1
|
Niu G, Toma MA, Geara J, Bian X, Chen Y, Luo L, Wang Q, Xiao Y, Vij M, Piipponen M, Liu Z, Oasa S, Zhang L, Schlesinger D, Végvári Á, Li D, Wang A, Vukojević V, Elsässer SJ, Sommar P, Xu Landén N. Collaborative Duality of CircGLIS3(2) RNA and Protein in human Wound Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416784. [PMID: 40279507 DOI: 10.1002/advs.202416784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/07/2025] [Indexed: 04/27/2025]
Abstract
The discovery of an increasing number of translatable circular RNAs (circRNAs) raises the question of whether their coding and non-coding functions can coexist within the same cell. This study profiles the dynamic expression of circRNAs during human skin wound healing. CircGLIS3(2) is identified, a circRNA whose levels transiently rise in dermal fibroblasts of acute wounds and are abnormally overexpressed in keloids, a fibrotic skin condition. Injury signals such as IL-1α, TGF-β, hypoxia, and ER stress induce both expression and cap-independent translation of CircGLIS3(2). The RNA form of CircGLIS3(2) activates fibroblasts into matrix-secreting cells, while its encoded protein promotes cell proliferation, collectively enhancing wound repair. Mechanistically, CircGLIS3(2) RNA stabilizes the cytoplasmic protein PCOLCE, while its protein binds to BTF3 in the nucleus. Both the RNA and protein are essential for wound closure in human and murine models. CircGLIS3(2)'s bifunctional nature expands its functional spectrum, improving cellular adaptability during environmental changes and offering a promising therapeutic target for wound repair and scar reduction.
Collapse
Affiliation(s)
- Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Maria A Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Jennifer Geara
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Qizhang Wang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17176, Sweden
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210003, China
| | - Manika Vij
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Sho Oasa
- Department of Clinical Neuroscience, Center for Molecular Medicine, Stockholm, 17176, Sweden
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Dörte Schlesinger
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210003, China
| | - Aoxue Wang
- Department of Dermatology, The Second Hospital of Dalian Medical University, College of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Center for Molecular Medicine, Stockholm, 17176, Sweden
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17176, Sweden
| |
Collapse
|
2
|
Pan L, Sun C, Jin H, Lv S. LINC01711 modulates proliferation, migration, and extracellular matrix deposition of hypertrophic scar fibroblasts by targeting miR-34a-5p. Arch Dermatol Res 2025; 317:736. [PMID: 40278926 DOI: 10.1007/s00403-025-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
Hypertrophic scar (HS) is a proliferative disorder that occurs after skin injury and generally leads to disfigurement and impaired skin function in patients. This study aims to delve into the biological role of long intergenic non-protein coding RNA 1711 (LINC01711) in HS, thereby identifying novel therapeutic approaches for HS. HS tissues and corresponding normal tissues were obtained from 35 patients. The expression of LINC01711 was evaluated by qRT-PCR. The effect of LINC01711 knockdown on HS fibroblasts (HSFs) was measured by CCK-8 assay, migration assay, and apoptosis assay. The molecular mechanisms were investigated through bioinformatics analysis and dual-luciferase reporter assay. The impact of LINC01711 on the expression of extracellular matrix (ECM) deposition markers was measured using ELISA assay. LINC01711 was upregulated in HS tissues and positively correlated with disease severity. The silencing of LINC01711 induced the suppression of cell viability, migration, and the promotion of apoptosis in HSFs. LINC01711 negatively modulated microRNA-34a-5p (miR-34a-5p) expression. Suppression of miR-34a-5p reversed the biological function of LINC01711 knockdown in HSFs. Furthermore, LINC01711 modulated collagen type I alpha 1 chain (COL1A1), tissue inhibitor of metalloprotease-1 (TIMP1), and actin alpha 2 (Acta2) expression in HSFs mediated by miR-34a-5p. The results demonstrated that LINC01711 functioned as a regulatory factor in the proliferation, migration, apoptosis, and ECM deposition of HSFs mediated by miR-34a-5p.
Collapse
Affiliation(s)
- Lun Pan
- Skin Beauty Department, Zigong Fourth People's Hospital, Sichuan, 643000, China
| | - Chengshuai Sun
- Department of Plastic Surgery, Beijing Hermann Medical Beauty Clinic, Beijing, 100004, China
| | - Hua Jin
- Department of Dermatology and Venereal Disease, Hangzhou Xixi Hospital (Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University), No. 2, Hengbu Street, Liuxia Town, Xihu District, Zhejiang, 310023, China.
| | - Shaocong Lv
- Department of Dermatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, No.758, Hefei Road, Shibei District, Qingdao, 266035, China.
