outcrops. These results show that a dedicated set of observations can be envisaged to characterize the most interesting geological features surrounding the rover.
Collapse
|
12
|
Hayes AG, Corlies P, Tate C, Barrington M, Bell JF, Maki JN, Caplinger M, Ravine M, Kinch KM, Herkenhoff K, Horgan B, Johnson J, Lemmon M, Paar G, Rice MS, Jensen E, Kubacki TM, Cloutis E, Deen R, Ehlmann BL, Lakdawalla E, Sullivan R, Winhold A, Parkinson A, Bailey Z, van Beek J, Caballo-Perucha P, Cisneros E, Dixon D, Donaldson C, Jensen OB, Kuik J, Lapo K, Magee A, Merusi M, Mollerup J, Scudder N, Seeger C, Stanish E, Starr M, Thompson M, Turenne N, Winchell K. Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager. SPACE SCIENCE REVIEWS 2021; 217:29. [PMID: 33678912 PMCID: PMC7892537 DOI: 10.1007/s11214-021-00795-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/12/2021] [Indexed: 05/28/2023]
Abstract
UNLABELLED The NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm ( 25.5 ∘ × 19.1 ∘ FOV ) to 110 mm ( 6.2 ∘ × 4.2 ∘ FOV ) and will acquire data at pixel scales of 148-540 μm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover's mast with a stereo baseline of 24.3 ± 0.1 cm and a toe-in angle of 1.17 ± 0.03 ∘ (per camera). Each camera uses a Kodak KAI-2020 CCD with 1600 × 1200 active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors' Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26 t h and May 9 t h , 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be < 10 % . Image quality, measured via the amplitude of the Modulation Transfer Function (MTF) at Nyquist sampling (0.35 line pairs per pixel), shows MTF Nyquist = 0.26 - 0.50 across all zoom, focus, and filter positions, exceeding the > 0.2 design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11214-021-00795-x.
Collapse
Affiliation(s)
- Alexander G. Hayes
- Department of Astronomy, Cornell University, Ithaca, NY 14850 USA
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14850 USA
| | - P. Corlies
- Department of Astronomy, Cornell University, Ithaca, NY 14850 USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - C. Tate
- Department of Astronomy, Cornell University, Ithaca, NY 14850 USA
| | - M. Barrington
- Department of Astronomy, Cornell University, Ithaca, NY 14850 USA
| | - J. F. Bell
- School of Earth and Space Exploration, Arizona State University, Phoenix, AZ 85287 USA
| | - J. N. Maki
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | - M. Caplinger
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - M. Ravine
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - K. M. Kinch
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - K. Herkenhoff
- USGS Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, AZ 86001 USA
| | - B. Horgan
- Earth, Atmospheric, and Planetary Sciences Department, Purdue University, West Lafayette, IN 47907 USA
| | - J. Johnson
- Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723 USA
| | - M. Lemmon
- Space Science Institute, 4765 Walnut St., Suite B, Boulder, CO 80301 USA
| | - G. Paar
- Joanneum Research Forschungsgesellschaft mbH, Steyrergasse 17, 8010 Graz, Austria
| | - M. S. Rice
- Geology Department, Western Washington University, Bellingham, WA 98225 USA
| | - E. Jensen
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - T. M. Kubacki
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - E. Cloutis
- Geography Department, University of Winnepeg, 515 Portage Ave, Winnipeg, MB R3B 2E9 Canada
| | - R. Deen
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | - B. L. Ehlmann
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91101 USA
| | - E. Lakdawalla
- The Planetary Society, 60 S Los Robles, Pasadena, CA 91101 USA
| | - R. Sullivan
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14850 USA
| | - A. Winhold
- School of Earth and Space Exploration, Arizona State University, Phoenix, AZ 85287 USA
| | - A. Parkinson
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, 515 Portage Ave, Winnipeg, MB R3B 2E9 Canada
| | - Z. Bailey
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | - J. van Beek
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | - P. Caballo-Perucha
- Joanneum Research Forschungsgesellschaft mbH, Steyrergasse 17, 8010 Graz, Austria
| | - E. Cisneros
- School of Earth and Space Exploration, Arizona State University, Phoenix, AZ 85287 USA
| | - D. Dixon
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - C. Donaldson
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - O. B. Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - J. Kuik
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, 515 Portage Ave, Winnipeg, MB R3B 2E9 Canada
| | - K. Lapo
- Geology Department, Western Washington University, Bellingham, WA 98225 USA
| | - A. Magee
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - M. Merusi
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - J. Mollerup
- Geology Department, Western Washington University, Bellingham, WA 98225 USA
| | - N. Scudder
- Earth, Atmospheric, and Planetary Sciences Department, Purdue University, West Lafayette, IN 47907 USA
| | - C. Seeger
- Geology Department, Western Washington University, Bellingham, WA 98225 USA
| | - E. Stanish
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, 515 Portage Ave, Winnipeg, MB R3B 2E9 Canada
| | - M. Starr
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - M. Thompson
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | - N. Turenne
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, 515 Portage Ave, Winnipeg, MB R3B 2E9 Canada
| | - K. Winchell
- Malin Space Science Systems, San Diego, CA 92121 USA
| |
Collapse
|
13
|
Bell JF, Maki JN, Mehall GL, Ravine MA, Caplinger MA, Bailey ZJ, Brylow S, Schaffner JA, Kinch KM, Madsen MB, Winhold A, Hayes AG, Corlies P, Tate C, Barrington M, Cisneros E, Jensen E, Paris K, Crawford K, Rojas C, Mehall L, Joseph J, Proton JB, Cluff N, Deen RG, Betts B, Cloutis E, Coates AJ, Colaprete A, Edgett KS, Ehlmann BL, Fagents S, Grotzinger JP, Hardgrove C, Herkenhoff KE, Horgan B, Jaumann R, Johnson JR, Lemmon M, Paar G, Caballo-Perucha M, Gupta S, Traxler C, Preusker F, Rice MS, Robinson MS, Schmitz N, Sullivan R, Wolff MJ. The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation. SPACE SCIENCE REVIEWS 2021; 217:24. [PMID: 33612866 PMCID: PMC7883548 DOI: 10.1007/s11214-020-00755-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 05/16/2023]
Abstract
Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 μrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 μrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions.
