1
|
Yuan P, Gao X, Xu M, Qiu L, Xiong Z, Shen J, Xing H, Yang R, Zhao L, Liu X, Gu J, Liu W. Novel miRNA markers and their mechanism of esophageal squamous cell carcinoma (ESCC) based on TCGA. Sci Rep 2024; 14:27261. [PMID: 39516222 PMCID: PMC11549395 DOI: 10.1038/s41598-024-76321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
MicroRNAs(miRNAs) are promising biomarkers for early esophageal squamous cell carcinoma (ESCC) detection and prognostic prediction. This study aimed to explore the potential biomarkers and molecular pathogenesis in the early diagnosis of ESCC. Firstly, 48 differentially expressed miRNAs (DEMs) and 1319 differentially expressed genes (DEGs) were identified between 94 ESCC tissues and 13 normal esophageal tissues in TCGA. From miRNA-mRNA regulatory network, there are 6558 target genes of the 48 DEMs, where 400 target genes are also among 1319 DEGs. Then, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicate that the 400 DEGs significantly enriched in cell cycle, proteoglycans in cancer, p53 signaling pathway, protein digestion and absorption, transcriptional dysregulation in cancer, and oocyte meiosis. And there are 66 DEGs among these six biological pathways, which we called GO-DEGs. From miRNA-mRNA regulatory network, 32 DEMs regulated the 66 GO-DEGs, where 22 DEMs were verified by different types of experiments in ESCC tissues, cells, or serum from the literature. For the other novel 10 DEMs, single-factor Cox regression analysis show that only hsa-miR-34b-3p showed no significant correlation with the overall survival of ESCC patients. Finally, we obtained the novel 9 ESCC-related DEMs, where three are down-regulated, and six are up-regulated. We analyzed the expression trends of target genes for five miRNAs and identified three significantly different miRNAs (hsa-miR-205-3p, hsa-miR-452-3p, and hsa-miR-6499-3p) confirmed by qPCR. Moreover, the stage-specific miRNAs were also suggested. These three qPCR validated miRNAs are also specific to the early stages of ESCC: hsa-miR-452-3p is specific to Stage I, II and III; hsa-miR-205-3p is specific in Stage II and III; and hsa-miR-6499-3p is Stage II specific. They might be the potential biomarkers for ESCC stage diagnosis. This study identified three novel miRNA markers potentially related to the diagnosis of ESCC and participated in the occurrence and development of ESCC through cell cycle, proteoglycans in cancer, p53 signaling pathway, protein digestion and absorption, transcriptional dysregulation in cancer, and signaling pathway for oocyte meiosis.
Collapse
Affiliation(s)
- Ping Yuan
- Healthcare Big Data Center, School of Public Health, Hubei University of Medicine, 30 Chaoyang Middle Road, Shiyan, 442000, Hubei, People's Republic of China
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaoyan Gao
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Mingjun Xu
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liangyu Qiu
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zijun Xiong
- Healthcare Big Data Center, School of Public Health, Hubei University of Medicine, 30 Chaoyang Middle Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Jun Shen
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huanhuan Xing
- Healthcare Big Data Center, School of Public Health, Hubei University of Medicine, 30 Chaoyang Middle Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Ruofan Yang
- Healthcare Big Data Center, School of Public Health, Hubei University of Medicine, 30 Chaoyang Middle Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Liang Zhao
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xi Liu
- Healthcare Big Data Center, School of Public Health, Hubei University of Medicine, 30 Chaoyang Middle Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Jiaowei Gu
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Road, Shiyan, 442000, Hubei, People's Republic of China.
| | - Wenting Liu
- Healthcare Big Data Center, School of Public Health, Hubei University of Medicine, 30 Chaoyang Middle Road, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Chang R, Yu H, Li S, Pan J. CircRNA hsa_circ_0003528/miR-215 is considered a potential target for predictive prognosis and therapy for triple-negative breast cancer. Mol Biol Rep 2024; 51:901. [PMID: 39126511 DOI: 10.1007/s11033-024-09808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Within the subtypes of breast cancer pathologies, triple-negative breast cancer (TNBC) exhibits the highest degree of malignancy and unfavorable outcome, which has great significance in exploring the molecular mechanisms underlying TNBC. This study especially investigated the expression and function of hsa_circ_0003528 in TNBC. METHODS The expression changes of hsa_circ_0003528 were identified from the GEO database (GSE101123) and validated by RT-qPCR. The clinical significance of hsa_circ_0003528 was evaluated using χ2 tests and Kaplan-Meier curve analysis. Bioinformatic analysis and dual-luciferase reporter assay were used to identify the potential downstream miRNA of hsa_circ_0003528. The cellular experiments were conducted to evaluate the impact of hsa_circ_0003528 or/and miR-215 on TNBC cells. RESULTS The hsa_circ_0003528 was selected from the circRNA profile in breast cancer obtained from the GSE101123 dataset. hsa_circ_0003528 expression levels were increased in breast cancer tissues, especially in TNBC tissues. The elevated expression of hsa_circ_0003528 was negatively associated with TNBC patients' overall survival. Silencing of hsa_circ_0003528 hindered the proliferative potential, migration abilities, and invasive capacities of TNBC cells, while downregulation of miR-215 partially diminished the effects of si-hsa_circ_0003528 on TNBC cells. CONCLUSION hsa_circ_0003528 is upregulated in TNBC and can facilitate aggressive cellular behaviors by regulating miR-215 expression, hinting at its potential as a biomarker and therapeutic target in the treatment of TNBC.
Collapse
Affiliation(s)
- Ru Chang
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Haizhen Yu
- Department of Laboratory, Zhucheng People's Hospital, No. 59, Nanhuan Road, Zhucheng, 262299, China
| | - Shizhen Li
- Department of Laboratory, Zhucheng People's Hospital, No. 59, Nanhuan Road, Zhucheng, 262299, China.
| | - Jianzhen Pan
- Department of Intensive Care Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, No.283, Tongzipo Road, Yuelu District, Changsha, 410003, China.
| |
Collapse
|
3
|
Sasa S, Inoue H, Nakagawa M, Toba H, Goto M, Okumura K, Misaki M, Inui T, Yukishige S, Nishisho A, Hino N, Kanematsu M, Bando Y, Uehara H, Tangoku A, Takizawa H. Long-Term Outcomes of S-1 Combined With Low-Dose Docetaxel as Neoadjuvant Chemotherapy (N-1 Study, Phase II Trial) in Patients With Operable Breast Cancer. Clin Breast Cancer 2024; 24:e350-e359.e2. [PMID: 38462397 DOI: 10.1016/j.clbc.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND We previously reported that S-1 and low-dose docetaxel (DOC) (N-1 study, phase II trial) could be a well-tolerated and effective neoadjuvant chemotherapies (NACs) for patients with operable breast cancer. Herein, we analyzed the long-term outcomes and developed clinicopathological and molecular predictors of pathological complete response (pCR). PATIENTS AND METHODS Eighty-three patients received S-1 (40 mg/m2 orally on days 1-14) and DOC (40 mg/m2 intravenously on day 1) every 3 weeks for 4 to 8 cycles. Disease-free survival (DFS) and overall survival (OS) were analyzed for each population with a pCR status. To assess the relationship between pCR and clinicopathological factors such as tumor-infiltrating lymphocytes (TILs, 1+ <10%, 2+ 10%-50%, and 3+ >50%) and nuclear grade (NG), microarray was used to compare the microRNA profiles of the pCR and non-pCR groups using core needle biopsy specimens. RESULTS With a median follow-up duration of 99.0 (range, 9.0-129.0) months, the 5-year DFS and OS rates were 80.7% and 90.9%, respectively. The 5-year OS rate of the pCR group was significantly better than that of the non-pCR group (100% vs. 86.2%, p = .0176). Specifically, in triple-negative patients, the difference was significant (100% vs. 60.0%, p = .0224). Multivariate analysis revealed that high TILs (≥2-3+) and NG 2-3 independently predicted pCR. Microarray data revealed that 3 miRNAs (miR-215-5p, miR-196a-5p, and miR-196b-5p) were significantly upregulated in the pCR group. CONCLUSION Our NAC regimen achieved favorable long-term outcomes and significantly improved OS in the pCR group. High TILs, NG 2-3, and some miRNAs may be predictors of pCR.
Collapse
Affiliation(s)
- Soichiro Sasa
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroaki Inoue
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Misako Nakagawa
- Department of Surgery, Takamatsu Municipal Hospital, Takamatsu, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan.
| | - Masakazu Goto
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kazumasa Okumura
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Mariko Misaki
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Tomohiro Inui
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Sawaka Yukishige
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Aya Nishisho
- Department of Surgery, Tokushima Municipal Hospital, Tokushima, Japan
| | - Naoki Hino
- Department of Surgery, Tokushima Municipal Hospital, Tokushima, Japan
| | - Miyuki Kanematsu
- Department of Surgery, Tokushima Red Cross Hospital, Komatsushima-cho, Komatsushima, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
4
|
Yu M, Du H, Zhang C, Shi Y. miR-192 family in breast cancer: Regulatory mechanisms and diagnostic value. Biomed Pharmacother 2024; 175:116620. [PMID: 38653113 DOI: 10.1016/j.biopha.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
There is a growing interest in the role of the miRNA family in human cancer. The miRNA-192 family is a group of conserved small RNAs, including miR-192, miR-194, and miR-215. Recent studies have shown that the incidence and mortality of breast cancer have been increasing epidemiologically year by year, and it is urgent to clarify the pathogenesis of breast cancer and seek new diagnostic and therapeutic methods. There is increasing evidence that miR-192 family members may be involved in the occurrence and development of breast cancer. This review describes the regulatory mechanism of the miRNA-192 family affecting the malignant behavior of breast cancer cells and evaluates the value of the miRNA-192 family as a diagnostic and prognostic biomarker for breast cancer. It is expected that summarizing and discussing the relationship between miRNA-192 family members and breast cancer, it will provide a new direction for the clinical diagnosis and treatment of breast cancer and basic medical research.
