1
|
Csepregi K, Rácz A, Czégény G, Hideg É. Possible lessons of a model experiment: To what extent can UV activate the production of leaf phenolics in indoor plant cultivation? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109333. [PMID: 39608338 DOI: 10.1016/j.plaphy.2024.109333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Tobacco (Nicotiana tabacum L.) plants were grown outdoors (N°46.07, E°18.18) under either natural or UV-deprived sunlight for 25 days in the summer. High PAR resulted in high polyphenol content, which was selectively affected by solar UV-A and UV-B irradiation. Solar UV-A irradiation increased anthocyanins, but not flavonoids, in the epidermis, and this additional protection resulted in higher photochemical yields and lower NPQ. The simultaneous presence of UV-B overrode the effects of UV-A, increased epidermal flavonoids, and decreased anthocyanins. Leaves grown in full sunlight had the same photochemical yields of NPQ as those grown under a UV-excluding filter. A combination of these effects can falsely dismiss the effects of UV-B on outdoor photosynthesis. Phenolic acid content, corresponding to approximately 80% of phenolic compounds, did not depend on solar UV, and total flavonoids increased under full solar UV irradiation, but not under UV-A only. The polyphenol content in outdoor leaves also served as a reference point for an indoor experiment, which showed that even a short, 4-day exposure of low PAR grown plants to UV from an artificial source increased the amount of some, although not all, components close to or even above outdoor levels. In indoor leaves, a selective increase in quercetin glycosides (to 62-85% of outdoor levels) supports both enzymatic and non-enzymatic antioxidant functions, and the increase in crypto- and neochlorogenic acids (to 76% and 117% of outdoor levels, respectively) suggests a redistribution among biosynthesis pathways. These results demonstrate the potential and efficiency of cultivation systems without sunlight.
Collapse
Affiliation(s)
| | - Arnold Rácz
- Department of Plant Biology, University of Pécs, Hungary
| | - Gyula Czégény
- Department of Plant Biology, University of Pécs, Hungary
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Hungary.
| |
Collapse
|
2
|
Gulyás Z, Székely A, Kulman K, Kocsy G. Light-Dependent Regulatory Interactions between the Redox System and miRNAs and Their Biochemical and Physiological Effects in Plants. Int J Mol Sci 2023; 24:8323. [PMID: 37176028 PMCID: PMC10179207 DOI: 10.3390/ijms24098323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Light intensity and spectrum play a major role in the regulation of the growth, development, and stress response of plants. Changes in the light conditions affect the formation of reactive oxygen species, the activity of the antioxidants, and, consequently, the redox environment in the plant tissues. Many metabolic processes, thus the biogenesis and function of miRNAs, are redox-responsive. The miRNAs, in turn, can modulate various components of the redox system, and this process is also associated with the alteration in the intensity and spectrum of the light. In this review, we would like to summarise the possible regulatory mechanisms by which the alterations in the light conditions can influence miRNAs in a redox-dependent manner. Daily and seasonal fluctuations in the intensity and spectral composition of the light can affect the expression of miRNAs, which can fine-tune the various physiological and biochemical processes due to their effect on their target genes. The interactions between the redox system and miRNAs may be modulated by light conditions, and the proposed function of this regulatory network and its effect on the various biochemical and physiological processes will be introduced in plants.