Collapse
Affiliation(s)
| | | | | | - M. A. Ravine
- Malin Space Science Systems, Inc., San Diego, CA USA
| | | | | | - S. Brylow
- Malin Space Science Systems, Inc., San Diego, CA USA
| | | | | | | | | | | | | | - C. Tate
- Cornell Univ., Ithaca, NY USA
| | | | | | - E. Jensen
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - K. Paris
- Arizona State Univ., Tempe, AZ USA
| | | | - C. Rojas
- Arizona State Univ., Tempe, AZ USA
| | | | | | | | - N. Cluff
- Arizona State Univ., Tempe, AZ USA
| | | | - B. Betts
- The Planetary Society, Pasadena, CA USA
| | | | - A. J. Coates
- Mullard Space Science Laboratory, Univ. College, London, UK
| | - A. Colaprete
- NASA/Ames Research Center, Moffett Field, CA USA
| | - K. S. Edgett
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - B. L. Ehlmann
- JPL/Caltech, Pasadena, CA USA
- Caltech, Pasadena, CA USA
| | | | | | | | | | | | - R. Jaumann
- Inst. of Geological Sciences, Free University Berlin, Berlin, Germany
| | | | - M. Lemmon
- Space Science Inst., Boulder, CO USA
| | - G. Paar
- Joanneum Research, Graz, Austria
| | | | | | | | - F. Preusker
- DLR/German Aerospace Center, Berlin, Germany
| | - M. S. Rice
- Western Washington Univ., Bellingham, WA USA
| | | | | | | | | |
Collapse
|
14
|
Stack KM, Williams NR, Calef F, Sun VZ, Williford KH, Farley KA, Eide S, Flannery D, Hughes C, Jacob SR, Kah LC, Meyen F, Molina A, Nataf CQ, Rice M, Russell P, Scheller E, Seeger CH, Abbey WJ, Adler JB, Amundsen H, Anderson RB, Angel SM, Arana G, Atkins J, Barrington M, Berger T, Borden R, Boring B, Brown A, Carrier BL, Conrad P, Dypvik H, Fagents SA, Gallegos ZE, Garczynski B, Golder K, Gomez F, Goreva Y, Gupta S, Hamran SE, Hicks T, Hinterman ED, Horgan BN, Hurowitz J, Johnson JR, Lasue J, Kronyak RE, Liu Y, Madariaga JM, Mangold N, McClean J, Miklusicak N, Nunes D, Rojas C, Runyon K, Schmitz N, Scudder N, Shaver E, SooHoo J, Spaulding R, Stanish E, Tamppari LK, Tice MM, Turenne N, Willis PA, Yingst RA. Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team. SPACE SCIENCE REVIEWS 2020; 216:127. [PMID: 33568875 DOI: 10.1007/s11214-020-00762-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/09/2020] [Indexed: 05/29/2023]
Abstract
The Mars 2020 Perseverance rover landing site is located within Jezero crater, a ∼ 50 km diameter impact crater interpreted to be a Noachian-aged lake basin inside the western edge of the Isidis impact structure. Jezero hosts remnants of a fluvial delta, inlet and outlet valleys, and infill deposits containing diverse carbonate, mafic, and hydrated minerals. Prior to the launch of the Mars 2020 mission, members of the Science Team collaborated to produce a photogeologic map of the Perseverance landing site in Jezero crater. Mapping was performed at a 1:5000 digital map scale using a 25 cm/pixel High Resolution Imaging Science Experiment (HiRISE) orthoimage mosaic base map and a 1 m/pixel HiRISE stereo digital terrain model. Mapped bedrock and surficial units were distinguished by differences in relative brightness, tone, topography, surface texture, and apparent roughness. Mapped bedrock units are generally consistent with those identified in previously published mapping efforts, but this study's map includes the distribution of surficial deposits and sub-units of the Jezero delta at a higher level of detail than previous studies. This study considers four possible unit correlations to explain the relative age relationships of major units within the map area. Unit correlations include previously published interpretations as well as those that consider more complex interfingering relationships and alternative relative age relationships. The photogeologic map presented here is the foundation for scientific hypothesis development and strategic planning for Perseverance's exploration of Jezero crater.