Collapse
Affiliation(s)
- Mingxuan Yu
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Hua Du
- College of Basic Medicine, Inner Mongolia Medical University, PR China; Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Caihong Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Yingxu Shi
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| |
Collapse
|
5
|
Morillo-Bernal J, Pizarro-García P, Moreno-Bueno G, Cano A, Mazón MJ, Eraso P, Portillo F. HuR (ELAVL1) Stabilizes SOX9 mRNA and Promotes Migration and Invasion in Breast Cancer Cells. Cancers (Basel) 2024; 16:384. [PMID: 38254873 PMCID: PMC10813878 DOI: 10.3390/cancers16020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
RNA-binding proteins play diverse roles in cancer, influencing various facets of the disease, including proliferation, apoptosis, angiogenesis, senescence, invasion, epithelial-mesenchymal transition (EMT), and metastasis. HuR, a known RBP, is recognized for stabilizing mRNAs containing AU-rich elements (AREs), although its complete repertoire of mRNA targets remains undefined. Through a bioinformatics analysis of the gene expression profile of the Hs578T basal-like triple-negative breast cancer cell line with silenced HuR, we have identified SOX9 as a potential HuR-regulated target. SOX9 is a transcription factor involved in promoting EMT, metastasis, survival, and the maintenance of cancer stem cells (CSCs) in triple-negative breast cancer. Ribonucleoprotein immunoprecipitation assays confirm a direct interaction between HuR and SOX9 mRNA. The half-life of SOX9 mRNA and the levels of SOX9 protein decreased in cells lacking HuR. Cells silenced for HuR exhibit reduced migration and invasion compared to control cells, a phenotype similar to that described for SOX9-silenced cells.
Collapse
Affiliation(s)
- Jesús Morillo-Bernal
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Patricia Pizarro-García
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Gema Moreno-Bueno
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
- Fundación MD Anderson Internacional, 28033 Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María J. Mazón
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Pilar Eraso
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Francisco Portillo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Zhao Q, Li D, Feng J, Jinsihan D. MiR-600 mediates EZH2/RUNX3 signal axis to modulate breast cancer cell viability and sorafenib sensitivity. J Biochem Mol Toxicol 2024; 38:e23613. [PMID: 38229326 DOI: 10.1002/jbt.23613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Breast cancer (BC) ranks as the most prevalent gynecologic tumor globally. Abnormal expression of miRNAs is concerned with the development of cancers such as BC. However, little is known about the role of miR-600 in BC. This work aimed to explore the role of miR-600 in the malignant progression and sorafenib sensitivity of BC cells. Expression and interaction of miR-600/EZH2/RUNX3 were analyzed by bioinformatics. qRT-PCR was utilized to assay RNA expression of miR-600 and mRNA expression of EZH2/RUNX3. The binding relationship between miR-600 and EZH2 was tested by dual luciferase assay and RNA immunoprecipitation (RIP). The effects of miR-600/EZH2/RUNX3 axis on the malignant behavior and sorafenib sensitivity of BC cells were detected by CCK-8 and colony formation assay. Low expression of miR-600 and RUNX3 in BC was found by bioinformatics and molecular assays. High expression of EZH2 in BC was negatively correlated with RUVX3. Dual luciferase assay and RIP demonstrated that MiR-600 could bind to EZH2. Cell assays displayed that miR-600 knockdown could foster the malignant progression of BC cells and reduce the sensitivity of BC cells to sorafenib. EZH2 knockdown or RUNX3 overexpression could offset the effect of miR-600 inhibitor on the malignant behavior and sorafenib sensitivity of BC cells. MiR-600 can hinder the malignant behavior of BC cells and foster sensitivity of BC cells to sorafenib via EZH2/RUNX3 axis, exhibiting the miR-600/EZH2/RUNX3 axis as a feasible therapeutic target for BC patients.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang, Urumqi, China
| | - Dan Li
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang, Urumqi, China
| | - Jinchun Feng
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang, Urumqi, China
| | - Dilixiati Jinsihan
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang, Urumqi, China
| |
Collapse
|
7
|
Mohammed OA. From strings to signals: Unraveling the impact of miRNAs on diagnosis, and progression of colorectal cancer. Pathol Res Pract 2023; 251:154857. [PMID: 37804545 DOI: 10.1016/j.prp.2023.154857] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Colorectal cancer (CRC) stands as the third most prevalent ailment globally and represents the primary cause of mortality associated with cancer. Significant advancements have been made in the clinical management of patients with CRC, encompassing the development of more streamlined methodologies and a diverse array of biomarkers utilized for prognostic, diagnostic, and predictive objectives. MicroRNAs (miRNAs, miRs) play a key role in the development of CRC by modulating the expression of their target genes, which govern a number of metabolic and cellular processes. They are related to malignant traits such as enhanced invasive and proliferative capacity, evasion of apoptosis, cell cycle aberration, and promotion of angiogenesis through dysregulation in their function. This review's objectives were to examine miRNA biogenesis, provide an updated list of oncogenic and tumor suppressor miRNAs, and discuss the likely causes of miRNA dysregulation in CRC. Additionally, we discuss the diagnostic and predictive functions of miRNAs in CRC and summarize their biological significance and clinical potential.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
8
|
Geng X, Tsou JH, Stass SA, Jiang F. Utilizing MiSeq Sequencing to Detect Circulating microRNAs in Plasma for Improved Lung Cancer Diagnosis. Int J Mol Sci 2023; 24:10277. [PMID: 37373422 PMCID: PMC10299334 DOI: 10.3390/ijms241210277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a major contributor to cancer-related deaths, but early detection can reduce mortality. NSCLC comprises mainly adenocarcinoma (AC) and squamous cell carcinoma (SCC). Circulating microRNAs (miRNAs) in plasma have emerged as promising biomarkers for NSCLC. However, existing techniques for analyzing miRNAs have limitations, such as restricted target detection and time-consuming procedures. The MiSeqDx System has been shown to overcome these limitations, making it a promising tool for routine clinical settings. We investigated whether the MiSeqDx could profile cell-free circulating miRNAs in plasma and diagnose NSCLC. We sequenced RNA from the plasma of patients with AC and SCC and from cancer-free smokers using the MiSeqDx to profile and compare miRNA expressions. The MiSeqDx exhibits high speed and accuracy when globally analyzing plasma miRNAs. The entire workflow, encompassing RNA to data analysis, was completed in under three days. We also identified panels of plasma miRNA biomarkers that can diagnose NSCLC with 67% sensitivity and 68% specificity, and detect SCC with 90% sensitivity and 94% specificity, respectively. This study is the first to demonstrate that rapid profiling of plasma miRNAs using the MiSeqDx has the potential to offer a straightforward and effective method for the early detection and classification of NSCLC.
Collapse
Affiliation(s)
| | | | | | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th Floor, Baltimore, MD 21201-1192, USA
| |
Collapse
|
9
|
Feng Z, Ke S, Wang C, Lu S, Xu Y, Yu H, Li Z, Yin B, Li X, Hua Y, Qian B, Bai M, Fu Y, Zhang Y, Wu Y, Ma Y. RNF125 attenuates hepatocellular carcinoma progression by downregulating SRSF1-ERK pathway. Oncogene 2023:10.1038/s41388-023-02710-w. [PMID: 37142680 DOI: 10.1038/s41388-023-02710-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly malignant cancers worldwide. Research into the crucial genes responsible for maintaining the aggressive behaviour of cancer cells is important for the clinical treatment of HCC. The purpose of this study was to determine whether the E3 ubiquitin ligase Ring Finger Protein 125 (RNF125) plays a role in the proliferation and metastasis of HCC. RNF125 expression in human HCC samples and cell lines was investigated using TCGA dataset mining, qRT‒PCR, western blot, and immunohistochemistry assays. In addition, 80 patients with HCC were studied for the clinical value of RNF125. Furthermore, the molecular mechanism by which RNF125 contributes to hepatocellular carcinoma progression was determined with mass spectrometry (MS), coimmunoprecipitation (Co-IP), dual-luciferase reporter assays, and ubiquitin ladder assays. We found that RNF125 was markedly downregulated in HCC tumour tissues, which was associated with a poor prognosis for patients with HCC. Moreover, the overexpression of RNF125 inhibited HCC proliferation and metastasis both in vitro and in vivo, whereas the knockdown of RNF125 exerted antithetical effects. Mechanistically, mass spectrometry analysis revealed a protein interaction between RNF125 and SRSF1, and RNF125 accelerated the proteasome-mediated degradation of SRSF1, which impeded HCC progression by inhibiting the ERK signalling pathway. Furthermore, RNF125 was detected to be the downstream target of miR-103a-3p. In this study, we identified that RNF125 is a tumour suppressor in HCC and inhibits HCC progression by inhibiting the SRSF1/ERK pathway. These findings provide a promising treatment target for HCC.
