1
|
Ikram M, Batool M, Ullah M, Khalid B, El-Badri AM, Mohamed IAA, Zhang L, Kuai J, Xu Z, Zhao J, Wang J, Wang B, Zhou G, Rehman HU. Molecular Alchemy: Converting Stress into Resilience via Secondary Metabolites and Calcium Signaling in Rice. RICE (NEW YORK, N.Y.) 2025; 18:32. [PMID: 40325258 PMCID: PMC12052636 DOI: 10.1186/s12284-025-00783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/24/2025] [Indexed: 05/07/2025]
Abstract
Salt stress impairs plant growth by disrupting osmotic regulation, ion homeostasis, and oxidative stress management. Plants respond by activating defense mechanisms, including the biosynthesis of secondary metabolites (SMs) such as alkaloids, flavonoids, terpenoids, and glucosinolates (GSLs). Calcium (Ca2⁺) signaling is central to these responses, acting as an early stress signal. Ca2⁺ influx triggers calcium-dependent protein kinases (CDPKs) and other signaling molecules, which activate stress-responsive genes. SMs are pivotal in mitigating salt stress by promoting osmotic adjustment, maintaining cellular turgor, and modulating ion transporters to reduce Na⁺ uptake and enhance K⁺ retention. This ion homeostasis is closely regulated by Ca2⁺ signaling, which influences transport proteins like Na⁺/K⁺ transporters and vacuolar calcium exchangers (e.g., OsCAX1). The crosstalk between SMs and Ca2⁺ exhibited a critically important role in salt tolerance, as Ca2⁺ influx is an essential trigger for calcium-dependent signaling pathways. Additionally, Ca2⁺ signaling regulates the biosynthesis of SMs through transcription factors like MYB and WRKY. These SMs help detoxify reactive oxygen species (ROS) by regulating antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), aided by MAPK signaling cascades. SMs also interact with abscisic acid (ABA) signaling to regulate stomatal closure and stress-related gene expression, enhancing the plant's resistance to salt stress. Recent meta-QTL analysis has identified key loci involved in SM biosynthesis and Ca2⁺ signaling pathways under saline conditions, providing promising targets for breeding salt-tolerant crops. This review explores the molecular mechanisms and regulatory networks of SMs and Ca2⁺ signaling in plant salt stress responses, with potential applications in sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Ikram
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Agronomy, Faculty of Agricultural Science's and Technology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maaz Ullah
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Burhan Khalid
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ali Mahmoud El-Badri
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ibrahim A A Mohamed
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Zhang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenghua Xu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haseeb Ur Rehman
- Department of Agronomy, Faculty of Agricultural Science's and Technology, Bahauddin Zakariya University Multan, Multan, Pakistan.
| |
Collapse
|
2
|
Ritonga FN, Gong Z, Zhang Y, Wang F, Gao J, Li C, Li J. Exploiting Brassica rapa L. subsp. pekinensis Genome Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:2823. [PMID: 39409693 PMCID: PMC11478547 DOI: 10.3390/plants13192823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Chinese cabbage, Brassica rapa L. subsp. pekinensis is a crucial and extensively consumed vegetable in the world, especially Eastern Asia. The market demand for this leafy vegetable increases year by year, resulting in multiple challenges for agricultural researchers worldwide. Multi-omic approaches and the integration of functional genomics helps us understand the relationships between Chinese cabbage genomes and phenotypes under specific physiological and environmental conditions. However, challenges exist in integrating multi-omics for the functional analysis of genes and for developing potential traits for Chinese cabbage improvement. However, the panomics platform allows for the integration of complex omics, enhancing our understanding of molecular regulator networks in Chinese cabbage agricultural traits. In addition, the agronomic features of Chinese cabbage are significantly impacted by the environment. The expression of these agricultural features is tightly regulated by a combination of signals from both the internal regulatory network and the external growth environment. To comprehend the molecular process of these characteristics, it is necessary to have a prior understanding of molecular breeding for the objective of enhancing quality. While the use of various approaches in Chinese cabbage is still in its early stages, recent research has shown that it has the potential to uncover new regulators both rapidly and effectively, leading to updated regulatory networks. In addition, the utilization of the efficient transformation technique in conjunction with gene editing using CRISPR/Cas9 will result in a reduction in time requirements and facilitate a more precise understanding of the role of the regulators. Numerous studies about Chinese cabbage have been conducted in the past two decades, but a comprehensive review about its genome still limited. This review provides a concise summary of the latest discoveries in genomic research related to Brassica and explores the potential future developments for this species.