Collapse
Affiliation(s)
- Kathryn M Stack
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Nathan R Williams
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Fred Calef
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Vivian Z Sun
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Kenneth H Williford
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | | | - David Flannery
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Cory Hughes
- Western Washington University, Bellingham, WA, USA
| | | | - Linda C Kah
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Antonio Molina
- Centro de Astrobiología, CAB (INTA, CSIC), Madrid, Spain
| | | | - Melissa Rice
- Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Eva Scheller
- California Institute of Technology, Pasadena, CA, USA
| | | | - William J Abbey
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | - Hans Amundsen
- Earth and Planetary Exploration Services, Berlin, Germany
| | | | | | - Gorka Arana
- University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - James Atkins
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Tor Berger
- Forsvarets forskingsinstitutt, Kjeller, Norway
| | - Rose Borden
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Beau Boring
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Pamela Conrad
- Carnegie Institution for Science, Washington, D.C., USA
| | | | | | | | | | - Keenan Golder
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Felipe Gomez
- Centro de Astrobiología, CAB (INTA, CSIC), Madrid, Spain
| | - Yulia Goreva
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | | | - Taryn Hicks
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | | | - Joel Hurowitz
- State University of New York-Stony Brook, Stony Brook, NY, USA
| | | | - Jeremie Lasue
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, Paul Sabatier, Toulouse, France
| | - Rachel E Kronyak
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | - Nicolas Mangold
- Laboratoire Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, Nantes, France
| | | | | | - Daniel Nunes
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | - Kirby Runyon
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Nicole Schmitz
- Deutsches Zentrum Fuer Luft- und Raumfahrt E.V., Cologne, Germany
| | | | - Emily Shaver
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Jason SooHoo
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Evan Stanish
- University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Leslie K Tamppari
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | | | - Peter A Willis
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | |
Collapse
|
15
|
Fraeman AA, Edgar LA, Rampe EB, Thompson LM, Frydenvang J, Fedo CM, Catalano JG, Dietrich WE, Gabriel TSJ, Vasavada AR, Grotzinger JP, L'Haridon J, Mangold N, Sun VZ, House CH, Bryk AB, Hardgrove C, Czarnecki S, Stack KM, Morris RV, Arvidson RE, Banham SG, Bennett KA, Bridges JC, Edwards CS, Fischer WW, Fox VK, Gupta S, Horgan BHN, Jacob SR, Johnson JR, Johnson SS, Rubin DM, Salvatore MR, Schwenzer SP, Siebach KL, Stein NT, Turner SMR, Wellington DF, Wiens RC, Williams AJ, David G, Wong GM. Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of Curiosity's Exploration Campaign. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2020JE006527. [PMID: 33520561 PMCID: PMC7818385 DOI: 10.1029/2020je006527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 05/13/2023]
Abstract
This paper provides an overview of the Curiosity rover's exploration at Vera Rubin ridge (VRR) and summarizes the science results. VRR is a distinct geomorphic feature on lower Aeolis Mons (informally known as Mount Sharp) that was identified in orbital data based on its distinct texture, topographic expression, and association with a hematite spectral signature. Curiosity conducted extensive remote sensing observations, acquired data on dozens of contact science targets, and drilled three outcrop samples from the ridge, as well as one outcrop sample immediately below the ridge. Our observations indicate that strata composing VRR were deposited in a predominantly lacustrine setting and are part of the Murray formation. The rocks within the ridge are chemically in family with underlying Murray formation strata. Red hematite is dispersed throughout much of the VRR bedrock, and this is the source of the orbital spectral detection. Gray hematite is also present in isolated, gray-colored patches concentrated toward the upper elevations of VRR, and these gray patches also contain small, dark Fe-rich nodules. We propose that VRR formed when diagenetic event(s) preferentially hardened rocks, which were subsequently eroded into a ridge by wind. Diagenesis also led to enhanced crystallization and/or cementation that deepened the ferric-related spectral absorptions on the ridge, which helped make them readily distinguishable from orbit. Results add to existing evidence of protracted aqueous environments at Gale crater and give new insight into how diagenesis shaped Mars' rock record.
Collapse
Affiliation(s)
- A. A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - L. A. Edgar
- U.S. Geological Survey Astrogeology Science CenterFlagstaffAZUSA
| | | | - L. M. Thompson
- Planetary and Space Science CentreUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - J. Frydenvang
- Global InstituteUniversity of CopenhagenCopenhagenDenmark
| | - C. M. Fedo
- Department of Earth and Planetary SciencesUniversity of Tennessee, KnoxvilleKnoxvilleTNUSA
| | - J. G. Catalano
- Department of Earth and Planetary SciencesWashington University in St. LouisSt. LouisMOUSA
| | - W. E. Dietrich
- Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyCAUSA
| | - T. S. J. Gabriel
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - A. R. Vasavada
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. P. Grotzinger
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. L'Haridon
- Laboratoire de Planétologie et Géodynamique de Nantes, UMR6112 CNRSUniversité de Nantes, Université d'AngersNantesFrance
| | - N. Mangold
- Laboratoire de Planétologie et Géodynamique de Nantes, UMR6112 CNRSUniversité de Nantes, Université d'AngersNantesFrance
| | - V. Z. Sun
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - C. H. House
- Department of GeosciencesPennsylvania State UniversityUniversity ParkPAUSA
| | - A. B. Bryk
- Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyCAUSA
| | - C. Hardgrove
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - S. Czarnecki
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - K. M. Stack
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - R. E. Arvidson
- Department of Earth and Planetary SciencesWashington University in St. LouisSt. LouisMOUSA
| | - S. G. Banham
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| | - K. A. Bennett
- U.S. Geological Survey Astrogeology Science CenterFlagstaffAZUSA
| | - J. C. Bridges
- Space Research Centre, School of Physics and AstronomyUniversity of LeicesterLeicesterUK
| | - C. S. Edwards
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| | - W. W. Fischer
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - V. K. Fox
- Department of Earth SciencesUniversity of Minnesota, Twin CitiesMinneapolisMNUSA
| | - S. Gupta
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| | - B. H. N. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | - S. R. Jacob
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - J. R. Johnson
- Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - S. S. Johnson
- Department of Biology, Science, Technology, and International Affairs ProgramGeorgetown UniversityWashingtonDCUSA
| | - D. M. Rubin
- Department of Earth and Planetary SciencesUniversity of CaliforniaSanta CruzCAUSA
| | - M. R. Salvatore
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| | | | - K. L. Siebach
- Department of Earth, Environmental, and Planetary SciencesRice UniversityHoustonTXUSA
| | - N. T. Stein
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - D. F. Wellington
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - R. C. Wiens
- Los Alamos National LaboratoryLos AlamosNMUSA
| | - A. J. Williams
- Department of Geological SciencesUniversity of FloridaGainesvilleFLUSA
| | - G. David
- L'Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| | - G. M. Wong
- Department of GeosciencesPennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
16
|
Edgett KS, Banham SG, Bennett KA, Edgar LA, Edwards CS, Fairén AG, Fedo CM, Fey DM, Garvin JB, Grotzinger JP, Gupta S, Henderson MJ, House CH, Mangold N, McLennan SM, Newsom HE, Rowland SK, Siebach KL, Thompson L, VanBommel SJ, Wiens RC, Williams RME, Yingst RA. Extraformational sediment recycling on Mars. GEOSPHERE (BOULDER, COLO.) 2020; 16:1508-1537. [PMID: 33304202 PMCID: PMC7116455 DOI: 10.1130/ges02244.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extraformational sediment recycling (old sedimentary rock to new sedimentary rock) is a fundamental aspect of Earth's geological record; tectonism exposes sedimentary rock, whereupon it is weathered and eroded to form new sediment that later becomes lithified. On Mars, tectonism has been minor, but two decades of orbiter instrument-based studies show that some sedimentary rocks previously buried to depths of kilometers have been exposed, by erosion, at the surface. Four locations in Gale crater, explored using the National Aeronautics and Space Administration's Curiosity rover, exhibit sedimentary lithoclasts in sedimentary rock: At Marias Pass, they are mudstone fragments in sandstone derived from strata below an erosional unconformity; at Bimbe, they are pebble-sized sandstone and, possibly, laminated, intraclast-bearing, chemical (calcium sulfate) sediment fragments in conglomerates; at Cooperstown, they are pebble-sized fragments of sandstone within coarse sandstone; at Dingo Gap, they are cobble-sized, stratified sandstone fragments in conglomerate derived from an immediately underlying sandstone. Mars orbiter images show lithified sediment fans at the termini of canyons that incise sedimentary rock in Gale crater; these, too, consist of recycled, extraformational sediment. The recycled sediments in Gale crater are compositionally immature, indicating the dominance of physical weathering processes during the second known cycle. The observations at Marias Pass indicate that sediment eroded and removed from craters such as Gale crater during the Martian Hesperian Period could have been recycled to form new rock elsewhere. Our results permit prediction that lithified deltaic sediments at the Perseverance (landing in 2021) and Rosalind Franklin (landing in 2023) rover field sites could contain extraformational recycled sediment.