Collapse
Affiliation(s)
- Zhigang Feng
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The First Department of General Surgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Shanjia Ke
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongjun Yu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihao Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Surgery, The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baolin Qian
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Miaoyu Bai
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingmei Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaohua Wu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Khadka VS, Nasu M, Deng Y, Jijiwa M. Circulating microRNA Biomarker for Detecting Breast Cancer in High-Risk Benign Breast Tumors. Int J Mol Sci 2023; 24:7553. [PMID: 37108716 PMCID: PMC10142546 DOI: 10.3390/ijms24087553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
High-risk benign breast tumors are known to develop breast cancer at high rates. However, it is still controversial whether they should be removed during diagnosis or followed up until cancer development becomes evident. Therefore, this study sought to identify circulating microRNAs (miRNAs) that could serve as detection markers of cancers arising from high-risk benign tumors. Small RNA-seq was performed using plasma samples collected from patients with early-stage breast cancer (CA) and high-risk (HB), moderate-risk (MB), and no-risk (Be) benign breast tumors. Proteomic profiling of CA and HB plasma was performed to investigate the underlying functions of the identified miRNAs. Our findings revealed that four miRNAs, hsa-mir-128-3p, hsa-mir-421, hsa-mir-130b-5p, and hsa-mir-28-5p, were differentially expressed in CA vs. HB and had diagnostic power to discriminate CA from HB with AUC scores greater than 0.7. Enriched pathways based on the target genes of these miRNAs indicated their association with IGF-1. Furthermore, the Ingenuity Pathway Analysis performed on the proteomic data revealed that the IGF-1 signaling pathway was significantly enriched in CA vs. HB. In conclusion, these findings suggest that these miRNAs could potentially serve as biomarkers for detecting early-stage breast cancer from high-risk benign tumors by monitoring IGF signaling-induced malignant transformation.
Collapse
Affiliation(s)
| | | | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.N.)
| |
Collapse
|
11
|
Zhu QY. Bioinformatics analysis of the pathogenic link between Epstein-Barr virus infection, systemic lupus erythematosus and diffuse large B cell lymphoma. Sci Rep 2023; 13:6310. [PMID: 37072474 PMCID: PMC10113247 DOI: 10.1038/s41598-023-33585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023] Open
Abstract
Epstein-Barr virus (EBV) is a risk factor for diffuse large B-cell lymphoma (DLBCL) and systemic lupus erythematosus (SLE). While prior research has suggested a potential correlation between SLE and DLBCL, the molecular mechanisms remain unclear. The present study aimed to explore the contribution of EBV infection to the pathogenesis of DLBCL in the individuals with SLE using bioinformatics approaches. The Gene Expression Omnibus database was used to compile the gene expression profiles of EBV-infected B cells (GSE49628), SLE (GSE61635), and DLBCL (GSE32018). Altogether, 72 shared common differentially expressed genes (DEGs) were extracted and enrichment analysis of the shared genes showed that p53 signaling pathway was a common feature of the pathophysiology. Six hub genes were selected using protein-protein interaction (PPI) network analysis, including CDK1, KIF23, NEK2, TOP2A, NEIL3 and DEPDC1, which showed preferable diagnostic values for SLE and DLBCL and involved in immune cell infiltration and immune responses regulation. Finally, TF-gene and miRNA-gene regulatory networks and 10 potential drugs molecule were predicted. Our study revealed the potential molecular mechanisms by which EBV infection contribute to the susceptibility of DLBCL in SLE patients for the first time and identified future biomarkers and therapeutic targets for SLE and DLBCL.
Collapse
Affiliation(s)
- Qian-Ying Zhu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518003, People's Republic of China.
| |
Collapse
|
12
|
Hu Z, Li L, Li M, Zhang X, Zhang Y, Ran J, Li L. miR-21-5p Inhibits Ferroptosis in Hepatocellular Carcinoma Cells by Regulating the AKT/mTOR Signaling Pathway through MELK. J Immunol Res 2023; 2023:8929525. [PMID: 37008632 PMCID: PMC10065862 DOI: 10.1155/2023/8929525] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/08/2023] [Accepted: 02/10/2023] [Indexed: 04/04/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most prevalent cancers, and its incidence rate is increasing worldwide. At present, there is no ideal treatment for HCC. In recent years, molecular-targeted therapy has shown significant therapeutic benefits for patients. Ferroptosis is a modality of regulated cell death, and previous studies have found that inducing ferroptosis in liver cancer cells can inhibit the progression of liver cancer. The aim of this study is to investigate the regulatory mechanism of miR-21-5p in regulating ferroptosis in HCC cells. Methods CCK-8 was used to measure cell viability, EdU and colony formation were used to measure cell proliferation, and Transwell assays were used to measure cell migration and invasion. RT-qPCR was used to detect the level of miR-21-5p, Western blotting was used to detect the protein expression level, a dual-luciferase reporter gene assay was used to determine the targeting relationship between miR-21-5p and MELK, and coimmunoprecipitation was used to determine the interaction between MELK and AKT. Results Overexpression of miR-21-5p and MELK facilitated the viability, proliferation, colony formation, invasion, and migration of HCC cells. Downregulation of miR-21-5p suppressed the level of MELK and the progression of HCC. MELK regulated the AKT/mTOR signaling pathway, causing changes in the levels of GPX4, GSH, FTH1, xCT, heme oxygenase 1(HO-1), reactive oxygen species, and Fe2+ to regulate the ferroptosis of hepatoma cells. Erastin, an inducer of ferroptosis, attenuated the repressive influence of miR-21-5p on ferroptosis in HCC cells. Conclusion In summary, this study demonstrates that miR-21-5p inhibits the ferroptosis of HCC cells by regulating the AKT/mTOR signaling pathway through MELK.
Collapse
Affiliation(s)
- Zongqiang Hu
- First People's Hospital of Kunming City, Kunming 650032, Yunnan, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Laibang Li
- First People's Hospital of Kunming City, Kunming 650032, Yunnan, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Ma Li
- First People's Hospital of Kunming City, Kunming 650032, Yunnan, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xibing Zhang
- First People's Hospital of Kunming City, Kunming 650032, Yunnan, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yu Zhang
- First People's Hospital of Kunming City, Kunming 650032, Yunnan, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jianghua Ran
- First People's Hospital of Kunming City, Kunming 650032, Yunnan, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Li Li
- First People's Hospital of Kunming City, Kunming 650032, Yunnan, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| |
Collapse
|
13
|
Identification of m7G Methylation-Related miRNA Signature Associated with Survival and Immune Microenvironment Regulation in Uterine Corpus Endometrial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8776678. [DOI: 10.1155/2022/8776678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
Background. N7-methylguanosine (m7G) has been implicated in the development of cancer. The role of m7G-related miRNAs in the survival prediction of UCEC patients has not been investigated. Current research was the first to construct an m7G-related miRNA model to accurately predict the survival of patients with uterine corpus endometrial carcinoma (UCEC) and to explore immune cell infiltration and immune activity in the tumor microenvironment. Methods. RNA-seq data and clinical information of UCEC patients were derived from The Cancer Genome Atlas (TCGA) database. Using the TargetScan online database, we predicted miRNAs linked to the m7G-related genes and identified miRNAs which were significantly associated with the survival in UCEC patients and constructed a risk scoring model. The TCGA-UCEC cases were scored according to the risk model, and the high- and low-risk groups were divided by the median risk value. Gene enrichment analysis and immune cell infiltration and immune function analysis were performed using “clusterProfiler” and “GSVA” packages in R. Results. The survival prediction model consisted of 9 miRNAs, namely, hsa-miR-1301, hsa-miR-940, hsa-miR-592, hsa-miR-3170, hsa-miR-876, hsa-miR-215, hsa-miR-934, hsa-miR-3920, and hsa-miR-216b. Survival of UCEC patients in the high-risk group was worse than that in the low-risk group (
). The receiver operating characteristic (ROC) curve showed that the model had good predictive performance, and the area under the curve was 0.800, 0.690, and 0.705 for 1-, 3-, and 5-year survival predictions, respectively. There were differences in the degree of immune cell infiltration and immune activity between the low-risk and high-risk groups. The expression levels of the identified differentially expressed genes correlated with the susceptibility to multiple anticancer drugs. Conclusions. The survival prediction model constructed based on 9 m7G-related miRNAs had good predictive performance.