Collapse
Affiliation(s)
- Faujiah Nurhasanah Ritonga
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
- Faculty of Forestry, Universitas Sumatera Utara, USU 2 Bekala Campus, Pancurbatu, Deli Serdang 20355, Indonesia
| | - Zeyu Gong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250358, China;
| | - Yihui Zhang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| | - Fengde Wang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| | - Jianwei Gao
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| | - Cheng Li
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| | - Jingjuan Li
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| |
Collapse
|
3
|
Muthusamy M, Lee SI. Abiotic stress-induced secondary metabolite production in Brassica: opportunities and challenges. FRONTIERS IN PLANT SCIENCE 2024; 14:1323085. [PMID: 38239210 PMCID: PMC10794482 DOI: 10.3389/fpls.2023.1323085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024]
Abstract
Over the decades, extensive research efforts have been undertaken to understand how secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Understanding the genetic basis of stress-response metabolite biosynthesis is crucial for sustainable agriculture production amidst frequent occurrence of climatic anomalies. Although it is known that environmental factors influence phytochemical profiles and their content, studies of plant compounds in relation to stress mitigation are only emerging and largely hindered by phytochemical diversities and technical shortcomings in measurement techniques. Despite these challenges, considerable success has been achieved in profiling of secondary metabolites such as glucosinolates, flavonoids, carotenoids, phenolic acids and alkaloids. In this study, we aimed to understand the roles of glucosinolates, flavonoids, carotenoids, phenolic acids and alkaloids in relation to their abiotic stress response, with a focus on the developing of stress-resilient crops. The focal genus is the Brassica since it (i) possesses variety of specialized phytochemicals that are important for its plant defense against major abiotic stresses, and (ii) hosts many economically important crops that are sensitive to adverse growth conditions. We summarize that augmented levels of specialized metabolites in Brassica primarily function as stress mitigators against oxidative stress, which is a secondary stressor in many abiotic stresses. Furthermore, it is clear that functional characterization of stress-response metabolites or their genetic pathways describing biosynthesis is essential for developing stress-resilient Brassica crops.
Collapse
Affiliation(s)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Kim JA, Moon H, Kim HS, Choi D, Kim NS, Jang J, Lee SW, Baskoro Dwi Nugroho A, Kim DH. Transcriptome and QTL mapping analyses of major QTL genes controlling glucosinolate contents in vegetable- and oilseed-type Brassica rapa plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1067508. [PMID: 36743533 PMCID: PMC9891538 DOI: 10.3389/fpls.2022.1067508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Glucosinolates (GSLs) are secondary metabolites providing defense against pathogens and herbivores in plants, and anti-carcinogenic activity against human cancer cells. Profiles of GSLs vary greatly among members of genus Brassica. In this study, we found that a reference line of Chinese cabbage (B. rapa ssp. pekinensis), 'Chiifu' contains significantly lower amounts of total GSLs than the oilseed-type B. rapa (B. rapa ssp. trilocularis) line 'LP08'. This study aimed to identify the key regulators of the high accumulation of GSLs in Brassica rapa plants using transcriptomic and linkage mapping approaches. Comparative transcriptome analysis showed that, in total, 8,276 and 9,878 genes were differentially expressed between 'Chiifu' and 'LP08' under light and dark conditions, respectively. Among 162 B. rapa GSL pathway genes, 79 were related to GSL metabolism under light conditions. We also performed QTL analysis using a single nucleotide polymorphism-based linkage map constructed using 151 F5 individuals derived from a cross between the 'Chiifu' and 'LP08' inbred lines. Two major QTL peaks were successfully identified on chromosome 3 using high-performance liquid chromatography to obtain GSL profiles from 97 F5 recombinant inbred lines. The MYB-domain transcription factor gene BrMYB28.1 (Bra012961) was found in the highest QTL peak region. The second highest peak was located near the 2-oxoacid-dependent dioxygenase gene BrGSL-OH.1 (Bra022920). This study identified major genes responsible for differing profiles of GSLs between 'Chiifu' and 'LP08'. Thus, our study provides molecular insights into differences in GSL profiles between vegetative- and oilseed-type B. rapa plants.
