1
|
Lim CC, Lim TS. Profiling the broad antibody diversity of lymphatic filariasis immune antibody repertoire by deep sequencing. Int J Biol Macromol 2025; 290:140037. [PMID: 39828167 DOI: 10.1016/j.ijbiomac.2025.140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Lymphatic filariasis is caused by infections of thread-like filarial worms, namely Wuchereria bancrofti, Brugia Malayi and Brugia timori. However, in-depth analysis of the antibody repertoire against Lymphatic filariasis is lacking. Using high-throughput sequencing of antibody repertoires, immunome analysis of IgG (LG) and IgM (LM) repertoires were studied. Despite significant differences between LG and LM in V(D)J gene usage, IGHV4-34, IGHV6-1, IGHD3-10 and IGHJ4 were preferred in both repertoires. The CDR3 in the LG repertoire showed a longer length than LM. Higher SHM level were observed in LG sequences and presence of oligoclonal sequences indicates the extent of clonal expansion. The prevalence of rare clonotypes in LM repertoire depicts the high clonal diversity when compared to LG repertoire. Monoclonal antibodies against closely related parasitic infections were present within the LG repertoire suggesting that immune repertoires may not be as exclusive and biased against the target infection as initially thought. The characterization of the immune repertoire can provide critical insight into the antibody response patterns in disease state, antibody generation process during infections and future antibody designs.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
2
|
Hui L, Wu F, Xu Y, Yang G, Luo Q, Li Y, Ma L, Yao X, Li J. The T-cell receptor β chain CDR3 insights of bovine liver immune repertoire under heat stress. Anim Biosci 2024; 37:2178-2188. [PMID: 38938039 PMCID: PMC11541024 DOI: 10.5713/ab.24.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The liver plays a dual role in regulating temperature and immune responses. Examining the influence of heat stress (HS) on liver T cells contributes significantly to understanding the intricate interplay between the immune system and hepatic tissues under thermal stress. This study focused on investigating the characteristics of the T-cell receptor (TCR) β chain CDR3 repertoire in bovine liver samples under both HS and pairfed (PF) environmental conditions. METHODS Sequencing data from six samples sourced from the GEO database underwent annotation. Utilizing immunarch and VDJtool software, the study conducted comprehensive analyses encompassing basic evaluation, clonality assessment, immune repertoire comparison, diversity estimation, gene usage profiling, VJ gene segment pairing scrutiny, clonal tracking, and Kmers analysis. RESULTS All four TCR chains, namely α, β, γ, and δ, were detected, with the α chains exhibiting the highest detection frequency, followed closely by the β chains. The prevalence of αβ TCRs in bovine liver samples underscored their crucial role in governing hepatic tissue's physiological functions. The TCR β CDR3 repertoire showcased substantial inter-individual variability, featuring diverse clonotypes exhibiting distinct amino acid lengths. Intriguingly, HS cattle displayed heightened diversity and clonality, suggesting potential peripheral T cell migration into the liver under environmental conditions. Notably, differential VJ gene pairings were observed in HS cattle compared to the PF, despite individual variations in V and J gene utilization. Additionally, while most high-frequency amino acid 5-mers remained consistent between the HS and PF, GELHF, and YDYHF were notably prevalent in the HS group. Across all samples, a prevalent trend of high-frequency 5mers skewed towards polar and hydrophobic amino acids was evident. CONCLUSION This study elucidates the characteristics of liver TCR β chain CDR3 repertoire under HS conditions, enhancing our understanding of HS implications.
