1
|
Chen B, Leng Z, Zhang J, Shi X, Dong S, Wang B. Diagnostic Application of Bronchoalveolar Lavage Fluid Analysis in Cases of Idiopathic Pulmonary Fibrosis in which Diagnosis Cannot Be Confirmed by High-Resolution Computed Tomography. Lung 2025; 203:16. [PMID: 39751999 DOI: 10.1007/s00408-024-00758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disorder characterized by dry cough, fatigue, and exacerbated dyspnea. The prognosis of IPF is notably unfavorable, becoming extremely poor when the disease advances acutely. Effective therapeutic intervention is essential to mitigate disease progression; hence, early diagnosis and treatment are paramount. When high-resolution computed tomography (HRCT) reveals usual interstitial pneumonia (UIP), a diagnosis of IPF can be established. However, when HRCT fails to conclusively confirm IPF, the diagnostic pathway becomes intricate and necessitates a multidisciplinary approach involving clinicians, radiologists, and pathologists. Consequently, the objective of this study was to investigate new diagnostic approaches through bronchoalveolar lavage (BAL) analysis. METHODS BAL is a commonly utilized diagnostic tool for interstitial lung diseases. We review the application of bronchoalveolar lavage (BALF) in idiopathic pulmonary fibrotic disease, emphasizing that the cellular and solute composition of the lower respiratory tract offers valuable insights. RESULTS This review delineates the advancements in diagnosing IPF cases that remain indeterminate via HRCT, leveraging BALF analysis. In contrast to surgical lung biopsy, BAL is minimally invasive and offers potential diagnostic utility through the identification of specific BALF biomarkers. CONCLUSION Augment the clinical diagnostic armamentarium for IPF, particularly in scenarios where HRCT findings are inconclusive.
Collapse
Affiliation(s)
- Boyi Chen
- Department of Respiratory Medicine, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, People's Republic of China
| | - Zhefeng Leng
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| | - Jianhui Zhang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| | - Xuefei Shi
- Department of Respiratory Medicine, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, People's Republic of China.
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China.
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China.
| | - Shunli Dong
- Department of Respiratory Medicine, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, People's Republic of China.
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China.
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China.
| | - Bin Wang
- Department of Respiratory Medicine, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, People's Republic of China.
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China.
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China.
| |
Collapse
|
2
|
Pattaroni C, Begka C, Cardwell B, Jaffar J, Macowan M, Harris NL, Westall GP, Marsland BJ. Multi-omics integration reveals a nonlinear signature that precedes progression of lung fibrosis. Clin Transl Immunology 2024; 13:e1485. [PMID: 38269243 PMCID: PMC10807351 DOI: 10.1002/cti2.1485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a devastating progressive interstitial lung disease with poor outcomes. While decades of research have shed light on pathophysiological mechanisms associated with the disease, our understanding of the early molecular events driving IPF and its progression is limited. With this study, we aimed to model the leading edge of fibrosis using a data-driven approach. Methods Multiple omics modalities (transcriptomics, metabolomics and lipidomics) of healthy and IPF lung explants representing different stages of fibrosis were combined using an unbiased approach. Multi-Omics Factor Analysis of datasets revealed latent factors specifically linked with established fibrotic disease (Factor1) and disease progression (Factor2). Results Features characterising Factor1 comprised well-established hallmarks of fibrotic disease such as defects in surfactant, epithelial-mesenchymal transition, extracellular matrix deposition, mitochondrial dysfunction and purine metabolism. Comparatively, Factor2 identified a signature revealing a nonlinear trajectory towards disease progression. Molecular features characterising Factor2 included genes related to transcriptional regulation of cell differentiation, ciliogenesis and a subset of lipids from the endocannabinoid class. Machine learning models, trained upon the top transcriptomics features of each factor, accurately predicted disease status and progression when tested on two independent datasets. Conclusion This multi-omics integrative approach has revealed a unique signature which may represent the inflection point in disease progression, representing a promising avenue for the identification of therapeutic targets aimed at addressing the progressive nature of the disease.