Collapse
Affiliation(s)
- Jin A. Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Hyang Suk Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Nan-Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Juna Jang
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Sang Woo Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | | | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
5
|
Zhan X, Chen Z, Chen R, Shen C. Environmental and Genetic Factors Involved in Plant Protection-Associated Secondary Metabolite Biosynthesis Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:877304. [PMID: 35463424 PMCID: PMC9024250 DOI: 10.3389/fpls.2022.877304] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 05/09/2023]
Abstract
Plant specialized metabolites (PSMs) play essential roles in the adaptation to harsh environments and function in plant defense responses. PSMs act as key components of defense-related signaling pathways and trigger the extensive expression of defense-related genes. In addition, PSMs serve as antioxidants, participating in the scavenging of rapidly rising reactive oxygen species, and as chelators, participating in the chelation of toxins under stress conditions. PSMs include nitrogen-containing chemical compounds, terpenoids/isoprenoids, and phenolics. Each category of secondary metabolites has a specific biosynthetic pathway, including precursors, intermediates, and end products. The basic biosynthetic pathways of representative PSMs are summarized, providing potential target enzymes of stress-mediated regulation and responses. Multiple metabolic pathways share the same origin, and the common enzymes are frequently to be the targets of metabolic regulation. Most biosynthetic pathways are controlled by different environmental and genetic factors. Here, we summarized the effects of environmental factors, including abiotic and biotic stresses, on PSM biosynthesis in various plants. We also discuss the positive and negative transcription factors involved in various PSM biosynthetic pathways. The potential target genes of the stress-related transcription factors were also summarized. We further found that the downstream targets of these Transcription factors (TFs) are frequently enriched in the synthesis pathway of precursors, suggesting an effective role of precursors in enhancing of terminal products. The present review provides valuable insights regarding screening targets and regulators involved in PSM-mediated plant protection in non-model plants.
Collapse
Affiliation(s)
- Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
6
|
Nugroho ABD, Lee SW, Pervitasari AN, Moon H, Choi D, Kim J, Kim DH. Transcriptomic and metabolic analyses revealed the modulatory effect of vernalization on glucosinolate metabolism in radish (Raphanus sativus L.). Sci Rep 2021; 11:24023. [PMID: 34912010 PMCID: PMC8674254 DOI: 10.1038/s41598-021-03557-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Vernalization is the process by which long-term cold like winter triggers transition to flowering in plants. Many biennial and perennial plants including Brassicaceae family plants require vernalization for floral transition. Not only floral transition, but dynamic physiological and metabolic changes might also take place during vernalization. However, vernalization-mediated metabolic change is merely investigated so far. One of secondary metabolites found in Brassiceceae family plants is glucosinolates (GSLs). GSLs provides defense against pathogens and herbivores attack in plants and also exhibits inhibitory activity against human cancer cell. Profiles of GSLs are highly modulated by different environmental stresses in Brassciaceae family plants. To grasp the effect of vernalization on GSLs metabolic dynamics in radish (Raphanus sativus L.), we performed transcriptomic and metabolic analysis during vernalization in radish. Through transcriptome analysis, we found many GSLs metabolic genes were significantly down-regulated by vernalization in radish plants. Ultra-High Performance Liquid Chromatography analysis also revealed that GSLs compounds were substantially reduced in vernalized radish samples compared to non-vernalized radish samples. Furthermore, we found that repressive histone modification (i.e. H3K27me3) is involved in the modulation of GSLs metabolism via epigenetic suppression of Glucoraphasatin Synthase 1 (GRS1) during vernalization in radish. This study revealed that GSLs metabolism is modulated by vernalization, suggestive of a newly identified target of vernalization in radish.