Collapse
Affiliation(s)
- Linhu Hui
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Guangjun Yang
- Xiangyun County Livestock Workstation, Xiangyun 671000,
China
| | - Qiaorong Luo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201,
China
| | - Yangyang Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| |
Collapse
|
3
|
Henderson J, Nagano Y, Milighetti M, Tiffeau-Mayer A. Limits on inferring T cell specificity from partial information. Proc Natl Acad Sci U S A 2024; 121:e2408696121. [PMID: 39374400 PMCID: PMC11494314 DOI: 10.1073/pnas.2408696121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
A key challenge in molecular biology is to decipher the mapping of protein sequence to function. To perform this mapping requires the identification of sequence features most informative about function. Here, we quantify the amount of information (in bits) that T cell receptor (TCR) sequence features provide about antigen specificity. We identify informative features by their degree of conservation among antigen-specific receptors relative to null expectations. We find that TCR specificity synergistically depends on the hypervariable regions of both receptor chains, with a degree of synergy that strongly depends on the ligand. Using a coincidence-based approach to measuring information enables us to directly bound the accuracy with which TCR specificity can be predicted from partial matches to reference sequences. We anticipate that our statistical framework will be of use for developing machine learning models for TCR specificity prediction and for optimizing TCRs for cell therapies. The proposed coincidence-based information measures might find further applications in bounding the performance of pairwise classifiers in other fields.
Collapse
Affiliation(s)
- James Henderson
- Division of Infection and Immunity, University College London, LondonWC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, LondonWC1E 6BT, United Kingdom
| | - Yuta Nagano
- Division of Infection and Immunity, University College London, LondonWC1E 6BT, United Kingdom
- Division of Medicine, University College London, LondonWC1E 6BT, United Kingdom
| | - Martina Milighetti
- Division of Infection and Immunity, University College London, LondonWC1E 6BT, United Kingdom
- Cancer Institute, University College London, LondonWC1E 6DD, United Kingdom
| | - Andreas Tiffeau-Mayer
- Division of Infection and Immunity, University College London, LondonWC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, LondonWC1E 6BT, United Kingdom
| |
Collapse
|
4
|
Xia J, Xiao Y, Gui G, Gong S, Wang H, Li X, Yan R, Fan J. Insights into cytomegalovirus-associated T cell receptors in recipients following allogeneic hematopoietic stem cell transplantation. Virol J 2024; 21:236. [PMID: 39350155 PMCID: PMC11443867 DOI: 10.1186/s12985-024-02511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) reactivation is a serious problem in recipients of allogeneic hematopoietic stem cell transplantation. Long-term latency depends on specific T cell immune reconstitution, which identifies various pathogens by T cell receptors (TCRs). However, the mechanisms underlying the selection of CMV-specific TCRs in recipients after transplantation remain unclear. METHODS Using high-throughput sequencing and bioinformatics analysis, the T cell immune repertoire of seven CMV reactivated recipients (CRRs) were analyzed and compared to those of seven CMV non-activated recipients (CNRs) at an early stage after transplant. RESULTS The counts of unique complementarity-determining region 3 (CDR3) were significantly higher in CNRs than in CRRs. The CDR3 clones in the CNRs exhibit higher homogeneity compared to the CRRs. With regard to T cell receptor β-chain variable region (TRBV) and joint region (TRBJ) genotypes, significant differences were observed in the frequencies of TRBV6, BV23, and BV7-8 between the two groups. In addition to TRBV29-1/BJ1-2, TRBV2/BJ2-2, and TRBV12-4/BJ1-5, 11 V-J combinations had significantly different expression levels between CRRs and CNRs. CONCLUSIONS The differences in TCR diversity, TRBV segments, and TRBV-BJ combinations observed between CNRs and CRRs might be associated with post-transplant CMV reactivation and could serve as a foundation for further research.
Collapse
Affiliation(s)
- Jintao Xia
- Department of Clinical Laboratory, Department of "A", Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310053, China
| | - Yingjun Xiao
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhongshan Hospital of Zhejiang Province, Hangzhou, China
| | - Genyong Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31006, China
| | - Shengnan Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31006, China
| | - Huiqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31006, China
| | - Xuejie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31006, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31006, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31006, China.
