1
|
Hariharan N, Ghosh S, Palakodeti D. The story of rRNA expansion segments: Finding functionality amidst diversity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1732. [PMID: 35429135 DOI: 10.1002/wrna.1732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 01/31/2023]
Abstract
Expansion segments (ESs) are multinucleotide insertions present across phyla at specific conserved positions in eukaryotic rRNAs. ESs are generally absent in bacterial rRNAs with some exceptions, while the archaeal rRNAs have microexpansions at regions that coincide with those of eukaryotic ESs. Although there is an increasing prominence of ribosomes, especially the ribosomal proteins, in fine-tuning gene expression through translation regulation, the role of rRNA ESs is relatively underexplored. While rRNAs have been established as the major catalytic hub in ribosome function, the presence of ESs widens their scope as a species-specific regulatory hub of protein synthesis. In this comprehensive review, we have elaborately discussed the current understanding of the functional aspects of rRNA ESs of cytoplasmic eukaryotic ribosomes and discuss their past, present, and future. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Ribosome Structure/Function Translation > Regulation.
Collapse
Affiliation(s)
- Nivedita Hariharan
- Technologies for the Advancement of Science, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,The University of Trans-disciplinary Health Sciences and Technology, Bangalore, India
| | - Sumana Ghosh
- Manipal Academy of Higher Education, Manipal, India
| | - Dasaradhi Palakodeti
- Technologies for the Advancement of Science, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
2
|
Jüttner M, Ferreira-Cerca S. Looking through the Lens of the Ribosome Biogenesis Evolutionary History: Possible Implications for Archaeal Phylogeny and Eukaryogenesis. Mol Biol Evol 2022; 39:msac054. [PMID: 35275997 PMCID: PMC8997704 DOI: 10.1093/molbev/msac054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Our understanding of microbial diversity and its evolutionary relationships has increased substantially over the last decade. Such an understanding has been greatly fueled by culture-independent metagenomics analyses. However, the outcome of some of these studies and their biological and evolutionary implications, such as the origin of the eukaryotic lineage from the recently discovered archaeal Asgard superphylum, is debated. The sequences of the ribosomal constituents are amongst the most used phylogenetic markers. However, the functional consequences underlying the analysed sequence diversity and their putative evolutionary implications are essentially not taken into consideration. Here, we propose to exploit additional functional hallmarks of ribosome biogenesis to help disentangle competing evolutionary hypotheses. Using selected examples, such as the multiple origins of halophily in archaea or the evolutionary relationship between the Asgard archaea and Eukaryotes, we illustrate and discuss how function-aware phylogenetic framework can contribute to refining our understanding of archaeal phylogeny and the origin of eukaryotic cells.
Collapse
Affiliation(s)
- Michael Jüttner
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Jüttner M, Ferreira-Cerca S. A Comparative Perspective on Ribosome Biogenesis: Unity and Diversity Across the Tree of Life. Methods Mol Biol 2022; 2533:3-22. [PMID: 35796979 PMCID: PMC9761495 DOI: 10.1007/978-1-0716-2501-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Ribosomes are universally conserved ribonucleoprotein complexes involved in the decoding of the genetic information contained in messenger RNAs into proteins. Accordingly, ribosome biogenesis is a fundamental cellular process required for functional ribosome homeostasis and to preserve satisfactory gene expression capability.Although the ribosome is universally conserved, its biogenesis shows an intriguing degree of variability across the tree of life . These differences also raise yet unresolved questions. Among them are (a) what are, if existing, the remaining ancestral common principles of ribosome biogenesis ; (b) what are the molecular impacts of the evolution history and how did they contribute to (re)shape the ribosome biogenesis pathway across the tree of life ; (c) what is the extent of functional divergence and/or convergence (functional mimicry), and in the latter case (if existing) what is the molecular basis; (d) considering the universal ribosome conservation, what is the capability of functional plasticity and cellular adaptation of the ribosome biogenesis pathway?In this review, we provide a brief overview of ribosome biogenesis across the tree of life and try to illustrate some potential and/or emerging answers to these unresolved questions.