Collapse
Affiliation(s)
- Adji Baskoro Dwi Nugroho
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sang Woo Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | | | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jongkee Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea. .,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
He L, Li L, Zhu Y, Pan Y, Zhang X, Han X, Li M, Chen C, Li H, Wang C. BolTLP1, a Thaumatin-like Protein Gene, Confers Tolerance to Salt and Drought Stresses in Broccoli ( Brassica oleracea L. var. Italica). Int J Mol Sci 2021. [PMID: 34681789 DOI: 10.3390/ijms222011132/s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Plant thaumatin-like proteins (TLPs) play pleiotropic roles in defending against biotic and abiotic stresses. However, the functions of TLPs in broccoli, which is one of the major vegetables among the B. oleracea varieties, remain largely unknown. In the present study, bolTLP1 was identified in broccoli, and displayed remarkably inducible expression patterns by abiotic stress. The ectopic overexpression of bolTLP1 conferred increased tolerance to high salt and drought conditions in Arabidopsis. Similarly, bolTLP1-overexpressing broccoli transgenic lines significantly improved tolerance to salt and drought stresses. These results demonstrated that bolTLP1 positively regulates drought and salt tolerance. Transcriptome data displayed that bolTLP1 may function by regulating phytohormone (ABA, ethylene and auxin)-mediated signaling pathways, hydrolase and oxidoreductase activity, sulfur compound synthesis, and the differential expression of histone variants. Further studies confirmed that RESPONSE TO DESICCATION 2 (RD2), RESPONSIVE TO DEHYDRATION 22 (RD22), VASCULAR PLANT ONE-ZINC FINGER 2 (VOZ2), SM-LIKE 1B (LSM1B) and MALATE DEHYDROGENASE (MDH) physically interacted with bolTLP1, which implied that bolTLP1 could directly interact with these proteins to confer abiotic stress tolerance in broccoli. These findings provide new insights into the function and regulation of bolTLP1, and suggest potential applications for bolTLP1 in breeding broccoli and other crops with increased tolerance to salt and drought stresses.
Collapse
Affiliation(s)
- Lixia He
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lihong Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yinxia Zhu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Pan
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiuwen Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue Han
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Muzi Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Chengbin Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hui Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Chunguo Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
8
|
He L, Li L, Zhu Y, Pan Y, Zhang X, Han X, Li M, Chen C, Li H, Wang C. BolTLP1, a Thaumatin-like Protein Gene, Confers Tolerance to Salt and Drought Stresses in Broccoli ( Brassica oleracea L. var. Italica). Int J Mol Sci 2021; 22:ijms222011132. [PMID: 34681789 PMCID: PMC8537552 DOI: 10.3390/ijms222011132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Plant thaumatin-like proteins (TLPs) play pleiotropic roles in defending against biotic and abiotic stresses. However, the functions of TLPs in broccoli, which is one of the major vegetables among the B. oleracea varieties, remain largely unknown. In the present study, bolTLP1 was identified in broccoli, and displayed remarkably inducible expression patterns by abiotic stress. The ectopic overexpression of bolTLP1 conferred increased tolerance to high salt and drought conditions in Arabidopsis. Similarly, bolTLP1-overexpressing broccoli transgenic lines significantly improved tolerance to salt and drought stresses. These results demonstrated that bolTLP1 positively regulates drought and salt tolerance. Transcriptome data displayed that bolTLP1 may function by regulating phytohormone (ABA, ethylene and auxin)-mediated signaling pathways, hydrolase and oxidoreductase activity, sulfur compound synthesis, and the differential expression of histone variants. Further studies confirmed that RESPONSE TO DESICCATION 2 (RD2), RESPONSIVE TO DEHYDRATION 22 (RD22), VASCULAR PLANT ONE-ZINC FINGER 2 (VOZ2), SM-LIKE 1B (LSM1B) and MALATE DEHYDROGENASE (MDH) physically interacted with bolTLP1, which implied that bolTLP1 could directly interact with these proteins to confer abiotic stress tolerance in broccoli. These findings provide new insights into the function and regulation of bolTLP1, and suggest potential applications for bolTLP1 in breeding broccoli and other crops with increased tolerance to salt and drought stresses.