| |
Collapse
|
5
|
Liang C, Sun L, Zhu Y, Wu J, Zhao A, Huang T, Yan F, He K. Local chicken breeds exhibit abundant TCR-V segments but similar repertoire diversity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105196. [PMID: 38762097 DOI: 10.1016/j.dci.2024.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
The thymus-derived lymphocytes of jawed vertebrates have four T-cell receptor (TCR) chains that play a significant role in immunity. As chickens have commercial value, their immune systems require a great deal of attention. Local chicken breeds are an essential part of poultry genetic resources in China. Here, we used high-throughput sequencing to analyze the TCRα and TCRβ repertoires and their relative expression levels in the native chicken breeds Baier Buff, Longyou Partridge, Xiaoshan, and Xianju. We found that TCR Vα and TCR Vβ were expressed and included 17, 19, 17, and six segments of the Vα2, Vα3, Vβ1, and Vβ2 subgroups, respectively. V-J pairing was biased; Jα11 was utilized by nearly all Vα segments and was the most commonly used. Breed-specific V segments and V-J pairings were detected as well. The results of the principal coordinate analysis (PCoA) as well as the V-J pairing and CDR3 diversity analyses suggested that the four local chicken breeds did not significantly differ in terms of TCR diversity. Hence, they expressed not significant differentiation, and they are rich genetic resources for the development and utilization of immune-related poultry breeding.
Collapse
Affiliation(s)
- Chunhong Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China
| | - Lin Sun
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China
| | - Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Jianqing Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China
| | - Ayong Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China
| | - Tao Huang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China
| | - Feifei Yan
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Yu Z, Jiang M, Lan X. HeteroTCR: A heterogeneous graph neural network-based method for predicting peptide-TCR interaction. Commun Biol 2024; 7:684. [PMID: 38834836 PMCID: PMC11150398 DOI: 10.1038/s42003-024-06380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
Identifying interactions between T-cell receptors (TCRs) and immunogenic peptides holds profound implications across diverse research domains and clinical scenarios. Unsupervised clustering models (UCMs) cannot predict peptide-TCR binding directly, while supervised predictive models (SPMs) often face challenges in identifying antigens previously unencountered by the immune system or possessing limited TCR binding repertoires. Therefore, we propose HeteroTCR, an SPM based on Heterogeneous Graph Neural Network (GNN), to accurately predict peptide-TCR binding probabilities. HeteroTCR captures within-type (TCR-TCR or peptide-peptide) similarity information and between-type (peptide-TCR) interaction insights for predictions on unseen peptides and TCRs, surpassing limitations of existing SPMs. Our evaluation shows HeteroTCR outperforms state-of-the-art models on independent datasets. Ablation studies and visual interpretation underscore the Heterogeneous GNN module's critical role in enhancing HeteroTCR's performance by capturing pivotal binding process features. We further demonstrate the robustness and reliability of HeteroTCR through validation using single-cell datasets, aligning with the expectation that pMHC-TCR complexes with higher predicted binding probabilities correspond to increased binding fractions.
Collapse
Affiliation(s)
- Zilan Yu
- School of Medicine, Tsinghua University, 100084, Beijing, China
- Centre for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Mengnan Jiang
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Xun Lan
- School of Medicine, Tsinghua University, 100084, Beijing, China.
- Centre for Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Tsinghua University, Beijing, China.
- MOE Key Laboratory of Bioinformatics, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
7
|
Hoffmann M, Willruth LL, Dietrich A, Lee HK, Knabl L, Trummer N, Baumbach J, Furth PA, Hennighausen L, List M. Blood transcriptomics analysis offers insights into variant-specific immune response to SARS-CoV-2. Sci Rep 2024; 14:2808. [PMID: 38307916 PMCID: PMC10837437 DOI: 10.1038/s41598-024-53117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/28/2024] [Indexed: 02/04/2024] Open
Abstract
Bulk RNA sequencing (RNA-seq) of blood is typically used for gene expression analysis in biomedical research but is still rarely used in clinical practice. In this study, we propose that RNA-seq should be considered a diagnostic tool, as it offers not only insights into aberrant gene expression and splicing but also delivers additional readouts on immune cell type composition as well as B-cell and T-cell receptor (BCR/TCR) repertoires. We demonstrate that RNA-seq offers insights into a patient's immune status via integrative analysis of RNA-seq data from patients infected with various SARS-CoV-2 variants (in total 196 samples with up to 200 million reads sequencing depth). We compare the results of computational cell-type deconvolution methods (e.g., MCP-counter, xCell, EPIC, quanTIseq) to complete blood count data, the current gold standard in clinical practice. We observe varying levels of lymphocyte depletion and significant differences in neutrophil levels between SARS-CoV-2 variants. Additionally, we identify B and T cell receptor (BCR/TCR) sequences using the tools MiXCR and TRUST4 to show that-combined with sequence alignments and BLASTp-they could be used to classify a patient's disease. Finally, we investigated the sequencing depth required for such analyses and concluded that 10 million reads per sample is sufficient. In conclusion, our study reveals that computational cell-type deconvolution and BCR/TCR methods using bulk RNA-seq analyses can supplement missing CBC data and offer insights into immune responses, disease severity, and pathogen-specific immunity, all achievable with a sequencing depth of 10 million reads per sample.