Collapse
Affiliation(s)
- Kenneth S Edgett
- Malin Space Science Systems, P.O. Box 910148, San Diego, California 92191-0148, USA
| | - Steven G Banham
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Kristen A Bennett
- U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA
| | - Lauren A Edgar
- U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA
| | - Christopher S Edwards
- Department of Astronomy and Planetary Science, Northern Arizona University, P.O. Box 6010, Flagstaff, Arizona 86011, USA
| | - Alberto G Fairén
- Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), M-108, km 4, 28850 Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, New York 14853, USA
| | - Christopher M Fedo
- Department of Earth and Planetary Sciences, The University of Tennessee, 1621 Cumberland Avenue, 602 Strong Hall, Knoxville, Tennessee 37996-1410, USA
| | - Deirdra M Fey
- Malin Space Science Systems, P.O. Box 910148, San Diego, California 92191-0148, USA
| | - James B Garvin
- National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Mail Code 600, Greenbelt, Maryland 20771, USA
| | - John P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - Sanjeev Gupta
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Marie J Henderson
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
| | - Christopher H House
- Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nicolas Mangold
- Laboratoire de Planétologie et Géodynamique de Nantes, CNRS UMR 6112, Université de Nantes, Université Angers, 44300 Nantes, France
| | - Scott M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100, USA
| | - Horton E Newsom
- Institute of Meteoritics and Department of Earth and Planetary Sciences, 1 University of New Mexico, MSC03-2050, Albuquerque, New Mexico 87131, USA
| | - Scott K Rowland
- Department of Earth Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822, USA
| | - Kirsten L Siebach
- Department of Earth, Environmental and Planetary Sciences, Rice University, MS-126, 6100 Main Street, Houston, Texas 77005, USA
| | - Lucy Thompson
- Department of Earth Sciences, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Scott J VanBommel
- Department of Earth and Planetary Sciences, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA
| | - Roger C Wiens
- MS C331, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Rebecca M E Williams
- Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, Arizona 85719-2395, USA
| | - R Aileen Yingst
- Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, Arizona 85719-2395, USA
| |
Collapse
|
17
|
Maki JN, Gruel D, McKinney C, Ravine MA, Morales M, Lee D, Willson R, Copley-Woods D, Valvo M, Goodsall T, McGuire J, Sellar RG, Schaffner JA, Caplinger MA, Shamah JM, Johnson AE, Ansari H, Singh K, Litwin T, Deen R, Culver A, Ruoff N, Petrizzo D, Kessler D, Basset C, Estlin T, Alibay F, Nelessen A, Algermissen S. The Mars 2020 Engineering Cameras and Microphone on the Perseverance Rover: A Next-Generation Imaging System for Mars Exploration. SPACE SCIENCE REVIEWS 2020; 216:137. [PMID: 33268910 PMCID: PMC7686239 DOI: 10.1007/s11214-020-00765-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/09/2020] [Indexed: 05/16/2023]
Abstract
The Mars 2020 Perseverance rover is equipped with a next-generation engineering camera imaging system that represents an upgrade over previous Mars rover missions. These upgrades will improve the operational capabilities of the rover with an emphasis on drive planning, robotic arm operation, instrument operations, sample caching activities, and documentation of key events during entry, descent, and landing (EDL). There are a total of 16 cameras in the Perseverance engineering imaging system, including 9 cameras for surface operations and 7 cameras for EDL documentation. There are 3 types of cameras designed for surface operations: Navigation cameras (Navcams, quantity 2), Hazard Avoidance Cameras (Hazcams, quantity 6), and Cachecam (quantity 1). The Navcams will acquire color stereo images of the surface with a 96 ∘ × 73 ∘ field of view at 0.33 mrad/pixel. The Hazcams will acquire color stereo images of the surface with a 136 ∘ × 102 ∘ at 0.46 mrad/pixel. The Cachecam, a new camera type, will acquire images of Martian material inside the sample tubes during caching operations at a spatial scale of 12.5 microns/pixel. There are 5 types of EDL documentation cameras: The Parachute Uplook Cameras (PUCs, quantity 3), the Descent stage Downlook Camera (DDC, quantity 1), the Rover Uplook Camera (RUC, quantity 1), the Rover Descent Camera (RDC, quantity 1), and the Lander Vision System (LVS) Camera (LCAM, quantity 1). The PUCs are mounted on the parachute support structure and will acquire video of the parachute deployment event as part of a system to characterize parachute performance. The DDC is attached to the descent stage and pointed downward, it will characterize vehicle dynamics by capturing video of the rover as it descends from the skycrane. The rover-mounted RUC, attached to the rover and looking upward, will capture similar video of the skycrane from the vantage point of the rover and will also acquire video of the descent stage flyaway event. The RDC, attached to the rover and looking downward, will document plume dynamics by imaging the Martian surface before, during, and after rover touchdown. The LCAM, mounted to the bottom of the rover chassis and pointed downward, will acquire 90 ∘ × 90 ∘ FOV images during the parachute descent phase of EDL as input to an onboard map localization by the Lander Vision System (LVS). The rover also carries a microphone, mounted externally on the rover chassis, to capture acoustic signatures during and after EDL. The Perseverance rover launched from Earth on July 30th, 2020, and touchdown on Mars is scheduled for February 18th, 2021.
