1
|
MK Nair P, Silwal K, Ramalakshmi R, Devibala M, Saranya M, Sivaranjani S, Ramasamy T, Palanisamy A, Mahalingam M. Beyond genetics: integrative oncology and the metabolic perspective on cancer treatment. Front Oncol 2024; 14:1455022. [PMID: 39376991 PMCID: PMC11456992 DOI: 10.3389/fonc.2024.1455022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 10/09/2024] Open
Abstract
Cancer is traditionally approached as a genetic disease, with standard treatments including chemotherapy, radiation, targeted therapy, immunotherapy, and surgery significantly improving survival rates and patient outcomes. However, there is a growing recognition of the need for integrative oncology, which expands cancer management by considering cancer as a metabolic disease. Integrative medicine physicians employ holistic therapies focused on patients' needs, aiming to correct the metabolic imbalances associated with cancer and alleviate cancer-related symptoms. Viewing cancer as a metabolic disease involves addressing factors such as an acidic microenvironment, vitamin C deficiency, mitochondrial dysfunction, reduced intracellular oxygen levels, elevated oxidative stress, dysfunctional autophagy, and psychological stress. This paper presents an overview of the evidence and comprehensive strategies supporting integrative medicine approaches in addressing cancer metabolism in integrative oncology settings. Furthermore, the paper underscores the necessity of integrating different cancer theories-genetic and metabolic-for improved patient outcomes and experiences. By combining these perspectives, integrative oncology offers a more holistic, patient-centered approach to cancer treatment.
Collapse
Affiliation(s)
- Pradeep MK Nair
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, India
| | - Karishma Silwal
- Department of Naturopathy, Sant Hirdaram Medical College of Naturopathy and Yogic Sciences, Bhopal, India
| | | | - Muniappan Devibala
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, India
| | | | - Sekar Sivaranjani
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, India
| | - Thangavelu Ramasamy
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, India
| | - Ayyappan Palanisamy
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, India
| | - Manickam Mahalingam
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, India
| |
Collapse
|
2
|
Stigliani A, Ialchina R, Yao J, Czaplinska D, Dai Y, Andersen HB, Rennie S, Andersson R, Pedersen SF, Sandelin A. Adaptation to an acid microenvironment promotes pancreatic cancer organoid growth and drug resistance. Cell Rep 2024; 43:114409. [PMID: 38944837 DOI: 10.1016/j.celrep.2024.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/11/2023] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Harsh environments in poorly perfused tumor regions may select for traits driving cancer aggressiveness. Here, we investigated whether tumor acidosis interacts with driver mutations to exacerbate cancer hallmarks. We adapted mouse organoids from normal pancreatic duct (mN10) and early pancreatic cancer (mP4, KRAS-G12D mutation, ± p53 knockout) from extracellular pH 7.4 to 6.7, representing acidic niches. Viability was increased by acid adaptation, a pattern most apparent in wild-type (WT) p53 organoids, and exacerbated upon return to pH 7.4. This led to increased survival of acid-adapted organoids treated with gemcitabine and/or erlotinib, and, in WT p53 organoids, acid-induced attenuation of drug effects. New genetic variants became dominant during adaptation, yet they were unlikely to be its main drivers. Transcriptional changes induced by acid and drug adaptation differed overall, but acid adaptation increased the expression of gemcitabine resistance genes. Thus, adaptation to acidosis increases cancer cell viability after chemotherapy.
Collapse
Affiliation(s)
- Arnaud Stigliani
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, DK2100 Copenhagen Ø, Denmark
| | - Jiayi Yao
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Dominika Czaplinska
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, DK2100 Copenhagen Ø, Denmark
| | - Yifan Dai
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Henriette Berg Andersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, DK2100 Copenhagen Ø, Denmark
| | - Sarah Rennie
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Robin Andersson
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, DK2100 Copenhagen Ø, Denmark.