Collapse
Affiliation(s)
- Markus Hoffmann
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany.
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Lina-Liv Willruth
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Alexander Dietrich
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA
| | | | - Nico Trummer
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark
| | - Priscilla A Furth
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA
- Departments of Oncology & Medicine, Georgetown University, Washington, DC, USA
| | - Lothar Hennighausen
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Markus List
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
8
|
Hoffmann M, Willruth LL, Dietrich A, Lee HK, Knabl L, Trummer N, Baumbach J, Furth PA, Hennighausen L, List M. Blood transcriptomics analysis offers insights into variant-specific immune response to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.564190. [PMID: 38076885 PMCID: PMC10705570 DOI: 10.1101/2023.11.03.564190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bulk RNA sequencing (RNA-seq) of blood is typically used for gene expression analysis in biomedical research but is still rarely used in clinical practice. In this study, we argue that RNA-seq should be considered a routine diagnostic tool, as it offers not only insights into aberrant gene expression and splicing but also delivers additional readouts on immune cell type composition as well as B-cell and T-cell receptor (BCR/TCR) repertoires. We demonstrate that RNA-seq offers vital insights into a patient's immune status via integrative analysis of RNA-seq data from patients infected with various SARS-CoV-2 variants (in total 240 samples with up to 200 million reads sequencing depth). We compare the results of computational cell-type deconvolution methods (e.g., MCP-counter, xCell, EPIC, quanTIseq) to complete blood count data, the current gold standard in clinical practice. We observe varying levels of lymphocyte depletion and significant differences in neutrophil levels between SARS-CoV-2 variants. Additionally, we identify B and T cell receptor (BCR/TCR) sequences using the tools MiXCR and TRUST4 to show that - combined with sequence alignments and pBLAST - they could be used to classify a patient's disease. Finally, we investigated the sequencing depth required for such analyses and concluded that 10 million reads per sample is sufficient. In conclusion, our study reveals that computational cell-type deconvolution and BCR/TCR methods using bulk RNA-seq analyses can supplement missing CBC data and offer insights into immune responses, disease severity, and pathogen-specific immunity, all achievable with a sequencing depth of 10 million reads per sample.
Collapse
Affiliation(s)
- Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Lina-Liv Willruth
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Alexander Dietrich
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | | | - Nico Trummer
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark
| | - Priscilla A. Furth
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
- Departments of Oncology & Medicine, Georgetown University, Washington, DC, United States of America
| | - Lothar Hennighausen
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
10
|
Aran A, Lázaro G, Marco V, Molina E, Abancó F, Peg V, Gión M, Garrigós L, Pérez-García J, Cortés J, Martí M. Analysis of tumor infiltrating CD4+ and CD8+ CDR3 sequences reveals shared features putatively associated to the anti-tumor immune response. Front Immunol 2023; 14:1227766. [PMID: 37600765 PMCID: PMC10436466 DOI: 10.3389/fimmu.2023.1227766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Tumor-infiltrating lymphocytes (TILs) have predictive and prognostic value in breast cancer (BC) and exert a protective function against tumor growth, indicating that it is susceptible to treatment using adoptive cell transfer of TILs or T cell receptor (TCR)-based therapies. TCR can be used to identify naturally tumor-reactive T cells, but little is known about the differences in the TCR repertoires of CD4+ and CD8+ TILs. Methods TCR high-throughput sequencing was performed using TILs derived from the initial cultures of 11 BC biopsies and expanded and sorted CD4+ and CD8+ TILs as well as using PBMCs from healthy donors expanded and sorted using the same methodology. Results Physicochemical TCR differences between T cell subsets were observed, as CD4+ TILs presented larger N(D)Nnt TRB sequences and with a higher usage of positively charged residues, although only the latest was also observed in peripheral T cells from healthy individuals. Moreover, in CD4+ TILs, a more restricted TCR repertoire with a higher abundance of similar sequences containing certain amino acid motifs was observed. Discussion Some differences between CD4+ and CD8+ TCRs were intrinsic to T cell subsets as can also be observed in peripheral T cells from healthy individuals, while other were only found in TILs samples and therefore may be tumor-driven. Notably, the higher similarity among CD4+ TCRs suggests a higher TCR promiscuity in this subset.
