1
|
Alexandropoulou I, Grammatikopoulou MG, Gkouskou KK, Pritsa AA, Vassilakou T, Rigopoulou E, Lindqvist HM, Bogdanos DP. Ceramides in Autoimmune Rheumatic Diseases: Existing Evidence and Therapeutic Considerations for Diet as an Anticeramide Treatment. Nutrients 2023; 15:nu15010229. [PMID: 36615886 PMCID: PMC9824311 DOI: 10.3390/nu15010229] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Autoimmune rheumatic diseases (AIRDs) constitute a set of connective tissue disorders and dysfunctions with akin clinical manifestations and autoantibody responses. AIRD treatment is based on a comprehensive approach, with the primary aim being achieving and attaining disease remission, through the control of inflammation. AIRD therapies have a low target specificity, and this usually propels metabolic disturbances, dyslipidemias and increased cardiovascular risk. Ceramides are implicated in inflammation through several different pathways, many of which sometimes intersect. They serve as signaling molecules for apoptosis, altering immune response and driving endothelial dysfunction and as regulators in the production of other molecules, including sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P). With lipid metabolism being severely altered in AIRD pathology, several studies show that the concentration and variety of ceramides in human tissues is altered in patients with rheumatic diseases compared to controls. As a result, many in vitro and some in vivo (animal) studies research the potential use of ceramides as therapeutic targets in rheumatoid arthritis (RA), ankylosing spondylitis, systemic lupus erythematosus, fibromyalgia syndrome, primary Sjögren's syndrome, systemic sclerosis, myositis, systemic vasculitis and psoriatic arthritis. Furthermore, the majority of ceramide synthesis is diet-centric and, as a result, dietary interventions may alter ceramide concentrations in the blood and affect health. Subsequently, more recently several clinical trials evaluated the possibility of distinct dietary patterns and nutrients to act as anti-ceramide regimes in humans. With nutrition being an important component of AIRD-related complications, the present review details the evidence regarding ceramide levels in patients with AIRDs, the results of anti-ceramide treatments and discusses the possibility of using medical nutritional therapy as a complementary anti-ceramide treatment in rheumatic disease.
Collapse
Affiliation(s)
- Ioanna Alexandropoulou
- Department of Nutritional Sciences & Dietetics, Faculty of Health Sciences, International Hellenic University, Alexander Campus, GR-57400 Thessaloniki, Greece
| | - Maria G. Grammatikopoulou
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Kalliopi K. Gkouskou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, GR-11527 Athens, Greece
| | - Agathi A. Pritsa
- Department of Nutritional Sciences & Dietetics, Faculty of Health Sciences, International Hellenic University, Alexander Campus, GR-57400 Thessaloniki, Greece
| | - Tonia Vassilakou
- Department of Public Health Policy, School of Public Health, University of West Attica, GR-11521 Athens, Greece
| | - Eirini Rigopoulou
- Department of Medicine and Research Laboratory of Internal Medicine, University Hospital of Larissa, Biopolis, GR-41222 Larissa, Greece
| | - Helen M. Lindqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P.O. Box 115, 40530 Gothenburg, Sweden
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
- Correspondence:
| |
Collapse
|
2
|
Savira F, Kompa AR, Kelly DJ, Magaye R, Xiong X, Huang L, Liew D, Reid C, Kaye D, Scullino CV, Pitson SM, Flynn BL, Wang BH. The effect of dihydroceramide desaturase 1 inhibition on endothelial impairment induced by indoxyl sulfate. Vascul Pharmacol 2021; 141:106923. [PMID: 34600152 DOI: 10.1016/j.vph.2021.106923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Protein-bound uremic toxins (PBUTs) have adverse effects on vascular function, which is imperative in the progression of cardiovascular and renal diseases. The role of sphingolipids in PBUT-mediated vasculo-endothelial pathophysiology is unclear. This study assessed the therapeutic potential of dihydroceramide desaturase 1 (Des1) inhibition, the last enzyme involved in de novo ceramide synthesis, to mitigate the vascular effects of the PBUT indoxyl sulfate (IS). Rat aortic rings were isolated and vascular reactivity was assessed in organ bath experiments followed by immunohistochemical analyses. Furthermore, cultured human aortic endothelial cells were assessed for phenotypic and mechanistic changes. Inhibition of Des1 by a selective inhibitor CIN038 (0.1 to 0.3 μM) improved IS-induced impairment of vasorelaxation and modulated immunoreactivity of oxidative stress markers. Des1 inhibition also reversed IS-induced reduction in endothelial cell migration (1.0 μM) by promoting the expression of angiogenic cytokines and reducing inflammatory and oxidative stress markers. These effects were associated with a reduction of TIMP1 and the restoration of Akt phosphorylation. In conclusion, Des1 inhibition improved vascular relaxation and endothelial cell migration impaired by IS overload. Therefore, Des1 may be a suitable intracellular target to mitigate PBUT-induced adverse vascular effects.