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark.
| |
Collapse
|
3
|
Abstract
Cancers undergo sequential changes to proton (H+) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation. These cancer-supporting effects become more prominent when tumours develop an acidic microenvironment owing to metabolic reprogramming and disordered perfusion. The ensuing intracellular and extracellular pH disturbances affect multiple aspects of tumour biology, ranging from proliferation to immune surveillance, and can even facilitate further mutagenesis. As a selection pressure, extracellular acidosis accelerates disease progression by favouring acid-resistant cancer cells, which are typically associated with aggressive phenotypes. Although acid-base disturbances in tumours often occur alongside hypoxia and lactate accumulation, there is now ample evidence for a distinct role of H+-operated responses in key events underpinning cancer. The breadth of these actions presents therapeutic opportunities to change the trajectory of disease.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, University of Copenhagen, Faculty of Science, København, Denmark.
| |
Collapse
|
4
|
Fukuda T, Komaki Y, Mori Y, Ibuki Y. Low extracellular pH inhibits nucleotide excision repair. Mutat Res 2021; 867:503374. [PMID: 34266626 DOI: 10.1016/j.mrgentox.2021.503374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022]
Abstract
Nucleotide excision repair (NER) is the main pathway to repair bulky DNA damages including pyrimidine dimers, and the genetic dysregulation of NER associated proteins is well known to cause diseases such as cancer and neurological disorder. Other than the genetic defects, 'external factors' such as oxidative stress and environmental chemicals also affect NER. In this study, we examined the impact of extracellular pH on NER. We prepared the culture media, whose pH values are 8.4 (normal condition), 7.6, 6.6 and 6.2 under atmospheric CO2 conditions. Human keratinocytes, HaCaT, slightly died after 48 h incubation in DMEM at pH 8.4, 7.6 and 6.6, while in pH 6.2 condition, marked cell death was induced. UV-induced pyrimidine dimers, pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) and cyclobutane pyrimidine dimers (CPDs), were effectively repaired at 60 min and 24 h, respectively, which were remarkably inhibited at pH 6.6 and 6.2. The associated repair molecule, TFIIH, was accumulated to the damaged sites 5 min after UVC irradiation in all pH conditions, but the release was delayed as the pH got lower. Furthermore, accumulation of XPG at 5 min was delayed at pH 6.2 and 6.6, and the release at 60 min was completely suppressed. At the low pH, the DNA synthesis at the gaps created by incision of oligonucleotides containing pyrimidine dimers was significantly delayed. In this study, we found that the low extracellular pH inhibited NER pathway. This might partially contribute to carcinogenesis in inflamed tissues, which exhibit acidic pH.
Collapse
Affiliation(s)
- Tetsuya Fukuda
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Yuta Mori
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| |
Collapse
|
5
|
Abstract
Extracellular acidification is a well-known driver of tumorigenesis that has been extensively studied. In contrast, the role of endosomal pH is novel and relatively unexplored. There is emerging evidence from a growing number of studies showing that the pH of endosomal compartments controls proliferation, migration, stemness, and sensitivity to chemoradiation therapy in a variety of tumors. Endosomes are a crucial hub, mediating cellular communication with the external environment. By finely regulating the sorting and trafficking of vesicular cargo for degradation or recycling, endosomal pH determines the fate of plasma membrane proteins, lipids, and extracellular signals including growth factor receptors and their ligands. Several critical regulators of endosomal pH have been identified, including multiple isoforms of the family of electroneutral Na+/H+ exchangers (NHE) such as NHE6 and NHE9. Recent studies have shed light on molecular mechanisms linking endosomal pH to cancer malignancy. Manipulating endosomal pH by epigenetic reprogramming, small molecules, or nanoparticles may offer promising new options in cancer therapy. In this review, we summarize evidence linking endosomal pH to cancer, with a focus on the role of endosomal Na+/H+ exchangers and how they affect the prognosis of cancer patients, and also suggest how regulation of endosomal pH may be exploited to develop new cancer therapies.