Collapse
Affiliation(s)
- J. N. Maki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - D. Gruel
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - C. McKinney
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | - M. Morales
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - D. Lee
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - R. Willson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - D. Copley-Woods
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - M. Valvo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - T. Goodsall
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - J. McGuire
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - R. G. Sellar
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | | | - A. E. Johnson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - H. Ansari
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - K. Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - T. Litwin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - R. Deen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - A. Culver
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - N. Ruoff
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - D. Petrizzo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - D. Kessler
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - C. Basset
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - T. Estlin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - F. Alibay
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - A. Nelessen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - S. Algermissen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
18
|
Heydari E, Schroeder JF, Calef FJ, Van Beek J, Rowland SK, Parker TJ, Fairén AG. Deposits from giant floods in Gale crater and their implications for the climate of early Mars. Sci Rep 2020; 10:19099. [PMID: 33154453 PMCID: PMC7645609 DOI: 10.1038/s41598-020-75665-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
This study reports in-situ sedimentologic evidence of giant floods in Gale crater, Mars, during the Noachian Period. Features indicative of floods are a series of symmetrical, 10 m-high gravel ridges that occur in the Hummocky Plains Unit (HPU). Their regular spacing, internal sedimentary structures, and bedload transport of fragments as large as 20 cm suggest that these ridges are antidunes: a type of sedimentary structure that forms under very strong flows. Their 150 m wavelength indicates that the north-flowing water that deposited them was at least 24 m deep and had a minimum velocity of 10 m/s. Floods waned rapidly, eroding antidune crests, and re-deposited removed sediments as patches on the up-flow limbs and trough areas between these ridges forming the Striated Unit (SU). Each patch of the SU is 50-200 m wide and long and consists of 5-10 m of south-dipping layers. The strike and dip of the SU layers mimic the attitude of the flank of the antidune on which they were deposited. The most likely mechanism that generated flood waters of this magnitude on a planet whose present-day average temperature is - 60 °C was the sudden heat produced by a large impact. The event vaporized frozen reservoirs of water and injected large amounts of CO2 and CH4 from their solid phases into the atmosphere. It temporarily interrupted a cold and dry climate and generated a warm and wet period. Torrential rainfall occurred planetwide some of which entered Gale crater and combined with water roaring down from Mt. Sharp to cause gigantic flash floods that deposited the SU and the HPU on Aeolis Palus. The warm and wet climate persisted even after the flooding ended, but its duration cannot be determined by our study.
Collapse
Affiliation(s)
- E Heydari
- Department of Physics, Atmospheric Sciences, and Geoscience, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA.
| | - J F Schroeder
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - F J Calef
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - J Van Beek
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - S K Rowland
- Department of Earth Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - T J Parker
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - A G Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
Jacob SR, Wellington DF, Bell JF, Achilles C, Fraeman AA, Horgan B, Johnson JR, Maurice S, Peters GH, Rampe EB, Thompson LM, Wiens RC. Spectral, Compositional, and Physical Properties of the Upper Murray Formation and Vera Rubin Ridge, Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006290. [PMID: 33282613 PMCID: PMC7685153 DOI: 10.1029/2019je006290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 05/20/2023]
Abstract
During 2018 and 2019, the Mars Science Laboratory Curiosity rover investigated the chemistry, morphology, and stratigraphy of Vera Rubin ridge (VRR). Using orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars, scientists attributed the strong 860 nm signal associated with VRR to the presence of red crystalline hematite. However, Mastcam multispectral data and CheMin X-ray diffraction (XRD) measurements show that the depth of the 860 nm absorption is negatively correlated with the abundance of red crystalline hematite, suggesting that other mineralogical or physical parameters are also controlling the 860 nm absorption. Here, we examine Mastcam and ChemCam passive reflectance spectra from VRR and other locations to link the depth, position, and presence or absence of iron-related mineralogic absorption features to the XRD-derived rock mineralogy. Correlating CheMin mineralogy to spectral parameters showed that the ~860 nm absorption has a strong positive correlation with the abundance of ferric phyllosilicates. New laboratory reflectance measurements of powdered mineral mixtures can reproduce trends found in Gale crater. We hypothesize that variations in the 860 nm absorption feature in Mastcam and ChemCam observations of VRR materials are a result of three factors: (1) variations in ferric phyllosilicate abundance due to its ~800-1,000 nm absorption; (2) variations in clinopyroxene abundance because of its band maximum at ~860 nm; and (3) the presence of red crystalline hematite because of its absorption centered at 860 nm. We also show that relatively small changes in Ca-sulfate abundance is one potential cause of the erosional resistance and geomorphic expression of VRR.