Collapse
Affiliation(s)
- Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| | - András Székely
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kitti Kulman
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| |
Collapse
|
3
|
Griffin JHC, Toledo-Ortiz G. Plant photoreceptors and their signalling components in chloroplastic anterograde and retrograde communication. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7126-7138. [PMID: 35640572 PMCID: PMC9675593 DOI: 10.1093/jxb/erac220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/18/2022] [Indexed: 05/27/2023]
Abstract
The red phytochrome and blue cryptochrome plant photoreceptors play essential roles in promoting genome-wide changes in nuclear and chloroplastic gene expression for photomorphogenesis, plastid development, and greening. While their importance in anterograde signalling has been long recognized, the molecular mechanisms involved remain under active investigation. More recently, the intertwining of the light signalling cascades with the retrograde signals for the optimization of chloroplast functions has been acknowledged. Advances in the field support the participation of phytochromes, cryptochromes, and key light-modulated transcription factors, including HY5 and the PIFs, in the regulation of chloroplastic biochemical pathways that produce retrograde signals, including the tetrapyrroles and the chloroplastic MEP-isoprenoids. Interestingly, in a feedback loop, the photoreceptors and their signalling components are targets themselves of these retrograde signals, aimed at optimizing photomorphogenesis to the status of the chloroplasts, with GUN proteins functioning at the convergence points. High light and shade are also conditions where the photoreceptors tune growth responses to chloroplast functions. Interestingly, photoreceptors and retrograde signals also converge in the modulation of dual-localized proteins (chloroplastic/nuclear) including WHIRLY and HEMERA/pTAC12, whose functions are required for the optimization of photosynthetic activities in changing environments and are proposed to act themselves as retrograde signals.
Collapse
|
4
|
Bravo-Vázquez LA, Srivastava A, Bandyopadhyay A, Paul S. The elusive roles of chloroplast microRNAs: an unexplored facet of the plant transcriptome. PLANT MOLECULAR BIOLOGY 2022; 109:667-671. [PMID: 35614291 DOI: 10.1007/s11103-022-01279-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc., 76130, San Pablo, Queretaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines.
- Reliance Industries Ltd., 400701, Navi Mumbai, India.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc., 76130, San Pablo, Queretaro, Mexico.
| |
Collapse
|
5
|
Lopez L, Fasano C, Perrella G, Facella P. Cryptochromes and the Circadian Clock: The Story of a Very Complex Relationship in a Spinning World. Genes (Basel) 2021; 12:672. [PMID: 33946956 PMCID: PMC8145066 DOI: 10.3390/genes12050672] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023] Open
Abstract
Cryptochromes are flavin-containing blue light photoreceptors, present in most kingdoms, including archaea, bacteria, plants, animals and fungi. They are structurally similar to photolyases, a class of flavoproteins involved in light-dependent repair of UV-damaged DNA. Cryptochromes were first discovered in Arabidopsis thaliana in which they control many light-regulated physiological processes like seed germination, de-etiolation, photoperiodic control of the flowering time, cotyledon opening and expansion, anthocyanin accumulation, chloroplast development and root growth. They also regulate the entrainment of plant circadian clock to the phase of light-dark daily cycles. Here, we review the molecular mechanisms by which plant cryptochromes control the synchronisation of the clock with the environmental light. Furthermore, we summarise the circadian clock-mediated changes in cell cycle regulation and chromatin organisation and, finally, we discuss a putative role for plant cryptochromes in the epigenetic regulation of genes.
Collapse
Affiliation(s)
| | | | | | - Paolo Facella
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TERIN-BBC-BBE, Trisaia Research Center, 75026 Rotondella, Matera, Italy; (L.L.); (C.F.); (G.P.)
| |
Collapse
|
6
|
Anand A, Pandi G. Noncoding RNA: An Insight into Chloroplast and Mitochondrial Gene Expressions. Life (Basel) 2021; 11:life11010049. [PMID: 33450961 PMCID: PMC7828403 DOI: 10.3390/life11010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of gene expression in any biological system is a complex process with many checkpoints at the transcriptional, post-transcriptional and translational levels. The control mechanism is mediated by various protein factors, secondary metabolites and a newly included regulatory member, i.e., noncoding RNAs (ncRNAs). It is known that ncRNAs modulate the mRNA or protein profiles of the cell depending on the degree of complementary and context of the microenvironment. In plants, ncRNAs are essential for growth and development in normal conditions by controlling various gene expressions and have emerged as a key player to guard plants during adverse conditions. In order to have smooth functioning of the plants under any environmental pressure, two very important DNA-harboring semi-autonomous organelles, namely, chloroplasts and mitochondria, are considered as main players. These organelles conduct the most crucial metabolic pathways that are required to maintain cell homeostasis. Thus, it is imperative to explore and envisage the molecular machineries responsible for gene regulation within the organelles and their coordination with nuclear transcripts. Therefore, the present review mainly focuses on ncRNAs origination and their gene regulation in chloroplasts and plant mitochondria.