Collapse
Affiliation(s)
- Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Andrew R Kompa
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia
| | - Darren J Kelly
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia
| | - Ruth Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Xin Xiong
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Li Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; School of Public Health, Curtin University, Perth, Australia
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Carmen V Scullino
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Stuart M Pitson
- Molecular Signalling Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Bernard L Flynn
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
3
|
Kang J, Feng D, Yang F, Tian X, Han W, Jia H. Comparison of rapamycin and methylprednisolone for treating inflammatory muscle disease in a murine model of experimental autoimmune myositis. Exp Ther Med 2020; 20:219-226. [PMID: 32536994 PMCID: PMC7291653 DOI: 10.3892/etm.2020.8716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/09/2019] [Indexed: 01/03/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune inflammatory muscle diseases. Rapamycin has been shown to ameliorate inflammation and improve muscle function in a mouse model of experimental autoimmune myositis (EAM). In the present study, the therapeutic effect of rapamycin was compared with methylprednisolone (MP) on EAM. Mice were injected with myosin for 10 days to induce EAM and were subsequently treated with rapamycin (1.5 mg/kg), MP (40 mg/kg) or placebo (DMSO) for 14 days. The rapamycin-treated group exhibited significantly decreased severe inflammation and improved muscle strength compared with the MP-treated group. The plasma transforming growth factor-β (TGF-β) concentration in the rapamycin-treated group was significantly higher compared with the placebo group. However, both treatment groups exhibited significantly lower plasma interleukin-10 levels compared with the placebo group. Moreover, splenic regulatory T cell frequency in both the rapamycin- and MP-treated animals was significantly lower than that in the animals of the placebo group. Rapamycin showed better immune suppressive effects than MP in this model of EAM, and these effects were likely to be mediated by the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Juan Kang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China
| | - Dongyun Feng
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China
| | - Feng Yang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaojia Tian
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China
| | - Wenjuan Han
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China
| | - Hongge Jia
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xincheng, Xi'an, Shaanxi 710032, P.R. China.,Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518034, P.R. China
| |
Collapse
|
4
|
Natoli TA, Modur V, Ibraghimov-Beskrovnaya O. Glycosphingolipid metabolism and polycystic kidney disease. Cell Signal 2020; 69:109526. [PMID: 31911181 DOI: 10.1016/j.cellsig.2020.109526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
Sphingolipids and glycosphingolipids are classes of structurally and functionally important lipids that regulate multiple cellular processes, including membrane organization, proliferation, cell cycle regulation, apoptosis, transport, migration, and inflammatory signalling pathways. Imbalances in sphingolipid levels or subcellular localization result in dysregulated cellular processes and lead to the development and progression of multiple disorders, including polycystic kidney disease. This review will describe metabolic pathways of glycosphingolipids with a focus on the evidence linking glycosphingolipid mediated regulation of cell signalling, lipid microdomains, cilia, and polycystic kidney disease. We will discuss molecular mechanisms of glycosphingolipid dysregulation and their impact on cystogenesis. We will further highlight how modulation of sphingolipid metabolism can be translated into new approaches for the treatment of polycystic kidney disease and describe current clinical studies with glucosylceramide synthase inhibitors in Autosomal Dominant Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Thomas A Natoli
- Rare and Neurological Disease Research, Sanofi-Genzyme, 49 New York Ave., Framingham, MA 01701, USA
| | - Vijay Modur