Collapse
|
6
|
Massonneau J, Lacombe-Burgoyne C, Boissonneault G. pH-induced variations in the TK1 gene model. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 849:503128. [PMID: 32087849 DOI: 10.1016/j.mrgentox.2019.503128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022]
Abstract
A physiological decrease in extracellular pH (pHe) alters the efficiency of DNA repair and increases formation of DNA double-strand breaks (DSBs). Whether this could translate into genetic instability and variations, was investigated using the TK6 cell model, in which positive selection of the TK1 gene loss-of-function mutations can be achieved from resistance to trifluorothymidine. Cell exposure to suboptimal pH (down to 6.9) for 3 weeks resulted in the 100 % frequency of a stronger frameshift mutation that has spread to both TK1 alleles, whereas weaker frameshift mutations within the 3'exon were eliminated during the selection. Suboptimal pHe values were also found to alter the proportion of the TK1 splicing variant expressed as percent spliced in index values and promote selection of truncated exons as well as intron retention. Although recovery at pH 7.4 did not reverse the selected frameshift mutation, reversal of splice variants and exon truncation towards control values were observed. Hence, suboptimal pHe can induce a combination of mutational events and splicing alterations within the same gene in the resistant clones. This model of positive selection for loss-of-function clearly demonstrates that suboptimal pHe may confer a similar growth advantage when such instability occurs within tumor suppressor genes.
Collapse
Affiliation(s)
- Julien Massonneau
- Dept of Biochemistry and Functional Genomics, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Chloë Lacombe-Burgoyne
- Dept of Biochemistry and Functional Genomics, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guylain Boissonneault
- Dept of Biochemistry and Functional Genomics, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
7
|
Abstract
Acidic metabolic waste products accumulate in the tumor microenvironment because of high metabolic activity and insufficient perfusion. In tumors, the acidity of the interstitial space and the relatively well-maintained intracellular pH influence cancer and stromal cell function, their mutual interplay, and their interactions with the extracellular matrix. Tumor pH is spatially and temporally heterogeneous, and the fitness advantage of cancer cells adapted to extracellular acidity is likely particularly evident when they encounter less acidic tumor regions, for instance, during invasion. Through complex effects on genetic stability, epigenetics, cellular metabolism, proliferation, and survival, the compartmentalized pH microenvironment favors cancer development. Cellular selection exacerbates the malignant phenotype, which is further enhanced by acid-induced cell motility, extracellular matrix degradation, attenuated immune responses, and modified cellular and intercellular signaling. In this review, we discuss how the acidity of the tumor microenvironment influences each stage in cancer development, from dysplasia to full-blown metastatic disease.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stine F. Pedersen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Lagadic-Gossmann D, Hardonnière K, Mograbi B, Sergent O, Huc L. Disturbances in H + dynamics during environmental carcinogenesis. Biochimie 2019; 163:171-183. [PMID: 31228544 DOI: 10.1016/j.biochi.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Abstract
Despite the improvement of diagnostic methods and anticancer therapeutics, the human population is still facing an increasing incidence of several types of cancers. According to the World Health Organization, this growing trend would be partly linked to our environment, with around 20% of cancers stemming from exposure to environmental contaminants, notably chemicals like polycyclic aromatic hydrocarbons (PAHs). PAHs are widespread pollutants in our environment resulting from incomplete combustion or pyrolysis of organic material, and thus produced by both natural and anthropic sources; notably benzo[a]pyrene (B[a]P), i.e. the prototypical molecule of this family, that can be detected in cigarette smoke, diesel exhaust particles, occupational-related fumes, and grilled food. This molecule is a well-recognized carcinogen belonging to group 1 carcinogens. Indeed, it can target the different steps of the carcinogenic process and all cancer hallmarks. Interestingly, H+ dynamics have been described as key parameters for the occurrence of several, if not all, of these hallmarks. However, information regarding the role of such parameters during environmental carcinogenesis is still very scarce. The present review will thus mainly give an overview of the impact of B[a]P on H+ dynamics in liver cells, and will show how such alterations might impact different aspects related to the finely-tuned balance between cell death and survival processes, thereby likely favoring environmental carcinogenesis. In total, the main objective of this review is to encourage further research in this poorly explored field of environmental molecular toxicology.