Collapse
Affiliation(s)
- Asha Anand
- Correspondence: (A.A.); (G.P.); Tel.: +91-452-245-8230 (G.P.)
| | - Gopal Pandi
- Correspondence: (A.A.); (G.P.); Tel.: +91-452-245-8230 (G.P.)
| |
Collapse
|
7
|
Griffin JHC, Prado K, Sutton P, Toledo-Ortiz G. Coordinating light responses between the nucleus and the chloroplast, a role for plant cryptochromes and phytochromes. PHYSIOLOGIA PLANTARUM 2020; 169:515-528. [PMID: 32519399 DOI: 10.1111/ppl.13148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
To promote photomorphogenesis, including plastid development and metabolism, the phytochrome (phy) and the cryptochrome (cry) photoreceptors orchestrate genome-wide changes in gene expression in response to Red (R)- and Blue (B)-light cues. While phys and crys have a clear role in modulating photosynthesis, their role in the coordination of the nuclear genome and the plastome, essential for functional chloroplasts, remains underexplored. Using publicly available genome datasets for WT and phyABCDE or cry1cry2 Arabidopsis seedlings, grown, respectively, under R- or B-light, we bioinformatically analyzed the influence of light inputs and photoreceptors in the control of nuclear genes with a function in the chloroplast, and evaluated the role of phyB in the modulation of plastome-encoded genes. We show gene co-induction by R-phys and B-crys for genes with a chloroplastic function, and also apparent photoreceptor-driven preferential responses. Evidence from phyB in Arabidopsis together with published evidence from CRY2 in tomato also supports the participation of both photoreceptor families in the global modulation of the plastome genes. To begin addressing how these light-sensors orchestrate changes in an organellar genome, we evaluated their effect over genes with potential functions in plastid gene-expression regulation based on their TAIR annotation. Results indicate that both crys and phys modulate 'plastome-regulatory genes' with enrichment in the contribution of crys to all processes and of phys to post-transcription and transcription. Furthermore, we identified a new role for HY5 as a relevant light-signaling component in photoreceptor-based anterograde signaling leading to plastome gene regulation.
Collapse
Affiliation(s)
| | - Karine Prado
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Phoebe Sutton
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | |
Collapse
|
8
|
Fantini E, Sulli M, Zhang L, Aprea G, Jiménez-Gómez JM, Bendahmane A, Perrotta G, Giuliano G, Facella P. Pivotal Roles of Cryptochromes 1a and 2 in Tomato Development and Physiology. PLANT PHYSIOLOGY 2019; 179:732-748. [PMID: 30541876 PMCID: PMC6426409 DOI: 10.1104/pp.18.00793] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/05/2018] [Indexed: 05/18/2023]
Abstract
Cryptochromes are flavin-containing blue/UVA light photoreceptors that regulate various plant light-induced physiological processes. In Arabidopsis (Arabidopsis thaliana), cryptochromes mediate de-etiolation, photoperiodic control of flowering, entrainment of the circadian clock, cotyledon opening and expansion, anthocyanin accumulation, and root growth. In tomato (Solanum lycopersicum), cryptochromes are encoded by a multigene family, comprising CRY1a, CRY1b, CRY2, and CRY3 We have previously reported the phenotypes of tomato cry1a mutants and CRY2 overexpressing plants. Here, we report the isolation by targeting induced local lesions in genomes, of a tomato cry2 knock-out mutant, its introgression in the indeterminate Moneymaker background, and the phenotypes of cry1a/cry2 single and double mutants. The cry1a/cry2 mutant showed phenotypes similar to its Arabidopsis counterpart (long hypocotyls in white and blue light), but also several additional features such as increased seed weight and internode length, enhanced hypocotyl length in red light, inhibited primary root growth under different light conditions, anticipation of flowering under long-day conditions, and alteration of the phase of circadian leaf movements. Both cry1a and cry2 control the levels of photosynthetic pigments in leaves, but cry2 has a predominant role in fruit pigmentation. Metabolites of the sterol, tocopherol, quinone, and sugar classes are differentially accumulated in cry1a and cry2 leaves and fruits. These results demonstrate a pivotal role of cryptochromes in controlling tomato development and physiology. The manipulation of these photoreceptors represents a powerful tool to influence important agronomic traits such as flowering time and fruit quality.