- Rare Disease Development, Sanofi-Genzyme, 50 Binney St., Cambridge, MA 02142, USA
| | | |
Collapse
|
5
|
Eberhardt W, Nasrullah U, Pfeilschifter J. Activation of renal profibrotic TGFβ controlled signaling cascades by calcineurin and mTOR inhibitors. Cell Signal 2018; 52:1-11. [PMID: 30145216 DOI: 10.1016/j.cellsig.2018.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
The calcineurin inhibitors (CNI) cyclosporine A (CsA) and tacrolimus represent potent immunosuppressive agents frequently used for solid organ transplantation and treatment of autoimmune disorders. Despite of their immense therapeutic benefits, residual fibrosis mainly in the kidney represents a common side effect of long-term therapy with CNI. Regardless of the immunosuppressive action, an increasing body of evidence implicates that a drug-induced increase in TGFβ and subsequent activation of TGFβ-initiated signaling pathways is closely associated with the development and progression of CNI-induced nephropathy. Mechanistically, an increase in reactive oxygen species (ROS) generation due to drug-induced changes in the intracellular redox homeostasis functions as an important trigger of the profibrotic signaling cascades activated under therapy with CNI. Although, inhibitors of the mechanistic target of rapamycin (mTOR) kinase have firmly been established as alternative compounds with a lower nephrotoxic potential, an activation of fibrogenic signaling cascades has been reported for these drugs as well. This review will comprehensively summarize recent advances in the understanding of profibrotic signaling events modulated by these widely used compounds with a specific focus put on mechanisms occurring independent of their respective immunosuppressive action. Herein, the impact of redox modulation, the activation of canonical TGFβ and non-Smad pathways and modulation of autophagy by both classes of immunosuppressive drugs will be highlighted and discussed in a broader perspective. The comprehensive knowledge of profibrotic signaling events specifically accompanying the immunomodulatory activity of these widely used drugs is needed for a reliable benefit-risk assessment under therapeutic regimens.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Pharmazentrum frankfurt/ZAFES, Universitätsklinikum und Goethe-Universität, Frankfurt am Main, Germany.
| | - Usman Nasrullah
- Pharmazentrum frankfurt/ZAFES, Universitätsklinikum und Goethe-Universität, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum frankfurt/ZAFES, Universitätsklinikum und Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Sphingomyelin phosphodiesterase 1 (SMPD1) mediates the attenuation of myocardial infarction-induced cardiac fibrosis by astaxanthin. Biochem Biophys Res Commun 2018; 503:637-643. [PMID: 29906461 DOI: 10.1016/j.bbrc.2018.06.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Uncontrolled cardiac fibrosis following myocardial infarction (MI) is a critical pathological change leading to heart failure. Current pharmacotherapies are limited by unsatisfactory efficacy and undesired systemic side effects. Astaxanthin (ASX) is a natural carotenoid with strong antioxidant and anti-inflammatory activities. The effects of ASX on MI-induced cardiac fibrosis and the underlying mechanisms remain largely unknown. In this study, after the establishment of MI model, mice were administrated with ASX (200 mg/kg⋅d) for 4 weeks. We found that ASX treatment attenuated cardiac fibrosis and improved heart function following MI, as evidenced by reduced collagen I/III ratio, hydroxyproline content and left ventricular end diastolic pressure (LVEDP). Lipidomic analysis revealed the overaccumulation of myocardial ceramides in mice with cardiac fibrosis, which was normalized by ASX treatment. Molecular docking analysis showed that ASX produced a tight fit in the pocket of sphingomyelin phosphodiesterase 1 (SMPD1), a key enzyme in the production of ceramides. Western blot analysis confirmed the significant inhibition of SMPD1 expression by ASX. Furthermore, MI-induced overexpression of transforming growth factor β1 (TGF-β1) and phosphorylated SMAD2/3 were attenuated by ASX administration. SMPD1 knockout (KO) abrogated the beneficial effect of ASX. Taken together, our results suggest that the cardioprotective effects of ASX are mediated by SMPD1 through the indirection inhibition of TGF- β1/SMAD signaling cascade.
Collapse
|