Collapse
Affiliation(s)
- Céline Pattaroni
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Christina Begka
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Bailey Cardwell
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Jade Jaffar
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Matthew Macowan
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Nicola L Harris
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Glen P Westall
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
- Department of Respiratory MedicineAlfred HospitalMelbourneVICAustralia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| |
Collapse
|
3
|
Zhang PH, Wu DB, Liu J, Wen JT, Chen ES, Xiao CH. Proteomics analysis of lung tissue reveals protein makers for the lung injury of adjuvant arthritis rats. Mol Med Rep 2023; 28:163. [PMID: 37449522 PMCID: PMC10407615 DOI: 10.3892/mmr.2023.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Lung injury is one of the common extra‑articular lesions in rheumatoid arthritis (RA). Due to its insidious onset and no obvious clinical symptoms, it can be easily dismissed in the early stage of diagnosis, which is one of the reasons that leads to a decline of the quality of life and subsequent death of patients with RA. However, its pathogenesis is still unclear and there is a lack of effective therapeutic targets. In the present study, tandem mass tag‑labeled proteomics was used to research the lung tissue proteins in RA model (adjuvant arthritis, AA) rats that had secondary lung injury. The aim of the present study was to identify the differentially expressed proteins related to RA‑lung injury, determine their potential role in the pathogenesis of RA‑lung injury and provide potential targets for clinical treatment. Lung tissue samples were collected from AA‑lung injury and normal rats. The differentially expressed proteins (DEPs) were identified by tandem mass spectrometry. Bioinformatic analysis was used to assess the biological processes and signaling pathways associated with these DEPs. A total of 310 DEPs were found, of which 244 were upregulated and 66 were downregulated. KEGG anlysis showed that 'fatty acid degradation', 'fatty acid metabolism', 'fatty acid elongation', 'complement and coagulation cascades', 'peroxisome proliferator‑activated receptor signaling pathway' and 'hypoxia‑inducible factor signaling pathway' were significantly upregulated in the lung tissues of AA‑lung injury. Immunofluorescence staining confirmed the increased expression of clusterin, serine protease inhibitors and complement 1qc in lung tissue of rats with AA lung injury. In the present study, the results revealed the significance of certain DEPs (for example, C9, C1qc and Clu) in the occurrence and development of RA‑lung injury and provided support through experiments to identify potential biomarkers for the early diagnosis and prevention of RA‑lung injury.
Collapse
Affiliation(s)
- Ping-Heng Zhang
- Rheumatology and Immunology Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Dan-Bin Wu
- Department of Traditional Chinese Medicine, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
| | - Jian-Ting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
| | - En-Sheng Chen
- Rheumatology and Immunology Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Chang-Hong Xiao
- Rheumatology and Immunology Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| |
Collapse
|
4
|
Ogbonnaya CN, Alsaedi BSO, Alhussaini AJ, Hislop R, Pratt N, Nabi G. Radiogenomics Reveals Correlation between Quantitative Texture Radiomic Features of Biparametric MRI and Hypoxia-Related Gene Expression in Men with Localised Prostate Cancer. J Clin Med 2023; 12:jcm12072605. [PMID: 37048688 PMCID: PMC10095552 DOI: 10.3390/jcm12072605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVES To perform multiscale correlation analysis between quantitative texture feature phenotypes of pre-biopsy biparametric MRI (bpMRI) and targeted sequence-based RNA expression for hypoxia-related genes. MATERIALS AND METHODS Images from pre-biopsy 3T bpMRI scans in clinically localised PCa patients of various risk categories (n = 15) were used to extract textural features. The genomic landscape of hypoxia-related gene expression was obtained using post-radical prostatectomy tissue for targeted RNA expression profiling using the TempO-sequence method. The nonparametric Games Howell test was used to correlate the differential expression of the important hypoxia-related genes with 28 radiomic texture features. Then, cBioportal was accessed, and a gene-specific