Collapse
Affiliation(s)
- Elio Fantini
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Trisaia Research Center, 75026 Rotondella (Matera), Italy
| | - Maria Sulli
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Center, 00123 Roma, Italy
| | - Lei Zhang
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Giuseppe Aprea
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Center, 00123 Roma, Italy
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Abdelhafid Bendahmane
- Institute of Plant Science - Paris-Saclay, Institut National de la Recherche Agronomique (INRA), 91190 Gif-sur-Yvette, France
| | - Gaetano Perrotta
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Trisaia Research Center, 75026 Rotondella (Matera), Italy
| | - Giovanni Giuliano
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Center, 00123 Roma, Italy
| | - Paolo Facella
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Trisaia Research Center, 75026 Rotondella (Matera), Italy
| |
Collapse
|
9
|
Wang Y, Liu S, Tian X, Fu Y, Jiang X, Li Y, Wang G. Influence of light intensity on chloroplast development and pigment accumulation in the wild-type and etiolated mutant plants of Anthurium andraeanum 'Sonate'. PLANT SIGNALING & BEHAVIOR 2018; 13:e1482174. [PMID: 30047818 PMCID: PMC6149518 DOI: 10.1080/15592324.2018.1482174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Seedlings of wild-type and etiolate mutant plants of Anthurium andraeanum cultivar 'Sonate' were treated for 15 d with different light intensities (20, 100, and 400 µmol·m-2·s-1) to analyze leaf plastid development and pigment content. Significant changes appeared in treated seedlings, including in leaf color, plastid ultrastructure, chloroplast development gene AaGLK expression, chlorophyll and anthocyanin contents, and protoplast shape. Wild-type and etiolated plants exhibited different plastid structures under the same light condition. The results suggest that light intensity is a crucial environmental factor influencing plastid development and leaf color formation in the A. andraeanum cultivar 'Sonate'.
Collapse
Affiliation(s)
- Y. Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - S. Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - X. Tian
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Y. Fu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - X. Jiang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Y. Li
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - G. Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Mariz-Ponte N, Mendes RJ, Sario S, Ferreira de Oliveira JMP, Melo P, Santos C. Tomato plants use non-enzymatic antioxidant pathways to cope with moderate UV-A/B irradiation: A contribution to the use of UV-A/B in horticulture. JOURNAL OF PLANT PHYSIOLOGY 2018; 221:32-42. [PMID: 29223880 DOI: 10.1016/j.jplph.2017.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
Plants developed receptors for solar UV-A/B radiation, which regulate a complex network of functions through the plant's life cycle. However, greenhouse grown crops, like tomato, are exposed to strongly reduced UV radiation, contrarily to their open-field counterparts. A new paradigm of modern horticulture is to supplement adequate levels of UV to greenhouse cultures, inducing a positive mild stress necessary to stimulate oxidative stress pathways and antioxidant mechanisms. Protected cultures of Solanum (cv MicroTom) were supplemented with moderate UV-A (1h and 4h) and UV-B (1min and 5min) doses during the flowering/fruiting period. After 30days, flowering/fruit ripening synchronization were enhanced, paralleled by the upregulation of blue/UV-A and UV-B receptors' genes cry1a and uvr8. UV-B caused moreover an increase in the expression of hy5, of HY5 repressor cop1 and of a repressor of COP1, uvr8. While all UV-A/B conditions increased SOD activity, increases of the generated H2O2, as well as lipid peroxidation and cell mebrane disruption, were minimal. However, the activity of antioxidant enzymes downstream from SOD (CAT, APX, GPX) was not significant. These results suggest that the major antioxidant pathways involve phenylpropanoid compounds, which also have an important role in UV screening. This hypothesis was confirmed by the increase of phenolic compounds and by the upregulation of chs and fls, coding for CHS and FLS enzymes involved in the phenylpropanoid synthesis. Overall, all doses of UV-A or UV-B were beneficial to flowering/fruiting but lower UV-A/B doses induced lower redox disorders and were more effective in the fruiting process/synchronization. Considering the benefits observed on flowering/fruiting, with minimal impacts in the vegetative part, we demonstrate that both UV-A/B could be used in protected tomato horticulture systems.