Collapse
Affiliation(s)
- Michael Jüttner
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
4
|
Tirumalai MR, Anane-Bediakoh D, Rajesh S, Fox GE. Net Charges of the Ribosomal Proteins of the S10 and spc Clusters of Halophiles Are Inversely Related to the Degree of Halotolerance. Microbiol Spectr 2021; 9:e0178221. [PMID: 34908470 PMCID: PMC8672879 DOI: 10.1128/spectrum.01782-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
Net positive charge(s) on ribosomal proteins (r-proteins) have been reported to influence the assembly and folding of ribosomes. A high percentage of r-proteins from extremely halophilic archaea are known to be acidic or even negatively charged. Those proteins that remain positively charged are typically far less positively charged. Here, the analysis is extended to non-archaeal halophilic bacteria, eukaryotes, and halotolerant archaea. The net charges (pH 7.4) of the r-proteins that comprise the S10-spc operon/cluster from individual microbial and eukaryotic genomes were estimated and intercompared. It was observed that, as a general rule, the net charges of individual proteins remained mostly basic as the salt tolerance of the bacterial strains increased from 5 to 15%. The most striking exceptions were the extremely halophilic bacterial strains, Salinibacter ruber SD01, Acetohalobium arabaticum DSM 5501 and Selenihalanaerobacter shriftii ATCC BAA-73, which are reported to require a minimum of 18% to 21% salt for their growth. All three strains have higher numbers of acidic S10-spc cluster r-proteins than what is seen in the moderate halophiles or the halotolerant strains. Of the individual proteins, only uL2 never became acidic. uS14 and uL16 also seldom became acidic. The net negative charges on several of the S10-spc cluster r-proteins are a feature generally shared by all extremely halophilic archaea and bacteria. The S10-spc cluster r-proteins of halophilic fungi and algae (eukaryotes) were exceptions: these were positively charged despite the halophilicity of the organisms. IMPORTANCE The net charges (at pH 7.4) of the ribosomal proteins (r-proteins) that comprise the S10-spc cluster show an inverse relationship with the halophilicity/halotolerance levels in both bacteria and archaea. In non-halophilic bacteria, the S10-spc cluster r-proteins are generally basic (positively charged), while the rest of the proteomes in these strains are generally acidic. On the other hand, the whole proteomes of the extremely halophilic strains are overall negatively charged, including the S10-spc cluster r-proteins. Given that the distribution of charged residues in the ribosome exit tunnel influences cotranslational folding, the contrasting charges observed in the S10-spc cluster r-proteins have potential implications for the rate of passage of these proteins through the ribosomal exit tunnel. Furthermore, the universal protein uL2, which lies in the oldest part of the ribosome, is always positively charged irrespective of the strain/organism it belongs to. This has implications for its role in the prebiotic context.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | - Sidharth Rajesh
- Clements High School (Class of 2023), Fort Bend Independent School District, Sugar Land, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Penev PI, Fakhretaha-Aval S, Patel VJ, Cannone JJ, Gutell RR, Petrov AS, Williams LD, Glass JB. Supersized Ribosomal RNA Expansion Segments in Asgard Archaea. Genome Biol Evol 2021; 12:1694-1710. [PMID: 32785681 PMCID: PMC7594248 DOI: 10.1093/gbe/evaa170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
The ribosome’s common core, comprised of ribosomal RNA (rRNA) and universal ribosomal proteins, connects all life back to a common ancestor and serves as a window to relationships among organisms. The rRNA of the common core is similar to rRNA of extant bacteria. In eukaryotes, the rRNA of the common core is decorated by expansion segments (ESs) that vastly increase its size. Supersized ESs have not been observed previously in Archaea, and the origin of eukaryotic ESs remains enigmatic. We discovered that the large ribosomal subunit (LSU) rRNA of two Asgard phyla, Lokiarchaeota and Heimdallarchaeota, considered to be the closest modern archaeal cell lineages to Eukarya, bridge the gap in size between prokaryotic and eukaryotic LSU rRNAs. The elongated LSU rRNAs in Lokiarchaeota and Heimdallarchaeota stem from two supersized ESs, called ES9 and ES39. We applied chemical footprinting experiments to study the structure of Lokiarchaeota ES39. Furthermore, we used covariation and sequence analysis to study the evolution of Asgard ES39s and ES9s. By defining the common eukaryotic ES39 signature fold, we found that Asgard ES39s have more and longer helices than eukaryotic ES39s. Although Asgard ES39s have sequences and structures distinct from eukaryotic ES39s, we found overall conservation of a three-way junction across the Asgard species that matches eukaryotic ES39 topology, a result consistent with the accretion model of ribosomal evolution.