Collapse
Affiliation(s)
- S. R. Jacob
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - D. F. Wellington
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - J. F. Bell
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - C. Achilles
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| | - A. A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - B. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | - J. R. Johnson
- Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - S. Maurice
- Institut de Recherche en Astrophysique et PlanetologieToulouseFrance
| | - G. H. Peters
- NASA Neil A. Armstrong Flight Research CenterEdwardsCAUSA
| | | | - L. M. Thompson
- Planetary and Space Science CentreUniversity of New BrunswickCanada
| | - R. C. Wiens
- Los Alamos National LaboratoryLos AlamosNMUSA
| |
Collapse
|
20
|
Wiens RC, Edgett KS, Stack KM, Dietrich WE, Bryk AB, Mangold N, Bedford C, Gasda P, Fairen A, Thompson L, Johnson J, Gasnault O, Clegg S, Cousin A, Forni O, Frydenvang J, Lanza N, Maurice S, Newsom H, Ollila A, Payré V, Rivera-Hernandez F, Vasavada A. Origin and composition of three heterolithic boulder- and cobble-bearing deposits overlying the Murray and Stimson formations, Gale Crater, Mars. ICARUS 2020; 350:113897. [PMID: 32606479 PMCID: PMC7326610 DOI: 10.1016/j.icarus.2020.113897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heterolithic, boulder-containing, pebble-strewn surfaces occur along the lower slopes of Aeolis Mons ("Mt. Sharp") in Gale crater, Mars. They were observed in HiRISE images acquired from orbit prior to the landing of the Curiosity rover. The rover was used to investigate three of these units named Blackfoot, Brandberg, and Bimbe between sols 1099 and 1410. These unconsolidated units overlie the lower Murray formation that forms the base of Mt. Sharp, and consist of pebbles, cobbles and boulders. Blackfoot also overlies portions of the Stimson formation, which consists of eolian sandstone that is understood to significantly postdate the dominantly lacustrine deposition of the Murray formation. Blackfoot is elliptical in shape (62 × 26 m), while Brandberg is nearly circular (50 × 55 m), and Bimbe is irregular in shape, covering about ten times the area of the other two. The largest boulders are 1.5-2.5 m in size and are interpreted to be sandstones. As seen from orbit, some boulders are light-toned and others are dark-toned. Rover-based observations show that both have the same gray appearance from the ground and their apparently different albedos in orbital observations result from relatively flat sky-facing surfaces. Chemical observations show that two clasts of fine sandstone at Bimbe have similar compositions and morphologies to nine ChemCam targets observed early in the mission, near Yellowknife Bay, including the Bathurst Inlet outcrop, and to at least one target (Pyramid Hills, Sol 692) and possibly a cap rock unit just north of Hidden Valley, locations that are several kilometers apart in distance and tens of meters in elevation. These findings may suggest the earlier existence of draping strata, like the Stimson formation, that would have overlain the current surface from Bimbe to Yellowknife Bay. Compositionally these extinct strata could be related to the Siccar Point group to which the Stimson formation belongs. Dark, massive sandstone blocks at Bimbe are chemically distinct from blocks of similar morphology at Bradbury Rise, except for a single float block, Oscar (Sol 516). Conglomerates observed along a low, sinuous ridge at Bimbe consist of matrix and clasts with compositions similar to the Stimson formation, suggesting that stream beds likely existed nearly contemporaneously with the dunes that eventually formed the Stimson formation, or that they had the same source material. In either case, they represent a later pulse of fluvial activity relative to the lakes associated with the Murray formation. These three units may be local remnants of infilled impact craters (especially circular-shaped Brandberg), decayed buttes, patches of unconsolidated fluvial deposits, or residual mass-movement debris. Their incorporation of Stimson and Murray rocks, the lack of lithification, and appearance of being erosional remnants suggest that they record erosion and deposition events that post-date the exposure of the Stimson formation.
Collapse
Affiliation(s)
| | | | - Kathryn M. Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - William E. Dietrich
- Department of Earth and Planetary Science, University of California–Berkeley, Berkeley, CA, USA
| | - Alexander B. Bryk
- Department of Earth and Planetary Science, University of California–Berkeley, Berkeley, CA, USA
| | - Nicolas Mangold
- Laboratoire de Planétologie et Géodynamique, UMR 6112 CNRS, Université Nantes, Université d’Angers, Nantes, France
| | | | | | - Alberto Fairen
- Centro de Astrobiologia (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, USA
| | - Lucy Thompson
- Planetary and Space Science Centre, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Jeff Johnson
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Olivier Gasnault
- Université de Toulouse, UPS-OMP, Toulouse, France
- Institut de Recherche en Astrophysique et Planéetologie, CNRS, UMR 5277, Toulouse, France
| | - Sam Clegg
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Agnes Cousin
- Université de Toulouse, UPS-OMP, Toulouse, France
- Institut de Recherche en Astrophysique et Planéetologie, CNRS, UMR 5277, Toulouse, France
| | - Olivier Forni
- Université de Toulouse, UPS-OMP, Toulouse, France
- Institut de Recherche en Astrophysique et Planéetologie, CNRS, UMR 5277, Toulouse, France
| | | | - Nina Lanza
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Sylvestre Maurice
- Université de Toulouse, UPS-OMP, Toulouse, France
- Institut de Recherche en Astrophysique et Planéetologie, CNRS, UMR 5277, Toulouse, France
| | - Horton Newsom
- Institute of Meteoritics, University of New Mexico, Albuquerque, NM, USA
| | - Ann Ollila
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Valerie Payré
- Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX, USA
| | | | - Ashwin Vasavada
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
21
|
Horgan BHN, Johnson JR, Fraeman AA, Rice MS, Seeger C, Bell JF, Bennett KA, Cloutis EA, Edgar LA, Frydenvang J, Grotzinger JP, L'Haridon J, Jacob SR, Mangold N, Rampe EB, Rivera‐Hernandez F, Sun VZ, Thompson LM, Wellington D. Diagenesis of Vera Rubin Ridge, Gale Crater, Mars, From Mastcam Multispectral Images. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006322. [PMID: 33282614 PMCID: PMC7685111 DOI: 10.1029/2019je006322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/03/2020] [Accepted: 09/19/2020] [Indexed: 05/13/2023]
Abstract
Images from the Mars Science Laboratory (MSL) mission of lacustrine sedimentary rocks of Vera Rubin ridge on "Mt. Sharp" in Gale crater, Mars, have shown stark color variations from red to purple to gray. These color differences crosscut stratigraphy and are likely due to diagenetic alteration of the sediments after deposition. However, the chemistry and timing of these fluid interactions is unclear. Determining how diagenetic processes may have modified chemical and mineralogical signatures of ancient Martian environments is critical for understanding the past habitability of Mars and achieving the goals of the MSL mission. Here we use visible/near-infrared spectra from Mastcam and ChemCam to determine the mineralogical origins of color variations in the ridge. Color variations are consistent with changes in spectral properties related to the crystallinity, grain size, and texture of hematite. Coarse-grained gray hematite spectrally dominates in the gray patches and is present in the purple areas, while nanophase and fine-grained red crystalline hematite are present and spectrally dominate in the red and purple areas. We hypothesize that these differences were caused by grain-size coarsening of hematite by diagenetic fluids, as observed in terrestrial analogs. In this model, early primary reddening by oxidizing fluids near the surface was followed during or after burial by bleaching to form the gray patches, possibly with limited secondary reddening after exhumation. Diagenetic alteration may have diminished the preservation of biosignatures and changed the composition of the sediments, making it more difficult to interpret how conditions evolved in the paleolake over time.