Collapse
|
14
|
Ismail A, El-Mahdy HA, Abulsoud AI, Sallam AAM, Eldeib MG, Elsakka EG, Zaki MB, Doghish AS. Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: A comprehensive review. Int J Biol Macromol 2022; 224:1541-1565. [DOI: 10.1016/j.ijbiomac.2022.10.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
15
|
Yin Z, Shen J, Wang Q, Wen L, Qu W, Zhang Y. miR-215-5p regulates osteoporosis development and osteogenic differentiation by targeting XIAP. BMC Musculoskelet Disord 2022; 23:789. [PMID: 35978328 PMCID: PMC9387055 DOI: 10.1186/s12891-022-05731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Background Osteoporosis (OP) is a metabolic disease that involves microstructure destruction and fracture damage. The present study probed into the significance of miR-215-5p in OP progression. Methods Serum samples were collected from surgical patients and healthy controls. qRT-PCR analysis was utilized to determine the miR-215-5p level in clinical samples and human bone mesenchymal stem cells (hBMSCs) induced by β-glycerol phosphate. A dual luciferase reporter assay was exploited to examine the targeted relationship between miR-215-5p and XIAP. The mineralization and calcium deposition of hBMSCs were assessed by detection of ALP activity, Alizarin red staining, and osteoblast marker expression. Protein expression was determined by western blot analysis. Results MiR-215-5p was significantly reduced in patients with OP and increased in hBMSCs treated with β-glycerophosphate. Enhanced miR-215-5p level triggered augment in osteoblast markers (Alkaline phosphatase/ ALP, Osteocalcin/ OCN, and Runt-Related Transcription Factor 2/ Runx2), which was accompanied by the increase of ALP activity in hBMSCs and accumulation of Calcium. Functional experiments show that XIAP was a target of miR-215-5p and negatively modulated by miR-215-5p. XIAP expression levels were increased in OP samples, and decreased XIAP in β-glycerophosphate-treated hBMSCs inhibited its’ osteogenic differentiation. Functional loss and acquisition experiments depicted that miR-215-5p promoted the differentiation of hBMSCs by inhibiting the XIAP level, playing a protective role in the pathogenesis of OP. Conclusions β-glycerophosphate promoted the osteogenic differentiation of hBMSCs, increased miR-215-5p level, and decreased XIAP. miR-215-5p stimulated osteogenic differentiation of hBMSCs by targeting XIAP, shedding new insights for the detection and therapy of OP. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05731-w.
Collapse
Affiliation(s)
- Zilong Yin
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jian Shen
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qiang Wang
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Liangyuan Wen
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wenjing Qu
- Department of Surgery, Tongzhou Maternal and Child Health Hospital of Beijing, 124 Yuqiao Middle Road, Tongzhou District, Beijing, 101100, People's Republic of China.
| | - Yaonan Zhang
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
16
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
17
|
Elrebehy MA, Al-Saeed S, Gamal S, El-Sayed A, Ahmed AA, Waheed O, Ismail A, El-Mahdy HA, Sallam AAM, Doghish AS. miRNAs as cornerstones in colorectal cancer pathogenesis and resistance to therapy: A spotlight on signaling pathways interplay - A review. Int J Biol Macromol 2022; 214:583-600. [PMID: 35768045 DOI: 10.1016/j.ijbiomac.2022.06.134] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the world's third most prevalent cancer and the main cause of cancer-related mortality. A lot of work has been put into improving CRC patients' clinical care, including the development of more effective methods and wide biomarkers variety for prognostic, and diagnostic purposes. MicroRNAs (miRNAs) regulate a variety of cellular processes and play a significant role in the CRC progression and spread via controlling their target gene expression by translation inhibition or mRNA degradation. Consequently, dysregulation and disruption in their function, miRNAs are linked to CRC malignant pathogenesis by controlling several cellular processes involved in the CRC. These cellular processes include increased proliferative and invasive capacity, cell cycle aberration, evasion of apoptosis, enhanced EMT, promotion of angiogenesis and metastasis, and decreased sensitivity to major treatments. The miRNAs control cellular processes in CRC via regulation of pathways such as Wnt/β-catenin signaling, PTEN/AKT/mTOR axis, KRAS, TGFb signaling, VEGFR, EGFR, and P53. Hence, the goal of this review was to review miRNA biogenesis and present an updated summary of oncogenic and tumor suppressor (TS) miRNAs and their potential implication in CRC pathogenesis and responses to chemotherapy and radiotherapy. We also summarise the biological importance and clinical applications of miRNAs in the CRC.
Collapse
Affiliation(s)
- Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sarah Al-Saeed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sara Gamal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Asmaa El-Sayed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alshaimaa A Ahmed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Omnia Waheed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain-Shams University, Abassia, Cairo 11566, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
18
|
Alam MS, Rahaman MM, Sultana A, Wang G, Mollah MNH. Statistics and network-based approaches to identify molecular mechanisms that drive the progression of breast cancer. Comput Biol Med 2022; 145:105508. [PMID: 35447458 DOI: 10.1016/j.compbiomed.2022.105508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) is one of the most malignant tumors and the leading cause of cancer-related death in women worldwide. So, an in-depth investigation on the molecular mechanisms of BC progression is required for diagnosis, prognosis and therapies. In this study, we identified 127 common differentially expressed genes (cDEGs) between BC and control samples by analyzing five gene expression profiles with NCBI accession numbers GSE139038, GSE62931, GSE45827, GSE42568 and GSE54002, based-on two statistical methods LIMMA and SAM. Then we constructed protein-protein interaction (PPI) network of cDEGs through the STRING database and selected top-ranked 7 cDEGs (BUB1, ASPM, TTK, CCNA2, CENPF, RFC4, and CCNB1) as a set of key genes (KGs) by cytoHubba plugin in Cytoscape. Several BC-causing crucial biological processes, molecular functions, cellular components, and pathways were significantly enriched by the estimated cDEGs including at-least one KGs. The multivariate survival analysis showed that the proposed KGs have a strong prognosis power of BC. Moreover, we detected some transcriptional and post-transcriptional regulators of KGs by their regulatory network analysis. Finally, we suggested KGs-guided three repurposable candidate-drugs (Trametinib, selumetinib, and RDEA119) for BC treatment by using the GSCALite online web tool and validated them through molecular docking analysis, and found their strong binding affinities. Therefore, the findings of this study might be useful resources for BC diagnosis, prognosis and therapies.
Collapse
Affiliation(s)
- Md Shahin Alam
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China; Bioinformatics Lab. (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Matiur Rahaman
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; Bioinformatics Lab. (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Adiba Sultana
- Center for Systems Biology, Soochow University, Suzhou, 215006, China; Bioinformatics Lab. (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Md Nurul Haque Mollah
- Bioinformatics Lab. (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
19
|
Wu CL, Xu LL, Peng J, Zhang DH. Al-MPS Obstructs EMT in Breast Cancer by Inhibiting Lipid Metabolism via miR-215-5p/SREBP1. Endocrinology 2022; 163:6562775. [PMID: 35366327 DOI: 10.1210/endocr/bqac040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/19/2022]
Abstract
Alkali-extractable mycelial polysaccharide (Al-MPS) is a natural macromolecular polymer that has shown anti-hyperlipidemic and antitumor abilities. This study investigates the mechanism by which Al-MPS inhibits lipid metabolism and epithelial-mesenchymal transition (EMT) in breast cancer (BC). BC cells (MCF-7 and MDA-MB-231) were transfected and/or treated with Al-MPS. CCK-8, Transwell, and scratch assays were used to evaluate the tumorigenic behaviors of BC cells. The expression levels of SREBP1, E-cadherin, N-cadherin, Snail, vimentin, FASN, ACLY, and ACECS1 in BC cells were detected by Western blotting. Dual-luciferase reporter and RNA pull-down assays were performed to verify the binding between miR-215-5p and SREBP1 mRNA. Nude mice were injected with MDA-MB-231 cells and treated with Al-MPS. The changes in tumor volume and protein expression were monitored. miR-215-5p was downregulated and SREBP1 was upregulated in BC. Al-MPS increased miR-215-5p expression and inhibited SREBP1 expression, lipid metabolism, and EMT in BC. Inhibition of miR-215-5p or overexpression of SREBP1 promoted the tumorigenic behaviors of BC cells by stimulating lipid metabolism and counteracted the antitumor effect of Al-MPS. SREBP1 was a downstream target of miR-215-5p. In conclusion, Al-MPS inhibits lipid metabolism and EMT in BC via the miR-215-5p/SREBP1 axis. This study supports the application of polysaccharides in cancer treatment and the molecules regulated by Al-MPS may be used as biomarkers or therapeutic targets for BC.
Collapse
Affiliation(s)
- Chenlu L Wu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lili L Xu
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jing Peng
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Danhua H Zhang
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
20
|
Wu XP, Xu ZQ, Xie WM, Lai YL, He K, Jiang Y, Xu ZC, Lin YN, Xie YF. Long non-coding RNA GAS6-AS1 enhances breast cancer cell aggressiveness by functioning as a competing endogenous RNA of microRNA-215-5p to enhance SOX9 expression. Exp Ther Med 2022; 23:109. [PMID: 34976151 DOI: 10.3892/etm.2021.11032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/01/2020] [Indexed: 11/06/2022] Open
Abstract
Long non-coding (lnc) RNAs play crucial functions in human cancer. However, until recently, the involvement of the lncRNA GAS6-AS1 in breast cancer (BCa) malignancy has not been studied exhaustively. The roles and underlying mode of action of GAS6-AS1 action in BCa progression were examined through functional experiments. A decline in GAS6-AS1 level led to a significant decrease in BCa cell proliferation, and the ability for colony formation. Here, GAS6-AS1 competed as endogenous RNA by sequestering microRNA-215-5p (miR-215-5p) causing an enhanced expression of SRY-box transcription factor 9 (SOX9). The effects of silencing GAS6-AS1 on BCa malignant phenotypes could be ameliorated by inhibiting miR-215-5p or restoring SOX9. Thus, GAS6-AS1 acted as a lncRNA that drives tumor in BCa, and enabled progression of BCa through miR-215-5p /SOX9 axis regulation. These outcomes show that the GAS6-AS1/miR-215-5p/SOX9 axis is a potentially effective target for cancer treatment and management.