Collapse
Affiliation(s)
- N Mariz-Ponte
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - R J Mendes
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - S Sario
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - J M P Ferreira de Oliveira
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal; UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal
| | - P Melo
- Department of Biology & BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007, Porto, Portugal
| | - C Santos
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
11
|
Mawphlang OIL, Kharshiing EV. Photoreceptor Mediated Plant Growth Responses: Implications for Photoreceptor Engineering toward Improved Performance in Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1181. [PMID: 28744290 PMCID: PMC5504655 DOI: 10.3389/fpls.2017.01181] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 05/18/2023]
Abstract
Rising temperatures during growing seasons coupled with altered precipitation rates presents a challenging task of improving crop productivity for overcoming such altered weather patterns and cater to a growing population. Light is a critical environmental factor that exerts a powerful influence on plant growth and development ranging from seed germination to flowering and fruiting. Higher plants utilize a suite of complex photoreceptor proteins to perceive surrounding red/far-red (phytochromes), blue/UV-A (cryptochromes, phototropins, ZTL/FKF1/LKP2), and UV-B light (UVR8). While genomic studies have also shown that light induces extensive reprogramming of gene expression patterns in plants, molecular genetic studies have shown that manipulation of one or more photoreceptors can result in modification of agronomically beneficial traits. Such information can assist researchers to engineer photoreceptors via genome editing technologies to alter expression or even sensitivity thresholds of native photoreceptors for targeting aspects of plant growth that can confer superior agronomic value to the engineered crops. Here we summarize the agronomically important plant growth processes influenced by photoreceptors in crop species, alongwith the functional interactions between different photoreceptors and phytohormones in regulating these responses. We also discuss the potential utility of synthetic biology approaches in photobiology for improving agronomically beneficial traits of crop plants by engineering designer photoreceptors.
Collapse
|
12
|
Kharshiing E, Sinha SP. Deficiency in phytochrome A alters photosynthetic activity, leaf starch metabolism and shoot biomass production in tomato. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:157-162. [PMID: 27794221 DOI: 10.1016/j.jphotobiol.2016.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 01/05/2023]
Abstract
Photosynthesis is a key process that promotes plant growth and development. Light provides photosynthetic organisms with a major source of energy to fix carbon dioxide into organic matter. Of the entire visible light spectrum, red/blue light are known to maximise photosynthetic performance and are thus essential for proper growth and development of plants. Red and blue light stimulate synthesis of chlorophyll and orchestrate the positioning of leaves and chloroplasts for optimal utilisation of light, both of which are critical for photosynthesis. The response of plants to external light cues is accomplished via finely tuned complex photoreceptors and signaling mechanisms which enable them to continually monitor light availability and quality for optimal utilisation of light energy towards enhancing their growth. Higher plants contain a suite of photoreceptor proteins that allow them to perceive red, blue/UV-A and UV-B light. Analyses of the phyA mutant of tomato deficient in the red-light photoreceptor phytochrome A (phyA), showed reduced photosynthetic activity of isolated chloroplasts along with decreased shoot biomass in adult plants. The regulation of leaf transitory starch in the mutant was also altered as compared to the wild type (cv Moneymaker). Our results suggest a possible role for phyA in these processes in tomato.
Collapse
Affiliation(s)
- Eros Kharshiing
- Department of Botany, St. Edmund's College, Meghalaya 793 003, India.
| | | |
Collapse
|