Collapse
Affiliation(s)
- Andrea Aran
- Immunology Unit, Department of Cell Biology, Physiology, and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Gonzalo Lázaro
- Immunology Unit, Department of Cell Biology, Physiology, and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Vicente Marco
- Pathology, Hospital Quironsalud Barcelona, Barcelona, Spain
| | - Elisa Molina
- Immunology Unit, Department of Cell Biology, Physiology, and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ferran Abancó
- Immunology Unit, Department of Cell Biology, Physiology, and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Vicente Peg
- Pathology Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Department of Morphological Sciences, Universidad Autónoma de Barcelona, Bellaterra, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - María Gión
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | - Laia Garrigós
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain
| | - José Pérez-García
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain
- Medical Scientia Innovation Research (MedSIR), Barcelona, Spain
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain
- Medical Scientia Innovation Research (MedSIR), Barcelona, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Mercè Martí
- Immunology Unit, Department of Cell Biology, Physiology, and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
11
|
Mösch A, Frishman D. TCRpair: prediction of functional pairing between HLA-A*02:01-restricted T cell receptor α and β chains. Bioinformatics 2021; 37:3938-3940. [PMID: 34487137 DOI: 10.1093/bioinformatics/btab573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/21/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
SUMMARY The ability of a T cell to recognize foreign peptides is defined by a single α and a single β hypervariable complementarity determining region (CDR3), which together form the T cell receptor (TCR) heterodimer. In ∼30%-35% of T cells, two α chains are expressed at the mRNA level but only one α chain is part of the functional TCR. This effect can also be observed for β chains, although it is less common. The identification of functional α/β chain pairs is instrumental in high-throughput characterization of therapeutic TCRs. TCRpair is the first method that predicts whether an α and β chain pair forms a functional, HLA-A*02:01 specific TCR without requiring the sequence of a recognized peptide. By taking additional amino acids flanking the CDR3 regions into account, TCRpair achieves an AUC of 0.71. AVAILABILITY TCRpair is implemented in Python using TensorFlow 2.0 and is freely available at https://www.github.com/amoesch/TCRpair. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anja Mösch
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Freising, 85354, Germany.,Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, 82152, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Freising, 85354, Germany.,Department of Bioinformatics, Peter the Great Saint Petersburg Polytechnic University, Petersburg, 195251, St Russia
| |
Collapse
|
12
|
Zhu Y, Huang C, Su M, Ge Z, Gao L, Shi Y, Wang X, Chen J. Characterization of amino acid residues of T-cell receptors interacting with HLA-A*02-restricted antigen peptides. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:495. [PMID: 33850892 PMCID: PMC8039679 DOI: 10.21037/atm-21-835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background The present study aimed to explore residues’ properties interacting with HLA-A*02-restricted peptides on T-cell receptors (TCRs) and their effects on bond types of interaction and binding free energy. Methods We searched the crystal structures of HLA-A*02-restricted peptide-TCR complexes from the Protein Data Bank (PDB) database and subsequently collected relevant parameters. We then employed Schrodinger to analyze the bond types of interaction and Gromacs 2019 to evaluate the TCR-antigen peptide complex’s molecular dynamics simulation. Finally, we compared the changes of bond types of interaction and binding free energy before and after residue substitution to ensure consistency of the conditions before and after residue substitution. Results The main sites on the antigen peptides that formed the intermolecular interaction [hydrogen bond (HB) and pi stack] with TCRs were P4, P8, P2, and P6. The hydrophobicity of the amino acids inside or outside the disulfide bond of TCRs may be related to the intermolecular interaction