Collapse
Affiliation(s)
- Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Kévin Hardonnière
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081, CNRS UMR7284, 2. Université de Nice-Sophia Antipolis, Faculté de Médecine, Centre Antoine Lacassagne, Nice, F-06107, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
9
|
Koch A, Schwab A. Cutaneous pH landscape as a facilitator of melanoma initiation and progression. Acta Physiol (Oxf) 2019; 225:e13105. [PMID: 29802798 DOI: 10.1111/apha.13105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
Melanoma incidence is on the rise and currently causes the majority of skin cancer-related deaths. Yet, therapies for metastatic melanoma are still insufficient so that new concepts are essential. Malignant transformation of melanocytes and melanoma progression are intimately linked to the cutaneous pH landscape and its dysregulation in tumour lesions. The pH landscape of normal skin is characterized by a large pH gradient of up to 3 pH units between surface and dermis. The Na+ /H+ exchanger NHE1 is one of the major contributors of acidity in superficial skin layers. It is also activated by the most frequent mutation in melanoma, BRAFV 600E , thereby causing pH dysregulation during melanoma initiation. Melanoma progression is supported by an extracellular acidification and/or NHE1 activity which promote the escape of single melanoma cells from the primary tumour, migration and metastatic spreading. We propose that viewing melanoma against the background of the acid-base physiology of the skin provides a better understanding of the pathophysiology of this disease and allows the development of novel therapeutic concepts.
Collapse
Affiliation(s)
- A. Koch
- Institute of Physiology II; University of Münster; Münster Germany
| | - A. Schwab
- Institute of Physiology II; University of Münster; Münster Germany
| |
Collapse
|
10
|
Bleomycin inhibits proliferation and induces apoptosis in TPC-1 cells through reversing M2-macrophages polarization. Oncol Lett 2018; 16:3858-3866. [PMID: 30127999 PMCID: PMC6096247 DOI: 10.3892/ol.2018.9103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is one of the most common types of thyroid malignancy. Previous studies have demonstrated that the density of tumor-associated macrophages (TAMs) within the tumor microenvironment affects the progression of PTC due to the imbalance in M1/M2 macrophage subtypes. M2 macrophages induce anti-inflammatory effects and promote tumor progression, whereas M1 macrophages destroy tumor cells. Therefore, reversing TAM polarization to M1 may be a novel strategy for the treatment of cancer. Although bleomycin (BLM) is a commonly used anti-cancer drug, which regulates the secretion of relevant cytokines, high dose and long-term treatment with BLM may lead to pulmonary fibrosis. In the present study, flow cytometry data revealed that low dose treatment with BLM (5 or 10 mU/ml) facilitated the expression of the M1 phenotype markers cluster of differentiation (CD)80 and C-C chemokine receptor 7, and concurrently suppressed the M2 marker CD206 on M2-macrophages. Reverse transcription-quantitative polymerase chain reaction data revealed that the expression levels of tumor necrosis factor-α and interleukin-1β markedly increased, whereas the expression of IL-10 decreased in M2 macrophages treated with BLM. A fluorescein isothiocyanate-dextran uptake experiment revealed that BLM increased the phagocytic capacity of M2, however not M1 or M0 macrophages. In addition, to verify the effect of BLM-treated M2 macrophages on thyroid carcinoma cells, a co-culture system of macrophages and the human PTC cell line TPC-1, was established. BLM-treated M2 macrophages increased the number of cells in early and late apoptosis and inhibited the migration, proliferation and invasion of TPC-1 cells. These results suggest that a low dose and indirect effect of BLM may induce suppressive effects on PTC by selectively reversing M2 macrophage polarization to M1, which may provide a novel strategy for cancer treatment.
Collapse
|