Collapse
Affiliation(s)
- Briony H. N. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | | | - Abigail A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Melissa S. Rice
- Geology Department, Physics and Astronomy DepartmentWestern Washington UniversityBellinghamWAUSA
| | - Christina Seeger
- Geology Department, Physics and Astronomy DepartmentWestern Washington UniversityBellinghamWAUSA
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - James F. Bell
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | | | | | - Lauren A. Edgar
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZ
| | | | - John P. Grotzinger
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Jonas L'Haridon
- Laboratoire de Planétologie et GéodynamiqueCNRS, Univ Nantes, Univ AngersNantesFrance
| | - Samantha R. Jacob
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - Nicolas Mangold
- Laboratoire de Planétologie et GéodynamiqueCNRS, Univ Nantes, Univ AngersNantesFrance
| | | | | | - Vivian Z. Sun
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Lucy M. Thompson
- Planetary and Space Science CentreUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Danika Wellington
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| |
Collapse
|
22
|
Fraeman AA, Johnson JR, Arvidson RE, Rice MS, Wellington DF, Morris RV, Fox VK, Horgan BHN, Jacob SR, Salvatore MR, Sun VZ, Pinet P, Bell JF, Wiens RC, Vasavada AR. Synergistic Ground and Orbital Observations of Iron Oxides on Mt. Sharp and Vera Rubin Ridge. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006294. [PMID: 33042722 PMCID: PMC7539960 DOI: 10.1029/2019je006294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 05/04/2023]
Abstract
Visible/short-wave infrared spectral data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions attributed to hematite at Vera Rubin ridge (VRR), a topographic feature on northwest Mt. Sharp. The goals of this study are to determine why absorptions caused by ferric iron are strongly visible from orbit at VRR and to improve interpretation of CRISM data throughout lower Mt. Sharp. These goals are achieved by analyzing coordinated CRISM and in situ spectral data along the Curiosity Mars rover's traverse. VRR bedrock within areas that have the deepest ferric absorptions in CRISM data also has the deepest ferric absorptions measured in situ. This suggests strong ferric absorptions are visible from orbit at VRR because of the unique spectral properties of VRR bedrock. Dust and mixing with basaltic sand additionally inhibit the ability to measure ferric absorptions in bedrock stratigraphically below VRR from orbit. There are two implications of these findings: (1) Ferric absorptions in CRISM data initially dismissed as noise could be real, and ferric phases are more widespread in lower Mt. Sharp than previously reported. (2) Patches with the deepest ferric absorptions in CRISM data are, like VRR, reflective of deeper absorptions in the bedrock. One model to explain this spectral variability is late-stage diagenetic fluids that changed the grain size of ferric phases, deepening absorptions. Curiosity's experience highlights the strengths of using CRISM data for spectral absorptions and associated mineral detections and the caveats in using these data for geologic interpretations and strategic path planning tools.
Collapse
Affiliation(s)
- A. A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. R. Johnson
- Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - R. E. Arvidson
- Department of Earth and Planetary SciencesWashington UniversitySt. LouisMOUSA
| | - M. S. Rice
- Geology Department, Physics and Astronomy DepartmentWestern Washington UniversityBellinghamWAUSA
| | - D. F. Wellington
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | | | - V. K. Fox
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - B. H. N. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | - S. R. Jacob
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - M. R. Salvatore
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| | - V. Z. Sun
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - P. Pinet
- Institut de Recherche en Astrophysique et PlanétologieUniversité de Toulouse, CNRS, UPS, CNESToulouseFrance
| | - J. F. Bell
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - R. C. Wiens
- Los Alamos National LaboratoryLos AlamosNMUSA
| | - A. R. Vasavada
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
23
|
Achilles CN, Rampe EB, Downs RT, Bristow TF, Ming DW, Morris RV, Vaniman DT, Blake DF, Yen AS, McAdam AC, Sutter B, Fedo CM, Gwizd S, Thompson LM, Gellert R, Morrison SM, Treiman AH, Crisp JA, Gabriel TSJ, Chipera SJ, Hazen RM, Craig PI, Thorpe MT, Des Marais DJ, Grotzinger JP, Tu VM, Castle N, Downs GW, Peretyazhko TS, Walroth RC, Sarrazin P, Morookian JM. Evidence for Multiple Diagenetic Episodes in Ancient Fluvial-Lacustrine Sedimentary Rocks in Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006295. [PMID: 32999799 PMCID: PMC7507756 DOI: 10.1029/2019je006295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 05/13/2023]
Abstract
The Curiosity rover's exploration of rocks and soils in Gale crater has provided diverse geochemical and mineralogical data sets, underscoring the complex geological history of the region. We report the crystalline, clay mineral, and amorphous phase distributions of four Gale crater rocks from an 80-m stratigraphic interval. The mineralogy of the four samples is strongly influenced by aqueous alteration processes, including variations in water chemistries, redox, pH, and temperature. Localized hydrothermal events are evidenced by gray hematite and maturation of amorphous SiO2 to opal-CT. Low-temperature diagenetic events are associated with fluctuating lake levels, evaporative events, and groundwater infiltration. Among all mudstones analyzed in Gale crater, the diversity in diagenetic processes is primarily captured by the mineralogy and X-ray amorphous chemistry of the drilled rocks. Variations indicate a transition from magnetite to hematite and an increase in matrix-associated sulfates suggesting intensifying influence from oxic, diagenetic fluids upsection. Furthermore, diagenetic fluid pathways are shown to be strongly affected by unconformities and sedimentary transitions, as evidenced by the intensity of alteration inferred from the mineralogy of sediments sampled adjacent to stratigraphic contacts.