Collapse
Affiliation(s)
- Xiu-Ping Wu
- Department of Breast Surgery, Zhengxing Hospital, Zhangzhou, Fujian 363000, P.R. China
| | - Zhi-Qiang Xu
- Department of Breast Surgery, Zhengxing Hospital, Zhangzhou, Fujian 363000, P.R. China
| | - Wang-Mei Xie
- Department of Breast Surgery, Zhengxing Hospital, Zhangzhou, Fujian 363000, P.R. China
| | - Yao-Long Lai
- Department of Breast Surgery, Zhengxing Hospital, Zhangzhou, Fujian 363000, P.R. China
| | - Kai He
- Department of Breast Surgery, Zhengxing Hospital, Zhangzhou, Fujian 363000, P.R. China
| | - Yan Jiang
- Department of Breast Surgery, Zhengxing Hospital, Zhangzhou, Fujian 363000, P.R. China
| | - Zhen-Chao Xu
- Department of Breast Surgery, Zhengxing Hospital, Zhangzhou, Fujian 363000, P.R. China
| | - Yi-Na Lin
- Department of Radiation Oncology, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yuan-Fu Xie
- Department of Radiation Oncology, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| |
Collapse
|
21
|
Li W, Lingdi L, Xiqiang D, Jiheng L, Xin T, Qin H, Haisha L. MicroRNA-215-5p Inhibits the Proliferation and Migration of Wilm's Tumor Cells by Targeting CRK. Technol Cancer Res Treat 2021; 20:15330338211036523. [PMID: 34384283 PMCID: PMC8366128 DOI: 10.1177/15330338211036523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: Wilm’s tumor is a common renal malignancy in childhood with unsatisfactory prognosis. microRNA-215-5p (miR-215-5p) has been reported as a tumor-suppressive miRNA in different types of human cancers, but rarely in the Wilm’s tumor. In light of this, we tried to investigate the regulatory role and underlying mechanism of miR-215-5p in the Wilm’s tumor. Methods: After sample collection and cell culture, the expression of miR-215-5p and CT10 Regulator of Kinase (CRK) was detected. Then rhabdoid tumor cell lines (formerly classified as Wilms’ tumor cell lines), G401 and WT-CLS1 cells were transfected with pcDNA3.1, pcDNA3.1-CRK, sh-NC, sh-CRK, agomir NC, miR-215-5p agomir, antagomir NC or miR-215-5p antagomir to explore the function of miR-215-5p and CRK in the Wilm’s tumor cell proliferation and migration. Moreover, the relationship between miR-215-5p and CRK was analyzed by dual luciferase reporter gene assay. Results: Lowly-expressed miR-215-5p and highly-expressed CRK were observed in the Wilm’s tumor tissues and cells. Transfection of pcDNA3.1-CRK or miR-215-5p antagomir could promote G401 and WT-CLS1 cell proliferation and enhance migration ability, while transfection of sh-CRK or miR-215-5p agomir led to opposite results. Additionally, miR-215-5p may bind to CRK. Moreover, transfection of pcDNA3.1-CRK in G401 and WT-CLS1 cells could partially reverse the inhibitory effect of miR-215-5p agomir on the proliferation and migration of Wilm’s tumor cells. Conclusion: Our study highlighted that miR-215-5p could suppress the proliferation and migration of Wilm’s tumor cells by regulating the expression of CRK, providing new ideas for molecular targeted therapy for Wilm’s tumor.
Collapse
Affiliation(s)
- Wang Li
- Children's Medical Center of The First Hospital of Changsha, Changsha, Hunan, People's Republic of China
| | - Li Lingdi
- Children's Medical Center of The First Hospital of Changsha, Changsha, Hunan, People's Republic of China
| | - Dang Xiqiang
- Children's Medical Center of The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Liu Jiheng
- Department of Hematology and Oncology, The First Hospital of Changsha, Changsha, Hunan, People's Republic of China
| | - Tan Xin
- Children's Medical Center of The First Hospital of Changsha, Changsha, Hunan, People's Republic of China
| | - Huang Qin
- Children's Medical Center of The First Hospital of Changsha, Changsha, Hunan, People's Republic of China
| | - Li Haisha
- Cardiac Function Department of The First Hospital of Changsha, Changsha, Hunan, People's Republic of China
| |
Collapse
|
22
|
Wang W, Huang C, Luo P, Yao J, Li J, Wang W, Liu F. Circular RNA circWDR27 Promotes Papillary Thyroid Cancer Progression by Regulating miR-215-5p/TRIM44 Axis. Onco Targets Ther 2021; 14:3281-3293. [PMID: 34040392 PMCID: PMC8141407 DOI: 10.2147/ott.s290270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose This study was to explore the biological roles and underlying mechanism of circRNA WD repeat domain 27 (circWDR27). Methods The expression of circWDR27, microRNA-215-5p (miR-215-5p) and tripartite motif containing 44 (TRIM44) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assays were employed to detect cell proliferation. Flow cytometry was used to determine cell apoptosis and cell cycle distribution. Cell migration and invasion abilities were examined by wound healing and transwell assays. The protein levels of matrix metalloproteinase 2 (MMP2), MMP9 and TRIM44 were analyzed by Western blot assay. The relationship between miR-215-5p and circWDR27 or TRIM44 was predicted by bioinformatics tools and confirmed using dual-luciferase reporter assay. Mouse xenograft model was established to examine the role of circWDR27 in vivo. Results CircWDR27 and TRIM44 were highly expressed while miR-215-5p was lowly expressed in PTC tissues and cells. Knockdown of circWDR27 suppressed cell proliferation and metastasis and induced cell cycle arrest and apoptosis in PTC cells. Moreover, miR-215-5p was a direct target of circWDR27, and its inhibition reversed the suppressive effect of circWDR27 knockdown on PTC cell progression. In addition, miR-215-5p directly targeted TRIM44, and miR-215-5p exerted its anti-cancer role in PTC cells by targeting TRIM44. Furthermore, circWDR27 positively regulated TRIM44 expression by sponging miR-215-5p. Importantly, knockdown of circWDR27 suppressed tumor growth in vivo by upregulating miR-215-5p and downregulating TRIM44. Conclusion CircWDR27 accelerates PTC progression via regulating miR-215-5p/TRIM44 axis, providing a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Weilan Wang
- Department of General Surgery, Changxing People's Hospital, The Second Affiliated Hospital of Zhejiang University School of Medical Changxing Campus, Changxing, Zhejiang, People's Republic of China
| | - Chengmin Huang
- Department of General Surgery, Changxing People's Hospital, The Second Affiliated Hospital of Zhejiang University School of Medical Changxing Campus, Changxing, Zhejiang, People's Republic of China
| | - Peng Luo
- Department of Medical Research, Shanghai Topgen Biomedical Technology Co., Ltd., Shanghai, People's Republic of China
| | - Jiang Yao
- Department of General Surgery, Changxing People's Hospital, The Second Affiliated Hospital of Zhejiang University School of Medical Changxing Campus, Changxing, Zhejiang, People's Republic of China
| | - Jie Li
- Department of General Surgery, Changxing People's Hospital, The Second Affiliated Hospital of Zhejiang University School of Medical Changxing Campus, Changxing, Zhejiang, People's Republic of China
| | - Wenxia Wang
- Department of General Surgery, Changxing People's Hospital, The Second Affiliated Hospital of Zhejiang University School of Medical Changxing Campus, Changxing, Zhejiang, People's Republic of China
| | - Fengqin Liu
- Department of Ultrasound, Changxing People's Hospital, The Second Affiliated Hospital of Zhejiang University School of Medical Changxing Campus, Changxing, Zhejiang, People's Republic of China
| |
Collapse
|
23
|
Machackova T, Vychytilova-Faltejskova P, Souckova K, Laga R, Androvič L, Mixová G, Slaby O. Barriers in systemic delivery and preclinical testing of synthetic microRNAs in animal models: an experimental study on miR-215-5p mimic. Physiol Res 2021; 70:481-487. [PMID: 33982582 DOI: 10.33549/physiolres.934571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mus musculus is the most commonly used animal model in microRNA research; however, little is known about the endogenous miRNome of the animals used in the miRNA-targeting preclinical studies with the human xenografts. In the presented study, we evaluated the NOD/SCID gamma mouse model for the preclinical study of systemic miR-215-5p substitution with a semitelechelic poly[N-(2-hydroxypropyl)-methacrylamide]-based carrier conjugated with miR-215-5p-mimic via a reductively degradable disulfide bond. Murine mmu-miR-215-5p and human hsa-miR-215-5p have a high homology of mature sequences with only one nucleotide substitution. Due to the high homology of hsa-miR-215-5p and mmu-hsa-miR-215-5p, a similar expression in human and NOD/SCID gamma mice was expected. Expression of mmu-miR-215 in murine organs did not indicate tissue-specific expression and was highly expressed in all examined tissues. All animals included in the study showed a significantly higher concentration of miR-215-5p in the blood plasma compared to human blood plasma, where miR-215-5p is on the verge of a reliable detection limit. However, circulating mmu-miR-215-5p did not enter the human xenograft tumors generated with colorectal cancer cell lines since the levels of miR-215-5p in control tumors remained notably lower compared to those originally transfected with miR-215-5p. Finally, the systemic administration of polymer-miR-215-5p-mimic conjugate to the tail vein did not increase miR-215-5p in NOD/SCID gamma mouse blood plasma, organs, and subcutaneous tumors. It was impossible to distinguish hsa-miR-215-5p and mmu-miR-215-5p in the murine blood and organs due to the high expression of endogenous mmu-miR-215-5p. In conclusion, the examination of endogenous tissue and circulating miRNome of an experimental animal model of choice might be necessary for future miRNA studies focused on the systemic delivery of miRNA-based drugs conducted in the animal models.