query was executed to extract the Oncoprint genomic output graph of the selected hypoxia-related genes from The Cancer Genome Atlas (TCGA). Based on each selected gene profile, correlation analysis using Pearson's coefficients and survival analysis using Kaplan-Meier estimators were performed. RESULTS The quantitative bpMR imaging textural features, including the histogram and grey level co-occurrence matrix (GLCM), correlated with three hypoxia-related genes (ANGPTL4, VEGFA, and P4HA1) based on RNA sequencing using the TempO-Seq method. Further radiogenomic analysis, including data accessed from the cBioportal genomic database, confirmed that overexpressed hypoxia-related genes significantly correlated with a poor survival outcomes, with a median survival ratio of 81.11:133.00 months in those with and without alterations in genes, respectively. CONCLUSION This study found that there is a correlation between the radiomic texture features extracted from bpMRI in localised prostate cancer and the hypoxia-related genes that are differentially expressed. The analysis of expression data based on cBioportal revealed that these hypoxia-related genes, which were the focus of the study, are linked to an unfavourable survival outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Chidozie N Ogbonnaya
- Division of Imaging Science and Technology, University of Dundee, Dundee DD1 4HN, UK
- College of Basic Medical Sciences, Abia State University, Uturu 441103, Nigeria
| | - Basim S O Alsaedi
- Statistics Department, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Abeer J Alhussaini
- Division of Imaging Science and Technology, University of Dundee, Dundee DD1 4HN, UK
- Department of Medical Imaging, Al-Amiri Hospital, Ministry of Health, Sulaibikhat 1300, Kuwait
| | - Robert Hislop
- Cytogenetic, Human Genetics Unit, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Norman Pratt
- Cytogenetic, Human Genetics Unit, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Ghulam Nabi
- Division of Imaging Science and Technology, University of Dundee, Dundee DD1 4HN, UK
- School of Medicine, Ninewells Hospital, Dundee DD1 9SY, UK
| |
Collapse
|
5
|
Serum metabolomic research of the anti-pulmonary fibrosis effects of Shuangshen Pingfei Formula on bleomycin-induced pulmonary fibrosis rats. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1197:123225. [DOI: 10.1016/j.jchromb.2022.123225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
|
6
|
Wang Z, Ma P, Wang Y, Hou B, Zhou C, Tian H, Li B, Shui G, Yang X, Qiang G, Yin C, Du G. Untargeted metabolomics and transcriptomics identified glutathione metabolism disturbance and PCS and TMAO as potential biomarkers for ER stress in lung. Sci Rep 2021; 11:14680. [PMID: 34282162 PMCID: PMC8290008 DOI: 10.1038/s41598-021-92779-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a cellular state that results from the overload of unfolded/misfolded protein in the ER that, if not resolved properly, can lead to cell death. Both acute lung infections and chronic lung diseases have been found related to ER stress. Yet no study has been presented integrating metabolomic and transcriptomic data from total lung in interpreting the pathogenic state of ER stress. Total mouse lungs were used to perform LC-MS and RNA sequencing in relevance to ER stress. Untargeted metabolomics revealed 16 metabolites of aberrant levels with statistical significance while transcriptomics revealed 1593 genes abnormally expressed. Enrichment results demonstrated the injury ER stress inflicted upon lung through the alteration of multiple critical pathways involving energy expenditure, signal transduction, and redox homeostasis. Ultimately, we have presented p-cresol sulfate (PCS) and trimethylamine N-oxide (TMAO) as two potential ER stress biomarkers. Glutathione metabolism stood out in both omics as a notably altered pathway that believed to take important roles in maintaining the redox homeostasis in the cells critical for the development and relief of ER stress, in consistence with the existing reports.
Collapse
Affiliation(s)
- Zijing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Yisa Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
- College of Pharmacy, Harbin University of Commerce, Harbin, 510006, China
| | - Biyu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Can Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bowen Li
- LipidALL Technologies Ltd., Changzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China.
| | - Chengqian Yin
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China.