Collapse
Affiliation(s)
- Lixia He
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Lihong Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Yinxia Zhu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Yu Pan
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Xiuwen Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Xue Han
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Muzi Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China;
| | - Chengbin Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Hui Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China;
- Correspondence: (H.L.); (C.W.)
| | - Chunguo Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
- Correspondence: (H.L.); (C.W.)
| |
Collapse
|
9
|
Soundararajan P, Park SG, Won SY, Moon MS, Park HW, Ku KM, Kim JS. Influence of Genotype on High Glucosinolate Synthesis Lines of Brassica rapa. Int J Mol Sci 2021; 22:ijms22147301. [PMID: 34298919 PMCID: PMC8305852 DOI: 10.3390/ijms22147301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to investigate doubled haploid (DH) lines produced between high GSL (HGSL) Brassica rapa ssp. trilocularis (yellow sarson) and low GSL (LGSL) B. rapa ssp. chinensis (pak choi) parents. In total, 161 DH lines were generated. GSL content of HGSL DH lines ranged from 44.12 to 57.04 μmol·g−1·dry weight (dw), which is within the level of high GSL B. rapa ssp. trilocularis (47.46 to 59.56 μmol g−1 dw). We resequenced five of the HGSL DH lines and three of the LGSL DH lines. Recombination blocks were formed between the parental and DH lines with 108,328 single-nucleotide polymorphisms in all chromosomes. In the measured GSL, gluconapin occurred as the major substrate in HGSL DH lines. Among the HGSL DH lines, BrYSP_DH005 had glucoraphanin levels approximately 12-fold higher than those of the HGSL mother plant. The hydrolysis capacity of GSL was analyzed in HGSL DH lines with a Korean pak choi cultivar as a control. Bioactive compounds, such as 3-butenyl isothiocyanate, 4-pentenyl isothiocyanate, 2-phenethyl isothiocyanate, and sulforaphane, were present in the HGSL DH lines at 3-fold to 6.3-fold higher levels compared to the commercial cultivar. The selected HGSL DH lines, resequencing data, and SNP identification were utilized for genome-assisted selection to develop elite GSL-enriched cultivars and the industrial production of potential anti-cancerous metabolites such as gluconapin and glucoraphanin.
Collapse
Affiliation(s)
- Prabhakaran Soundararajan
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Sin-Gi Park
- Bioinformatics Team of Theragen Etex Institute, Suwon 16229, Korea;
| | - So Youn Won
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Mi-Sun Moon
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Hyun Woo Park
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Kang-Mo Ku
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea;
- Department of Horticulture, Chonnam National University, Gwangju 61186, Korea
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
- Correspondence:
| |
Collapse
|
10
|
Yadav B, Jogawat A, Rahman MS, Narayan OP. Secondary metabolites in the drought stress tolerance of crop plants: A review. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. PHYSIOLOGIA PLANTARUM 2021; 172:1106-1132. [PMID: 33421146 DOI: 10.1111/ppl.13328] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 05/21/2023]
Abstract
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Amit Kumar Singh
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Om Prakash Narayan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
12
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Harvesting at different time-points of day affects glucosinolate metabolism during postharvest storage of broccoli. Food Res Int 2020; 136:109529. [DOI: 10.1016/j.foodres.2020.109529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/07/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022]
|
14
|
Maina S, Misinzo G, Bakari G, Kim HY. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020; 25:E3682. [PMID: 32806771 PMCID: PMC7464879 DOI: 10.3390/molecules25163682] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glucosinolates (GSs) are common anionic plant secondary metabolites in the order Brassicales. Together with glucosinolate hydrolysis products (GSHPs), they have recently gained much attention due to their biological activities and mechanisms of action. We review herein the health benefits of GSs/GSHPs, approaches to improve the plant contents, their bioavailability and bioactivity. In this review, only literature published between 2010 and March 2020 was retrieved from various scientific databases. Findings indicate that these compounds (natural, pure, synthetic, and derivatives) play an important role in human/animal health (disease therapy and prevention), plant health (defense chemicals, biofumigants/biocides), and food industries (preservatives). Overall, much interest is focused on in vitro studies as anti-cancer and antimicrobial agents. GS/GSHP levels improvement in plants utilizes mostly biotic/abiotic stresses and short periods of phytohormone application. Their availability and bioactivity are directly proportional to their contents at the source, which is affected by methods of food preparation, processing, and extraction. This review concludes that, to a greater extent, there is a need to explore and improve GS-rich sources, which should be emphasized to obtain natural bioactive compounds/active ingredients that can be included among synthetic and commercial products for use in maintaining and promoting health. Furthermore, the development of advanced research on compounds pharmacokinetics, their molecular mode of action, genetics based on biosynthesis, their uses in promoting the health of living organisms is highlighted.