Collapse
Affiliation(s)
- T Machackova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
24
|
Interplay between SOX9 transcription factor and microRNAs in cancer. Int J Biol Macromol 2021; 183:681-694. [PMID: 33957202 DOI: 10.1016/j.ijbiomac.2021.04.185] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
SOX transcription factors are critical regulators of development, homeostasis and disease progression and their dysregulation is a common finding in various cancers. SOX9 belongs to SOXE family located on chromosome 17. MicroRNAs (miRNAs) possess the capacity of regulating different transcription factors in cancer cells by binding to 3'-UTR. Since miRNAs can affect differentiation, migration, proliferation and other physiological mechanisms, disturbances in their expression have been associated with cancer development. In this review, we evaluate the relationship between miRNAs and SOX9 in different cancers to reveal how this interaction can affect proliferation, metastasis and therapy response of cancer cells. The tumor-suppressor miRNAs can decrease the expression of SOX9 by binding to the 3'-UTR of mRNAs. Furthermore, the expression of downstream targets of SOX9, such as c-Myc, Wnt, PI3K/Akt can be affected by miRNAs. It is noteworthy that other non-coding RNAs including lncRNAs and circRNAs regulate miRNA/SOX9 expression to promote/inhibit cancer progression and malignancy. The pre-clinical findings can be applied as biomarkers for diagnosis and prognosis of cancer patients.
Collapse
|
25
|
Wang M, Liao J, Tan C, Zhou H, Wang J, Wang K, Li Y, Wu W. Integrated study of miR-215 promoting breast cancer cell apoptosis by targeting RAD54B. J Cell Mol Med 2021; 25:3327-3338. [PMID: 33635591 PMCID: PMC8034472 DOI: 10.1111/jcmm.16402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are widely distributed in cells and participate in the regulation of the pathophysiological process of many diseases. As an important part of non-coding RNA, miRNAs regulate a variety of molecules and signal pathways in tumour cells. However, the evidence for regulatory mechanisms of specific miRNAs in tumour cells is still lacking. METHODS In this study, we used transcriptomics analysis and integrated a variety of public databases to screen miRNAs that have key regulatory effects on breast cancer (BC). In addition, we used in vitro and in vivo studies and combined clinical samples to verify its regulatory mechanism. RESULTS We found that among the specific miRNAs, miR-215-5p is a key regulator in BC. Compared with normal adjacent tissues, miR-215-5p has a lower expression level in BC tissues. Patients with high expression levels of miR-215-5p have a longer survival time. miR-215-5p can specifically target the 3'UTR region of RAD54B mRNA and down-regulate the expression of RAD54B, thereby inhibiting the proliferation of BC cells and promoting the apoptosis of BC cells. CONCLUSIONS Finally, we found that miR-215-5p can be used as an important biomarker for BC. We have clarified its function and revealed its mechanism of targeting RAD54B mRNA for the first time. This may provide important clues to reveal the deeper molecular regulation mechanism of BC.
Collapse
Affiliation(s)
- Mingyuan Wang
- Department of PathophysiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Department of Gynaecologythe Affiliated Zhuzhou Hospital Xiangya Medical CollegeCentral South UniversityZhuzhouChina
| | - Jingnan Liao
- Institute of Reproductive and Stem Cell EngineeringSchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Chang Tan
- Department of Gynaecologythe Affiliated Zhuzhou Hospital Xiangya Medical CollegeCentral South UniversityZhuzhouChina
| | - Hong Zhou
- Department of Gynaecologythe Affiliated Zhuzhou Hospital Xiangya Medical CollegeCentral South UniversityZhuzhouChina
| | - Jinjin Wang
- Department of Gynaecologythe Affiliated Zhuzhou Hospital Xiangya Medical CollegeCentral South UniversityZhuzhouChina
| | - Kangkai Wang
- Department of PathophysiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Key Laboratory of Sepsis Translational Medicine of HunanCentral South UniversityChangshaChina
- Department of Laboratory AnimalsHunan Key Laboratory of Animal Models for Human DiseasesXiangya School of MedicineCentral South UniversityChangshaChina
| | - Yiming Li
- Department of Geratic SurgeryXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Wei Wu
- Department of Geratic SurgeryXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
26
|
Safaee S, Fardi M, Hemmat N, Khosravi N, Derakhshani A, Silvestris N, Baradaran B. Silencing ZEB2 Induces Apoptosis and Reduces Viability in Glioblastoma Cell Lines. Molecules 2021; 26:molecules26040901. [PMID: 33572092 PMCID: PMC7916008 DOI: 10.3390/molecules26040901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Glioma is an aggressive type of brain tumor that originated from neuroglia cells, accounts for about 80% of all malignant brain tumors. Glioma aggressiveness has been associated with extreme cell proliferation, invasion of malignant cells, and resistance to chemotherapies. Due to resistance to common therapies, glioma affected patients’ survival has not been remarkably improved. ZEB2 (SIP1) is a critical transcriptional regulator with various functions during embryonic development and wound healing that has abnormal expression in different malignancies, including brain tumors. ZEB2 overexpression in brain tumors is attributed to an unfavorable state of the malignancy. Therefore, we aimed to investigate some functions of ZEB2 in two different glioblastoma U87 and U373 cell lines. Methods: In this study, we investigated the effect of ZEB2 knocking down on the apoptosis, cell cycle, cytotoxicity, scratch test of the two malignant brain tumor cell lines U87 and U373. Besides, we investigated possible proteins and microRNA, SMAD2, SMAD5, and miR-214, which interact with ZEB2 via in situ analysis. Then we evaluated candidate gene expression after ZEB2-specific knocking down. Results: We found that ZEB2 suppression induced apoptosis in U87 and U373 cell lines. Besides, it had cytotoxic effects on both cell lines and reduced cell migration. Cell cycle analysis showed cell cycle arrest in G0/G1 and apoptosis induction in U87 and U373 cell lines receptively. Also, we have found that SAMAD2/5 expression was reduced after ZEB2-siRNA transfection and miR-214 upregulated after transfection. Conclusions: In line with previous investigations, our results indicated a critical oncogenic role for ZEB2 overexpression in brain glioma tumors. These properties make ZEB2 an essential molecule for further studies in the treatment of glioma cancer.
Collapse
Affiliation(s)
- Sahar Safaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (S.S.); (M.F.); (N.H.); (N.K.); (A.D.)
| | - Masoumeh Fardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (S.S.); (M.F.); (N.H.); (N.K.); (A.D.)
- Hematology Division, Immunology Department, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (S.S.); (M.F.); (N.H.); (N.K.); (A.D.)
| | - Neda Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (S.S.); (M.F.); (N.H.); (N.K.); (A.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (S.S.); (M.F.); (N.H.); (N.K.); (A.D.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: (N.S.); or (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (S.S.); (M.F.); (N.H.); (N.K.); (A.D.)
- Correspondence: (N.S.); or (B.B.)
| |
Collapse
|
27
|
Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer. Cell Death Dis 2021; 12:17. [PMID: 33414456 PMCID: PMC7791039 DOI: 10.1038/s41419-020-03327-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition (EMT) plays a pivotal role in the differentiation of vertebrates and is critically important in tumorigenesis. Using this evolutionarily conserved mechanism, cancer cells become drug-resistant and acquire the ability to escape the cytotoxic effect of anti-cancer drugs. In addition, these cells gain invasive features and increased mobility thereby promoting metastases. In this respect, the process of EMT is critical for dissemination of solid tumors including breast cancer. It has been shown that miRNAs are instrumental for the regulation of EMT, where they play both positive and negative roles often as a part of a feed-back loop. Recent studies have highlighted a novel association of p53 and EMT where the mutation status of p53 is critically important for the outcome of this process. Interestingly, p53 has been shown to mediate its effects via the miRNA-dependent mechanism that targets master-regulators of EMT, such as Zeb1/2, Snail, Slug, and Twist1. This regulation often involves interactions of miRNAs with lncRNAs. In this review, we present a detailed overview of miRNA/lncRNA-dependent mechanisms that control interplay between p53 and master-regulators of EMT and their importance for breast cancer.
Collapse
|
28
|
Inokuchi K, Ochiya T, Matsuzaki J. Extracellular miRNAs for the Management of Barrett's Esophagus and Esophageal Adenocarcinoma: A Systematic Review. J Clin Med 2020; 10:E117. [PMID: 33396321 PMCID: PMC7795564 DOI: 10.3390/jcm10010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Esophageal adenocarcinoma (EAC), the major histologic type of esophageal cancer (EC) in Western countries, is a disease with a poor prognosis, primarily due to usual diagnosis at an advanced stage. The prevalence of EAC has increased in recent years, both in Western countries and in Asia. Barrett's esophagus (BE) is a precursor lesion of EAC. Therefore, early detection and proper management of BE and EAC is important to improve prognosis. Here, we systematically summarize current knowledge about the potential utility of extracellular microRNAs (miRNAs), which are thought to be non-invasive biomarkers for many diseases, for these purposes. A search of the PubMed and Embase databases identified 22 papers about extracellular miRNAs that have potential utility for management of EAC. Among them, 19 were EAC-related and ten were BE-related; some of these dealt with both conditions. The articles included studies reporting diagnosis, prognosis, and treatment responses. Multiple papers report dysregulation of miR-194-5p in BE and miR-21-5p, -25-3p, and -93-5p in EAC. Although it will take time to utilize these miRNAs in clinical practice, they are likely to be useful non-invasive markers in the future.