| |
Collapse
|
7
|
Hamanaka RB, Mutlu GM. The role of metabolic reprogramming and de novo amino acid synthesis in collagen protein production by myofibroblasts: implications for organ fibrosis and cancer. Amino Acids 2021; 53:1851-1862. [PMID: 33963932 DOI: 10.1007/s00726-021-02996-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
Fibrosis is a pathologic condition resulting from aberrant wound healing responses that lead to excessive accumulation of extracellular matrix components, distortion of organ architecture, and loss of organ function. Fibrotic disease can affect every organ system; moreover, fibrosis is an important microenvironmental component of many cancers, including pancreatic, cervical, and hepatocellular cancers. Fibrosis is also an independent risk factor for cancer. Taken together, organ fibrosis contributes to up to 45% of all deaths worldwide. There are no approved therapies that halt or reverse fibrotic disease, highlighting the great need for novel therapeutic targets. At the heart of almost all fibrotic disease is the TGF-β-mediated differentiation of fibroblasts into myofibroblasts, the primary cell type responsible for the production of collagen and other matrix proteins and distortion of tissue architecture. Recent advances, particularly in the field of lung fibrosis, have highlighted the role that metabolic reprogramming plays in the pathogenic phenotype of myofibroblasts, particularly the induction of de novo amino acid synthesis pathways that are required to support collagen matrix production by these cells. In this review, we will discuss the metabolic changes associated with myofibroblast differentiation, focusing on the de novo production of glycine and proline, two amino acids which compose over half of the primary structure of collagen protein. We will also discuss the important role that synthesis of these amino acids plays in regulating cellular redox balance and epigenetic state.
Collapse
Affiliation(s)
- Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL, 60637, USA
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL, 60637, USA.
| |
Collapse
|
8
|
Nambiar S, Clynick B, How BS, King A, Walters EH, Goh NS, Corte TJ, Trengove R, Tan D, Moodley Y. There is detectable variation in the lipidomic profile between stable and progressive patients with idiopathic pulmonary fibrosis (IPF). Respir Res 2021; 22:105. [PMID: 33836757 PMCID: PMC8033725 DOI: 10.1186/s12931-021-01682-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by fibrosis and progressive loss of lung function. The pathophysiological pathways involved in IPF are not well understood. Abnormal lipid metabolism has been described in various other chronic lung diseases including asthma and chronic obstructive pulmonary disease (COPD). However, its potential role in IPF pathogenesis remains unclear. Methods In this study, we used ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to characterize lipid changes in plasma derived from IPF patients with stable and progressive disease. We further applied a data-independent acquisition (DIA) technique called SONAR, to improve the specificity of lipid identification. Results Statistical modelling showed variable discrimination between the stable and progressive subjects, revealing differences in the detection of triglycerides (TG) and phosphatidylcholines (PC) between progressors and stable IPF groups, which was further confirmed by mass spectrometry imaging (MSI) in IPF tissue. Conclusion This is the first study to characterise lipid metabolism between stable and progressive IPF, with results suggesting disparities in the circulating lipidome with disease progression.
Collapse
Affiliation(s)
- Shabarinath Nambiar
- Separation Science and Metabolomics Laboratory, Murdoch University, Murdoch, WA, Australia
| | - Britt Clynick
- School of Biomedical Science, University of Western Australia, Crawley, WA, Australia. .,Institute for Respiratory Health, Nedlands, WA, Australia.
| | - Bong S How
- Separation Science and Metabolomics Laboratory, Murdoch University, Murdoch, WA, Australia.,Metabolomics Australia, Murdoch University, Murdoch, WA, Australia
| | - Adam King
- Scientific Operations, Waters Corporation, Stamford Avenue, Wilmslow, SK9 4AX, UK
| | - E Haydn Walters
- Alfred Hospital, Melbourne, VIC, Australia.,University of Tasmania, Hobart, TAS, Australia.,University of Melbourne, Parkville, VIC, Australia.,Royal Hobart Hospital, Hobart, TAS, Australia
| | - Nicole S Goh
- Austin Hospital, Heidelberg, VIC, Australia.,Institute of Breathing and Sleep, Heidelberg, VIC, Australia
| | - Tamera J Corte
- University of Sydney, Camperdown, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Robert Trengove
- Separation Science and Metabolomics Laboratory, Murdoch University, Murdoch, WA, Australia.,Metabolomics Australia, Murdoch University, Murdoch, WA, Australia
| | - Dino Tan
- School of Biomedical Science, University of Western Australia, Crawley, WA, Australia.,Institute for Respiratory Health, Nedlands, WA, Australia
| | - Yuben Moodley
- School of Biomedical Science, University of Western Australia, Crawley, WA, Australia.,Institute for Respiratory Health, Nedlands, WA, Australia.,Fiona Stanley Hospital, Murdoch, WA, Australia
| |
Collapse
|