Collapse
Affiliation(s)
- Petar I Penev
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Sara Fakhretaha-Aval
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Vaishnavi J Patel
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas
| | - Jamie J Cannone
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas
| | - Robin R Gutell
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas
| | - Anton S Petrov
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Loren Dean Williams
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Jennifer B Glass
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.,School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
6
|
Londei P, Ferreira-Cerca S. Ribosome Biogenesis in Archaea. Front Microbiol 2021; 12:686977. [PMID: 34367089 PMCID: PMC8339473 DOI: 10.3389/fmicb.2021.686977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/14/2021] [Indexed: 12/02/2022] Open
Abstract
Making ribosomes is a major cellular process essential for the maintenance of functional ribosome homeostasis and to ensure appropriate gene expression. Strikingly, although ribosomes are universally conserved ribonucleoprotein complexes decoding the genetic information contained in messenger RNAs into proteins, their biogenesis shows an intriguing degree of variability across the tree of life. In this review, we summarize our knowledge on the least understood ribosome biogenesis pathway: the archaeal one. Furthermore, we highlight some evolutionary conserved and divergent molecular features of making ribosomes across the tree of life.
Collapse
Affiliation(s)
- Paola Londei
- Department of Molecular Medicine, University of Rome Sapienza, Rome, Italy
| | - Sébastien Ferreira-Cerca
- Biochemistry III - Regensburg Center for Biochemistry, Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Stepanov VG, Fox GE. Expansion segments in bacterial and archaeal 5S ribosomal RNAs. RNA (NEW YORK, N.Y.) 2021; 27:133-150. [PMID: 33184227 PMCID: PMC7812874 DOI: 10.1261/rna.077123.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 05/10/2023]
Abstract
The large ribosomal RNAs of eukaryotes frequently contain expansion sequences that add to the size of the rRNAs but do not affect their overall structural layout and are compatible with major ribosomal function as an mRNA translation machine. The expansion of prokaryotic ribosomal RNAs is much less explored. In order to obtain more insight into the structural variability of these conserved molecules, we herein report the results of a comprehensive search for the expansion sequences in prokaryotic 5S rRNAs. Overall, 89 expanded 5S rRNAs of 15 structural types were identified in 15 archaeal and 36 bacterial genomes. Expansion segments ranging in length from 13 to 109 residues were found to be distributed among 17 insertion sites. The strains harboring the expanded 5S rRNAs belong to the bacterial orders Clostridiales, Halanaerobiales, Thermoanaerobacterales, and Alteromonadales as well as the archael order Halobacterales When several copies of a 5S rRNA gene are present in a genome, the expanded versions may coexist with normal 5S rRNA genes. The insertion sequences are typically capable of forming extended helices, which do not seemingly interfere with folding of the conserved core. The expanded 5S rRNAs have largely been overlooked in 5S rRNA databases.
Collapse
MESH Headings
- Alteromonadaceae/classification
- Alteromonadaceae/genetics
- Alteromonadaceae/metabolism
- Base Pairing
- Base Sequence
- Clostridiales/classification
- Clostridiales/genetics
- Clostridiales/metabolism
- Firmicutes/classification
- Firmicutes/genetics
- Firmicutes/metabolism
- Genome, Archaeal
- Genome, Bacterial
- Halobacteriales/classification
- Halobacteriales/genetics
- Halobacteriales/metabolism
- Nucleic Acid Conformation
- Phylogeny
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- Thermoanaerobacterium/classification
- Thermoanaerobacterium/genetics
- Thermoanaerobacterium/metabolism
Collapse
Affiliation(s)
- Victor G Stepanov
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| |
Collapse
|