Collapse
Affiliation(s)
- Sylvia Maina
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gerald Misinzo
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gaymary Bakari
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
| |
Collapse
|
15
|
Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Raphanus sativus L.) Roots. Int J Mol Sci 2020; 21:ijms21165721. [PMID: 32785002 PMCID: PMC7461053 DOI: 10.3390/ijms21165721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Glucoraphasatin (GRH) is a specific aliphatic glucosinolate (GSL) that is only abundant in radish (Raphanus sativus L.). The gene expression regulating GRH biosynthesis in radish is still poorly understood. We employed a total of 59 radish accessions to analyze GSL profiles and showed that GRH was specific and predominant among the aliphatic GSLs in radish roots. We selected five accessions roots with high, moderate and low GSL biosynthesis, respectively, to conduct a comparative transcriptome analysis and the qRT-PCR of the biosynthesis genes for aliphatic GSLs. In this study, among all the accessions tested, roots with the accession RA157-74 had a high GRH content and showed a significant expression of the aliphatic GSL biosynthesis genes. We defined the genes involved in the GRH biosynthesis process and found that they were regulated by a transcription factor (RSG00789) at the MYB29 locus in radish roots. We found 13 aliphatic GSL biosynthesis genes regulated by the RSG00789 gene in the GRH biosynthesis pathway.
Collapse
|
16
|
Khattak AN, Wang T, Yu K, Yang R, Wan W, Ye B, Tian E. Exploring the basis of 2-propenyl and 3-butenyl glucosinolate synthesis by QTL mapping and RNA-sequencing in Brassica juncea. PLoS One 2019; 14:e0220597. [PMID: 31626668 PMCID: PMC6799926 DOI: 10.1371/journal.pone.0220597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/04/2019] [Indexed: 01/08/2023] Open
Abstract
Brassica juncea is used as a condiment, as vegetables and as an oilseed crop, especially in semiarid areas. In the present study, we constructed a genetic map using one recombinant inbred line (RIL) of B. juncea. A total of 304 ILP (intron length polymorphism) markers were mapped to 18 linkage groups designated LG01-LG18 in B. juncea. The constructed map covered a total genetic length of 1671.13 cM with an average marker interval of 5.50 cM. The QTLs for 2-propenyl glucosinolates (GSLs) colocalized with the QTLs for 3-butenyl GSLs between At1g26180 and BnapPIP1580 on LG08 in the field experiments of 2016 and 2017. These QTLs accounted for an average of 42.3% and 42.6% phenotypic variation for 2-propenyl and 3-butenyl GSLs, respectively. Furthermore, the Illumina RNA-sequencing technique was used to excavate the genes responsible for the synthesis of GSLs in the siliques of the parental lines of the RIL mapping population, because the bulk of the seed GSLs might originate from the siliques. Comparative analysis and annotation by gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) revealed that 324 genes were involved in GSL metabolism, among which only 24 transcripts were differentially expressed genes (DEGs). Among those DEGs, 15 genes were involved in the biosynthesis and transport of aliphatic GSLs, and their expression patterns were further validated by qRT-PCR analysis. Joint QTL mapping and RNA-sequencing analyses reveal one candidate gene of IIL1 (LOC106416451) for GSL metabolism in B. juncea. These results will be helpful for further fine mapping, gene cloning and genetic mechanisms of 2-propenyl and 3-butenyl GSLs in B. juncea.