and binding free energy between TCRs and peptides. Residues located outside the disulfide bond of TCR α or β chains and forming pi stack force played favorable roles in the complex intermolecular interaction and binding free energy. The residues of the TCR α or β chains that interacted with peptides were replaced by alanine (Ala) or glycine (Gly), and their intermolecular binding free energy of the complex had been improved. However, it had nothing to do with the formation of HB. Conclusions The findings of this study suggest that the hydrophobic nature of the amino acids inside or outside the disulfide bonds on the TCR may be associated with the intermolecular interaction and binding between the TCR and polypeptide. The residues located outside the TCR α or β single-chain disulfide bond and forming the pi-stack force showed a beneficial effect on the intermolecular interaction and binding of the complex. In addition, the part of the residues on the TCR α or β single chain that produced bond types of interaction with the polypeptide after being replaced by Ala or Gly, the intermolecular binding free energy of the complex was increased, regardless of whether HB was formed.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Changxin Huang
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Meng Su
- Master Class, Zhejiang Chinese Medical University, Fourth School of Clinical Medicine, Hangzhou, China
| | - Zuanmin Ge
- Master Class, Hangzhou Normal University, School of Medicine, Hangzhou, China
| | - Lanlan Gao
- Master Class, Hangzhou Normal University, School of Medicine, Hangzhou, China
| | - Yanfei Shi
- Master Class, Hangzhou Normal University, School of Medicine, Hangzhou, China
| | - Xuechun Wang
- Master Class, Zhejiang Chinese Medical University, Fourth School of Clinical Medicine, Hangzhou, China
| | - Jianfeng Chen
- Department of Proctology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
13
|
Fernández-Quintero ML, Pomarici ND, Loeffler JR, Seidler CA, Liedl KR. T-Cell Receptor CDR3 Loop Conformations in Solution Shift the Relative Vα-Vβ Domain Distributions. Front Immunol 2020; 11:1440. [PMID: 32733478 PMCID: PMC7360859 DOI: 10.3389/fimmu.2020.01440] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell receptors are an important part in the adaptive immune system as they are responsible for detecting foreign proteins presented by the major histocompatibility complex (MHC). The affinity is predominantly determined by structure and sequence of the complementarity determining regions (CDRs), of which the CDR3 loops are responsible for peptide recognition. We present a kinetic classification of T-cell receptor CDR3 loops with different loop lengths into canonical and non-canonical solution structures. Using molecular dynamics simulations, we do not only sample available X-ray structures, but we also observe a substantially broader CDR3 loop ensemble with various distinct kinetic minima in solution. Our results strongly imply, that for given CDR3 loop sequences several canonical structures have to be considered to characterize the conformational diversity of these loops. Our suggested dominant solution structures could extend the repertoire of available canonical clusters by including kinetic minimum structures present in solution. Thus, the CDR3 loops need to be characterized as conformational ensembles in solution. Furthermore, the conformational changes of the CDR3 loops follow the paradigm of conformational selection, because the experimentally determined binding competent state is present within this ensemble of pre-existing conformations without the presence of the antigen. We also identify strong correlations between the CDR3 loops and include combined state descriptions. Additionally, we observe a strong dependency of the CDR3 loop conformations on the relative Vα-Vβ interdomain orientations, revealing that certain CDR3 loop states favor specific interface orientations.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antigens/metabolism
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Crystallography, X-Ray
- Histocompatibility Antigens/metabolism
- Humans
- Molecular Dynamics Simulation
- Peptides/metabolism
- Protein Binding
- Protein Conformation
- Protein Domains/genetics
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Structure-Activity Relationship
- T-Cell Antigen Receptor Specificity
Collapse
Affiliation(s)
| | | | | | | | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|