Collapse
Affiliation(s)
| | | | - R. T. Downs
- Department of GeosciencesUniversity of ArizonaTucsonAZUSA
| | | | | | | | | | | | - A. S. Yen
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - B. Sutter
- Jacobs at NASA Johnson Space CenterHoustonTXUSA
| | - C. M. Fedo
- Department of Earth and Planetary SciencesUniversity of Tennessee, KnoxvilleKnoxvilleTNUSA
| | - S. Gwizd
- Department of Earth and Planetary SciencesUniversity of Tennessee, KnoxvilleKnoxvilleTNUSA
| | - L. M. Thompson
- Department of Earth SciencesUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - R. Gellert
- Department of PhysicsUniversity of GuelphGuelphOntarioCanada
| | | | | | - J. A. Crisp
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - T. S. J. Gabriel
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | | | - R. M. Hazen
- Carnegie Institute for ScienceWashingtonDCUSA
| | | | | | | | - J. P. Grotzinger
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - V. M. Tu
- Jacobs at NASA Johnson Space CenterHoustonTXUSA
| | - N. Castle
- Planetary Science InstituteTucsonAZUSA
| | - G. W. Downs
- Department of GeosciencesUniversity of ArizonaTucsonAZUSA
| | | | | | | | - J. M. Morookian
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
24
|
Kerner HR, Wagstaff KL, Bue BD, Wellington DF, Jacob S, Horton P, Bell JF, Kwan C, Ben Amor H. Comparison of novelty detection methods for multispectral images in rover-based planetary exploration missions. Data Min Knowl Discov 2020. [DOI: 10.1007/s10618-020-00697-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Science teams for rover-based planetary exploration missions like the Mars Science Laboratory Curiosity rover have limited time for analyzing new data before making decisions about follow-up observations. There is a need for systems that can rapidly and intelligently extract information from planetary instrument datasets and focus attention on the most promising or novel observations. Several novelty detection methods have been explored in prior work for three-channel color images and non-image datasets, but few have considered multispectral or hyperspectral image datasets for the purpose of scientific discovery. We compared the performance of four novelty detection methods—Reed Xiaoli (RX) detectors, principal component analysis (PCA), autoencoders, and generative adversarial networks (GANs)—and the ability of each method to provide explanatory visualizations to help scientists understand and trust predictions made by the system. We show that pixel-wise RX and autoencoders trained with structural similarity (SSIM) loss can detect morphological novelties that are not detected by PCA, GANs, and mean squared error autoencoders, but that the latter methods are better suited for detecting spectral novelties—i.e., the best method for a given setting depends on the type of novelties that are sought. Additionally, we find that autoencoders provide the most useful explanatory visualizations for enabling users to understand and trust model detections, and that existing GAN approaches to novelty detection may be limited in this respect.
Collapse
|
25
|
Comparison of Deep Learning and Conventional Demosaicing Algorithms for Mastcam Images. ELECTRONICS 2019. [DOI: 10.3390/electronics8030308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bayer pattern filters have been used in many commercial digital cameras. In National Aeronautics and Space Administration’s (NASA) mast camera (Mastcam) imaging system, onboard the Mars Science Laboratory (MSL) rover Curiosity, a Bayer pattern filter is being used to capture the RGB (red, green, and blue) color of scenes on Mars. The Mastcam has two cameras: left and right. The right camera has three times better resolution than that of the left. It is well known that demosaicing introduces color and zipper artifacts. Here, we present a comparative study of demosaicing results using conventional and deep learning algorithms. Sixteen left and 15 right Mastcam images were used in our experiments. Due to a lack of ground truth images for Mastcam data from Mars, we compared the various algorithms using a blind image quality assessment model. It was observed that no one algorithm can work the best for all images. In particular, a deep learning-based algorithm worked the best for the right Mastcam images and a conventional algorithm achieved the best results for the left Mastcam images. Moreover, subjective evaluation of five demosaiced Mastcam images was also used to compare the various algorithms.
Collapse
|
26
|
Ehlmann BL, Edgett KS, Sutter B, Achilles CN, Litvak ML, Lapotre MGA, Sullivan R, Fraeman AA, Arvidson RE, Blake DF, Bridges NT, Conrad PG, Cousin A, Downs RT, Gabriel TSJ, Gellert R, Hamilton VE, Hardgrove C, Johnson JR, Kuhn S, Mahaffy PR, Maurice S, McHenry M, Meslin PY, Ming DW, Minitti ME, Morookian JM, Morris RV, O'Connell-Cooper CD, Pinet PC, Rowland SK, Schröder S, Siebach KL, Stein NT, Thompson LM, Vaniman DT, Vasavada AR, Wellington DF, Wiens RC, Yen AS. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2510-2543. [PMID: 29497589 DOI: 10.1002/2016je005225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 05/25/2023]
Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Collapse
|
27
|
Ehlmann BL, Edgett KS, Sutter B, Achilles CN, Litvak ML, Lapotre MGA, Sullivan R, Fraeman AA, Arvidson RE, Blake DF, Bridges NT, Conrad PG, Cousin A, Downs RT, Gabriel TSJ, Gellert R, Hamilton VE, Hardgrove C, Johnson JR, Kuhn S, Mahaffy PR, Maurice S, McHenry M, Meslin P, Ming DW, Minitti ME, Morookian JM, Morris RV, O'Connell‐Cooper CD, Pinet PC, Rowland SK, Schröder S, Siebach KL, Stein NT, Thompson LM, Vaniman DT, Vasavada AR, Wellington DF, Wiens RC, Yen AS. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2510-2543. [PMID: 29497589 PMCID: PMC5815393 DOI: 10.1002/2017je005267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 05/31/2023]
Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Collapse
|