Collapse
Affiliation(s)
- Kazumi Inokuchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan;
| | - Juntaro Matsuzaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan;
| |
Collapse
|
29
|
Machackova T, Vychytilova-Faltejskova P, Souckova K, Trachtova K, Brchnelova D, Svoboda M, Kiss I, Prochazka V, Kala Z, Slaby O. MiR-215-5p Reduces Liver Metastasis in an Experimental Model of Colorectal Cancer through Regulation of ECM-Receptor Interactions and Focal Adhesion. Cancers (Basel) 2020; 12:cancers12123518. [PMID: 33255928 PMCID: PMC7760708 DOI: 10.3390/cancers12123518] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Decreased expression of miR-215-5-p was found in tumor tissue of patients with colorectal cancer (CRC) in comparison to healthy colon tissue. Moreover, expression levels of miR-215-5p were further decreased in metastatic lesions compared to primary tumor tissue. Overall, CRC patients with lower expression of miR-215-5p in tumors had significantly shorter overall survival and a higher chance of metastasis. This study aimed to examine the effects of miR-215-5p supplementation on the metastatic potential of CRC. MiR-215-5p was found to decrease invasiveness, migratory capacity, tumorigenicity, and metastasis formation. Finally, transcriptome analysis identified signaling pathways involved in the process, and subsequent RT-qPCR validation indicates CTNNBIP1 to be a direct target of this microRNA. These results bring new insight into miR-215-5p biology, a molecule that could potentially serve as a promising target for CRC patients’ future therapeutic strategies. Abstract Background: Growing evidence suggests that miR-215-5p is a tumor suppressor in colorectal cancer (CRC); however, its role in metastasis remains unclear. This study evaluates the effects of miR-215 overexpression on the metastatic potential of CRC. Methods: CRC cell lines were stably transfected with miR-215-5p and used for in vitro and in vivo functional analyses. Next-generation sequencing and RT-qPCR were performed to study changes on the mRNA level. Results: Overexpression of miR-215-5p significantly reduced the clonogenic potential, migration, and invasiveness of CRC cells in vitro and tumor weight and volume, and liver metastasis in vivo. Transcriptome analysis revealed mRNAs regulated by miR-215-5p and RT-qPCR confirmed results for seven selected genes. Significantly elevated levels of CTNNBIP1 were also observed in patients’ primary tumors and liver metastases compared to adjacent tissues, indicating its direct regulation by miR-215-5p. Gene Ontology and KEGG pathway analysis identified cellular processes and pathways associated with miR-215-5p deregulation. Conclusions: MiR-215-5p suppresses the metastatic potential of CRC cells through the regulation of divergent molecular pathways, including extracellular-matrix-receptor interaction and focal adhesion. Although the specific targets of miR-215-5p contributing to the formation of distant metastases must be further elucidated, this miRNA could serve as a promising target for CRC patients’ future therapeutic strategies.
Collapse
Affiliation(s)
- Tana Machackova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (T.M.); (P.V.-F.); (K.S.); (K.T.); (D.B.)
| | - Petra Vychytilova-Faltejskova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (T.M.); (P.V.-F.); (K.S.); (K.T.); (D.B.)
| | - Kamila Souckova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (T.M.); (P.V.-F.); (K.S.); (K.T.); (D.B.)
| | - Karolina Trachtova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (T.M.); (P.V.-F.); (K.S.); (K.T.); (D.B.)
| | - Dominika Brchnelova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (T.M.); (P.V.-F.); (K.S.); (K.T.); (D.B.)
| | - Marek Svoboda
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, 602 00 Brno, Czech Republic; (M.S.); (I.K.)
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, 602 00 Brno, Czech Republic; (M.S.); (I.K.)
| | - Vladimir Prochazka
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (V.P.); (Z.K.)
| | - Zdenek Kala
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (V.P.); (Z.K.)
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (T.M.); (P.V.-F.); (K.S.); (K.T.); (D.B.)
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-496-876
| |
Collapse
|
30
|
Marques D, Ferreira-Costa LR, Ferreira-Costa LL, Bezerra-Oliveira AB, Correa RDS, Ramos CCDO, Vinasco-Sandoval T, Lopes KDP, Vialle RA, Vidal AF, Silbiger VN, Ribeiro-dos-Santos Â. Role of miRNAs in Sigmoid Colon Cancer: A Search for Potential Biomarkers. Cancers (Basel) 2020; 12:cancers12113311. [PMID: 33182525 PMCID: PMC7697997 DOI: 10.3390/cancers12113311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/12/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The aberrant expression of microRNAs in known to play a crucial role in carcinogenesis. Here, we evaluated the miRNA expression profile of sigmoid colon cancer (SCC) compared to adjacent-to-tumor (ADJ) and sigmoid colon healthy (SCH) tissues obtained from colon biopsy extracted from Brazilian patients. Comparisons were performed between each group separately, considering as significant p-values < 0.05 and |Log2(Fold-Change)| > 2. We found 20 differentially expressed miRNAs (DEmiRNAs) in all comparisons, two of which were shared between SCC vs. ADJ and SCC vs. SCH. We used miRTarBase, and miRTargetLink to identify target-genes of the differentially expressed miRNAs, and DAVID and REACTOME databases for gene enrichment analysis. We also used TCGA and GTEx databases to build miRNA-gene regulatory networks and check for the reproducibility in our results. As findings, in addition to previously known miRNAs associated with colorectal cancer, we identified three potential novel biomarkers. We showed that the three types of colon tissue could be clearly distinguished using a panel composed by the 20 DEmiRNAs. Additionally, we found enriched pathways related to the carcinogenic process in which miRNA could be involved, indicating that adjacent-to-tumor tissues may be already altered and cannot be considered as healthy tissues. Overall, we expect that these findings may help in the search for biomarkers to prevent cancer progression or, at least, allow its early detection, however, more studies are needed to confirm our results.
Collapse
Affiliation(s)
- Diego Marques
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil; (D.M.); (T.V.-S.); (K.d.P.L.); (R.A.V.); (A.F.V.)
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Av. Nilo Peçanha, 620, Petrópolis, Natal 59012-300, Brazil; (L.R.F.-C.); (L.L.F.-C.); (A.B.B.-O.)
| | - Layse Raynara Ferreira-Costa
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Av. Nilo Peçanha, 620, Petrópolis, Natal 59012-300, Brazil; (L.R.F.-C.); (L.L.F.-C.); (A.B.B.-O.)
| | - Lorenna Larissa Ferreira-Costa
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Av. Nilo Peçanha, 620, Petrópolis, Natal 59012-300, Brazil; (L.R.F.-C.); (L.L.F.-C.); (A.B.B.-O.)
| | - Ana Beatriz Bezerra-Oliveira
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Av. Nilo Peçanha, 620, Petrópolis, Natal 59012-300, Brazil; (L.R.F.-C.); (L.L.F.-C.); (A.B.B.-O.)
| | - Romualdo da Silva Correa
- Departamento de Cirurgia Oncológica, Liga Norte Riograndense Contra o Câncer, R. Mário Negócio, 2267, Quintas, Natal 59040-000, Brazil;
| | - Carlos Cesar de Oliveira Ramos
- Laboratório de Patologia e Citopatologia, Liga Norte Riograndense Contra o Câncer, R. Mário Negócio, 2267, Quintas, Natal 59040-000, Brazil;
| | - Tatiana Vinasco-Sandoval
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil; (D.M.); (T.V.-S.); (K.d.P.L.); (R.A.V.); (A.F.V.)
| | - Katia de Paiva Lopes
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil; (D.M.); (T.V.-S.); (K.d.P.L.); (R.A.V.); (A.F.V.)
| | - Ricardo Assunção Vialle
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil; (D.M.); (T.V.-S.); (K.d.P.L.); (R.A.V.); (A.F.V.)
| | - Amanda Ferreira Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil; (D.M.); (T.V.-S.); (K.d.P.L.); (R.A.V.); (A.F.V.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil
| | - Vivian Nogueira Silbiger
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Av. Nilo Peçanha, 620, Petrópolis, Natal 59012-300, Brazil; (L.R.F.-C.); (L.L.F.-C.); (A.B.B.-O.)
- Correspondence: (V.N.S.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil; (D.M.); (T.V.-S.); (K.d.P.L.); (R.A.V.); (A.F.V.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Av. Augusto Corrêa, 01, Guamá, Belém 66.075-110, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, R. dos Mundurucus, 4487, Guamá, Belém 66073-000, Brazil
- Correspondence: (V.N.S.); (Â.R.-d.-S.)
| |
Collapse
|
31
|
Sun B, Xing K, Qi C, Yan K, Xu Y. Down-regulation of miR-215 attenuates lipopolysaccharide-induced inflammatory injury in CCD-18co cells by targeting GDF11 through the TLR4/NF-kB and JNK/p38 signaling pathways. Histol Histopathol 2020; 35:1473-1481. [PMID: 33146403 DOI: 10.14670/hh-18-278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ulcerative colitis (UC) is a risk factor for carcinogenesis of colorectal cancer, which is associated with disruption of the epithelial barrier and disorder of the inflammatory response. It has been reported that the expression of microRNA (miR)-215 is upregulated in patients with long-term UC. The present study aimed to investigate the effects of miR-215 on lipopolysaccharide (LPS)-induced inflammatory injury in CCD-18Co cells, as well as to identify the underlying possible molecular mechanisms. CCD-18Co cells were treated with 1 µg/ml LPS to induce inflammatory injury. Reverse transcription-quantitative PCR was performed to determine the expression of miR-215 in LPS-treated CCD-18Co cells. Moreover, a dual luciferase reporter system assay was used to evaluate the interaction of miR-215 and growth differentiation factor 11 (GDF11) in CCD-18Co cells. The expression of miR-215 was significantly upregulated in LPS-treated CCD-18Co cells. Knockdown of miR-215 significantly alleviated the inflammatory response and oxidative stress in LPS-treated CCD-18Co cells. In addition, GDF11 was identified as a direct binding target of miR-215 in CCD-18Co cells. Knockdown of miR-215 significantly increased the expression of GDF11, but decreased the expression levels of Toll-like receptor (TLR)4, phosphorylated (p)-p65, iNOS, p-p38 and p-JNK in LPS-treated CCD-18Co cells. Collectively, the present findings indicated that knockdown of miR-215 alleviated oxidative stress and inflammatory response in LPS-treated CCD-18Co cells by upregulating GDF11 expression and inactivating the TLR4/NF-κB and JNK/p38 signaling pathways.