Collapse
Affiliation(s)
- Aimal Nawaz Khattak
- Oil Crops Research Institute of Guizhou University, Agricultural College of Guizhou University, Guizhou University, Guiyang, China
| | - Tianya Wang
- Oil Crops Research Institute of Guizhou University, Agricultural College of Guizhou University, Guizhou University, Guiyang, China
| | - Kunjiang Yu
- Oil Crops Research Institute of Guizhou University, Agricultural College of Guizhou University, Guizhou University, Guiyang, China
| | - Renqin Yang
- Oil Crops Research Institute of Guizhou University, Agricultural College of Guizhou University, Guizhou University, Guiyang, China
| | - Wei Wan
- Oil Crops Research Institute of Guizhou University, Agricultural College of Guizhou University, Guizhou University, Guiyang, China
| | - Botao Ye
- Oil Crops Research Institute of Guizhou University, Agricultural College of Guizhou University, Guizhou University, Guiyang, China
| | - Entang Tian
- Oil Crops Research Institute of Guizhou University, Agricultural College of Guizhou University, Guizhou University, Guiyang, China
- * E-mail:
| |
Collapse
|
17
|
Soundararajan P, Kim JS. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Molecules 2018; 23:E2983. [PMID: 30445746 PMCID: PMC6278308 DOI: 10.3390/molecules23112983] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Glucosinolates (GSL) are naturally occurring β-d-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs by enzyme myrosinase. Benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane ([1-isothioyanato-4-(methyl-sulfinyl) butane], SFN) are potential ITCs with efficient therapeutic properties. Beneficial role of BITC, PEITC and SFN was widely studied against various cancers such as breast, brain, blood, bone, colon, gastric, liver, lung, oral, pancreatic, prostate and so forth. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor limits the tumor progression. Induction of ARE (antioxidant responsive element) and ROS (reactive oxygen species) mediated pathway by Nrf2 controls the activity of nuclear factor-kappaB (NF-κB). NF-κB has a double edged role in the immune system. NF-κB induced during inflammatory is essential for an acute immune process. Meanwhile, hyper activation of NF-κB transcription factors was witnessed in the tumor cells. Antagonistic activity of BITC, PEITC and SFN against cancer was related with the direct/indirect interaction with Nrf2 and NF-κB protein. All three ITCs able to disrupts Nrf2-Keap1 complex and translocate Nrf2 into the nucleus. BITC have the affinity to inhibit the NF-κB than SFN due to the presence of additional benzyl structure. This review will give the overview on chemo preventive of ITCs against several types of cancer cell lines. We have also discussed the molecular interaction(s) of the antagonistic effect of BITC, PEITC and SFN with Nrf2 and NF-κB to prevent cancer.
Collapse
Affiliation(s)
- Prabhakaran Soundararajan
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| |
Collapse
|
18
|
Seo MS, Kim JS. Understanding of MYB Transcription Factors Involved in Glucosinolate Biosynthesis in Brassicaceae. Molecules 2017; 22:molecules22091549. [PMID: 28906468 PMCID: PMC6151624 DOI: 10.3390/molecules22091549] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Glucosinolates (GSLs) are widely known secondary metabolites that have anticarcinogenic and antioxidative activities in humans and defense roles in plants of the Brassicaceae family. Some R2R3-type MYB (myeloblastosis) transcription factors (TFs) control GSL biosynthesis in Arabidopsis. However, studies on the MYB TFs involved in GSL biosynthesis in Brassica species are limited because of the complexity of the genome, which includes an increased number of paralog genes as a result of genome duplication. The recent completion of the genome sequencing of the Brassica species permits the identification of MYB TFs involved in GSL biosynthesis by comparative genome analysis with A. thaliana. In this review, we describe various findings on the regulation of GSL biosynthesis in Brassicaceae. Furthermore, we identify 63 orthologous copies corresponding to five MYB TFs from Arabidopsis, except MYB76 in Brassica species. Fifty-five MYB TFs from the Brassica species possess a conserved amino acid sequence in their R2R3 MYB DNA-binding domain, and share close evolutionary relationships. Our analysis will provide useful information on the 55 MYB TFs involved in the regulation of GSL biosynthesis in Brassica species, which have a polyploid genome.
Collapse
Affiliation(s)
- Mi-Suk Seo
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| |
Collapse
|