Collapse
Affiliation(s)
- Boyang Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Xing
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Chen Qi
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Ke Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Xu
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
32
|
Construction of a Potential Breast Cancer-Related miRNA-mRNA Regulatory Network. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6149174. [PMID: 33204705 PMCID: PMC7657683 DOI: 10.1155/2020/6149174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Background Breast cancer is a malignant tumor that occurs in the epithelial tissue of the breast gland and has become the most common malignancy in women. The regulation of the expression of related genes by microRNA (miRNA) plays an important role in breast cancer. We constructed a comprehensive breast cancer-miRNA-gene interaction map. Methods Three miRNA microarray datasets (GSE26659, GSE45666, and GSE58210) were obtained from the GEO database. Then, the R software “LIMMA” package was used to identify differential expression analysis. Potential transcription factors and target genes of screened differentially expressed miRNAs (DE-miRNAs) were predicted. The BRCA GE-mRNA datasets (GSE109169 and GSE139038) were downloaded from the GEO database for identifying differentially expressed genes (DE-genes). Next, GO annotation and KEGG pathway enrichment analysis were conducted. A PPI network was then established, and hub genes were identified via Cytoscape software. The expression and prognostic roles of hub genes were further evaluated. Results We found 6 upregulated differentially expressed- (DE-) miRNAs and 18 downregulated DE-miRNAs by analyzing 3 Gene Expression Omnibus databases, and we predicted the upstream transcription factors and downstream target genes for these DE-miRNAs. Then, we used the GEO database to perform differential analysis on breast cancer mRNA and obtained differentially expressed mRNA. We found 10 hub genes of upregulated DE-miRNAs and 10 hub genes of downregulated DE-miRNAs through interaction analysis. Conclusions In this study, we have performed an integrated bioinformatics analysis to construct a more comprehensive BRCA-miRNA-gene network and provide new targets and research directions for the treatment and prognosis of BRCA.
Collapse
|
33
|
Zhang L, Liu Q, Mu Q, Zhou D, Li H, Zhang B, Yin C. MiR-429 suppresses proliferation and invasion of breast cancer via inhibiting the Wnt/β-catenin signaling pathway. Thorac Cancer 2020; 11:3126-3138. [PMID: 32961031 PMCID: PMC7606009 DOI: 10.1111/1759-7714.13620] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) have been verified as molecular targets for regulating tumor proliferation, invasion, and metastasis in tumor progression. However, the relationship between miRNAs and cellular energy metabolism in breast cancer still needs to be clarified. This study aimed to investigate the role of miR-429 in breast cancer progression. METHODS Bioinformatic analyses were employed to detect the relationship between miR-429 and cancer-related signaling pathways. We used a Kaplan-Meier curve to analyze survival rate in patients with high or low expression of miR-429. We used real-time quantitative PCR (RT-qPCR) to detect the expression of miR-429 in different cell lines. Sh-con, over-miR-429, miR-429 inhibitor, and sh-inhibitor control were transfected. Colony formation and EDU assay were used to detect the proliferation of transfected cells. Wound healing and transwell assays were performed to detect the mobility and invasion ability of transfected cells. Western blot assay was used to detect relative protein expression in transfected cells and different tissues. Bioinformatic analyses were conducted to detect the target proteins expression in different breast cancer databases. Dual luciferase reporter assay was used to confirm the binding site between miR-429 and fibronectin 1 (FN1). RESULTS The results of our study indicate that MiR-429 and its target genes are associated with cancer-related signaling pathways and that higher miR-429 expression corresponds with a better prognosis. When miR-429 was overexpressed, the proliferation, invasion of MDA-MB-231 were inhibited. MiR-429 was able to suppress the Wnt/β-catenin signaling pathway, and FN1 overexpression could rescue the influence of over-miR-429. CONCLUSIONS The results of our study suggest that miR-429 suppresses the proliferation and invasion of breast cancer via inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Pathology, Basic Medical CollegeWeifang Medical UniversityWeifangChina
| | - Qinghua Liu
- Department of Human Anatomy, Basic Medical CollegeWeifang Medical UniversityWeifangChina
| | - Qingjie Mu
- Department of Oncology, Clinical Medical CollegeWeifang Medical UniversityWeifangChina
| | - Dandan Zhou
- Department of Pathology, Basic Medical CollegeWeifang Medical UniversityWeifangChina
| | - Hongli Li
- Medicine Research CenterWeifang Medical UniversityWeifangChina
| | - Baogang Zhang
- Department of Pathology, Basic Medical CollegeWeifang Medical UniversityWeifangChina
| | - Chonggao Yin
- College of NursingWeifang Medical UniversityWeifangChina
| |
Collapse
|
34
|
Li Y, Liang Y, Ma T, Yang Q. Identification of DGUOK-AS1 as a Prognostic Factor in Breast Cancer by Bioinformatics Analysis. Front Oncol 2020; 10:1092. [PMID: 32766141 PMCID: PMC7379746 DOI: 10.3389/fonc.2020.01092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Significant developments have been made in breast cancer diagnosis and treatment, yet the prognosis remains unsatisfactory. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play pivotal roles in the development and progression of human tumors. However, the regulatory mechanisms and clinical significance of most lncRNAs in breast cancer remain poorly understood. Methods: The lncRNA, miRNA, and mRNA expression profiles were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. A lncRNA-miRNA-mRNA regulatory network was constructed and visualized using Cytoscape. The protein-protein interaction (PPI) network was constructed using the STRING database and hub genes were extracted using the cytoHubba plugin. Gene Ontology and Kyoto Encyclopedia of Gene and Genomes analyses identified the functions and signaling pathways associated with these differentially expressed mRNAs (DEmRNAs). Expression of the key lncRNA and the relationship with prognosis of patients with breast cancer were evaluated. Results: Six differentially expressed lncRNAs (DElncRNAs), 29 differentially expressed miRNAs (DEmiRNAs), and 253 DEmRNAs were selected to construct the regulatory network. A PPI network was established and seven hub genes were identified. A lncRNA-miRNA-hub gene regulatory sub-network was established containing two DElncRNAs, five DEmiRNAs, and seven DEmRNAs. Hub genes were associated with breast cancer onset and progression. The upregulated DGUOK-AS1 was identified as the key lncRNA in breast cancer based on the competing endogenous RNA network. High DGUOK-AS1 expression was associated with adverse prognosis in patients with breast cancer and a prognostic nomogram built on Grade, LN status, and DGUOK-AS1 expression shows significant prognostic value. Conclusions: Our results reveal the significant roles of lncRNA/miRNA/mRNA regulatory networks in breast cancer and identified a novel prognosis predictor and promising therapeutic target for patients with breast cancer.
Collapse
Affiliation(s)
- Yalun Li
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yiran Liang
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tingting Ma
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
35
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
36
|
Jana S, Madhu Krishna B, Singhal J, Horne D, Awasthi S, Salgia R, Singhal SS. SOX9: The master regulator of cell fate in breast cancer. Biochem Pharmacol 2020; 174:113789. [PMID: 31911091 PMCID: PMC9048250 DOI: 10.1016/j.bcp.2019.113789] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
SRY-related high-mobility group box 9 (SOX9) is an indispensable transcription factor that regulates multiple developmental pathways related to stemness, differentiation, and progenitor development. Previous studies have demonstrated that the SOX9 protein directs pathways involved in tumor initiation, proliferation, migration, chemoresistance, and stem cell maintenance, thereby regulating tumorigenesis as an oncogene. SOX9 overexpression is a frequent event in breast cancer (BC) subtypes. Of note, the molecular mechanisms and functional regulation underlying SOX9 upregulation during BC progression are still being uncovered. The focus of this review is to appraise recent advances regarding the involvement of SOX9 in BC pathogenesis. First, we provide a general overview of SOX9 structure and function, as well as its involvement in various kinds of cancer. Next, we discuss pathways of SOX9 regulation, particularly its miRNA-mediated regulation, in BC. Finally, we describe the involvement of SOX9 in BC pathogenesis via its regulation of pathways involved in regulating cancer hallmarks, as well as its clinical and therapeutic importance. In general, this review article aims to serve as an ample source of knowledge on the involvement of SOX9 in BC progression. Targeting SOX9 activity may improve therapeutic strategies to treat BC, but precisely inhibiting SOX9 using drugs and/or small peptides remains a huge challenge for forthcoming cancer research.
Collapse
Affiliation(s)
- Samir Jana
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - B Madhu Krishna
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|