| |
Collapse
|
3
|
Zhang J, Cai Y. CircLPHN3 correlates with prognosis in colorectal cancer and regulates cellular processes by targeting miR-142-5p. Int J Biol Markers 2024; 39:292-300. [PMID: 39420826 DOI: 10.1177/03936155241287219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is often diagnosed late and has a poor prognosis. Circular RNAs (circRNAs) have been identified as prognostic biomarkers in various cancers, including CRC. OBJECTIVE The objective was to elucidate the role of circLPHN3 (hsa_circ_0069865) in CRC progression and to provide a promising prognostic marker for CRC. METHODS CircLPHN3 was identified through bioinformatics analysis of the GSE121842 dataset. The levels of circLPHN3 in CRC samples were analyzed by real time-quantitative polymerase chain reaction. Its clinical significance was assessed using the Kaplan-Meier curve and multivariate Cox regression. Downstream microRNAs of circLPHN3 were predicted with the RNAhybrid, Circular RNA Interactome, and starBase online databases. The target of miR-142-5p was predicted using miRDB, TargetScanHuman, starBase, and miRWalk databases. The relationship between circLPHN3, miR-142-5p, and LDB2 was verified by dual luciferase reporter assay. The function of circLPHN3 on CRC cell growth and metastasis was measured using Transwell and the cell counting kit-8 assay. RESULTS Significant downregulation of circLPHN3 was found in CRC. CircLPHN3 was closely related to higher tumor node metastasis stage, lymph node metastasis, and predicted unfavorable prognosis. miR-142-5p was highly expressed in CRC and its expression was negatively regulated by circLPHN3. Overexpression of circLPHN3 curbed CRC cell growth, migration, and invasion, mediated by miR-142-5p. Moreover, LDB2 was identified as a target of miR-142-5p. CONCLUSION CircLPHN3 acted as a prognostic biomarker and tumor suppressor for CRC via modulating miR-142-5p.
Collapse
Affiliation(s)
- JiWen Zhang
- Department of Gastroenterology, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Yan Cai
- Department of Gastroenterology, Shanghai Baoshan Luodian Hospital, Shanghai, China
| |
Collapse
|
4
|
Qi J, Wu Y, Liu Y, Ma J, Wang Z. hsa_circ_0007755 competitively adsorbs miR-27b-3p to mediate CXCL2 expression and recruit Th1 cells to promote hypertrophic scars development. Heliyon 2024; 10:e39169. [PMID: 39524791 PMCID: PMC11544067 DOI: 10.1016/j.heliyon.2024.e39169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background and objective The circular RNA hsa_circ_0007755 is markedly upregulated in hypertrophic scars (HS), yet its functional roles in this fibroproliferative disorder remain to be elucidated. This investigation aims to delineate the regulatory mechanisms of hsa_circ_0007755 in HS and to decode its downstream molecular signaling pathways. Methods We established a murine model of HS. Tissue histopathology was assessed using Hematoxylin and Eosin and Masson's trichrome staining. Peripheral blood from the animals was collected and the ratio of T-helper 1 (Th1) to T-helper 2 (Th2) cells was quantified via flow cytometry. The proliferation and apoptosis rates of human hypertrophic scar fibroblasts (hHSFs) were evaluated using the Cell Counting Kit-8 assay and flow cytometry, respectively. The invasive capacity of hHSFs was assessed via a Transwell assay. Co-culture experiments of hHSFs with T cells were conducted, and alterations in Th1/Th2 ratios were monitored using flow cytometry. Levels of cytokines, fibrosis-associated proteins, nuclear factor-kappaB (NF-κB) pathway-related protein, and C-X-C Motif Chemokine Ligand 2 (CXCL2) were quantified using Enzyme-Linked Immunosorbent Assay or Western blot analysis. The interactions between hsa_circ_0007755, miR-27b-3p, and CXCL2 were investigated using dual-luciferase reporter assays and RNA immunoprecipitation. Results Both hsa_circ_0007755 and CXCL2 were highly expressed in HS, whereas miR-27b-3p was downregulated. Knockdown of hsa_circ_0007755 inhibited the proliferation and invasion of hHSFs, promoted apoptosis, and reduced the expression of fibrotic proteins α-SMA and Collagen I, as well as the phosphorylation of the inflammatory pathway protein p65. Co-culture experiments confirmed that hHSFs lowly expressing hsa_circ_0007755 showed a decreased Th1 cell proportion and an increased Th2 cell proportion, alongside lower levels of TNF-α and INF-γ and higher levels of IL-4 and IL-10. The effects of either knocking down or overexpressing hsa_circ_0007755 were reversed by knocking down either miR-27b-3p or CXCL2, respectively. hsa_circ_0007755 acted as a "molecular sponge" for miR-27b-3p, sequestering and diminishing its availability, thereby alleviating its suppression of the target gene CXCL2. Conclusion hsa_circ_0007755 plays a pivotal role in modulating the immune response of HS by influencing the miR-27b-3p/CXCL2 axis, regulating the function and proportion of Th1 and Th2 cells, and thereby affecting the inflammatory and fibrotic processes in scar tissue.
Collapse
Affiliation(s)
- Jun Qi
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, 226001, China
| | - YangYang Wu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, 226001, China
| | - YiFei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, 226001, China
| | - JiuCheng Ma
- Nantong University, Nantong City, Jiangsu Province, 226001, China
| | - ZhaoNan Wang
- Nantong University, Nantong City, Jiangsu Province, 226001, China
| |
Collapse
|
5
|
Liu B, Li C, Bo Y, Tian G, Yang L, Si J, Zhang L, Yan Y. Let‑7f‑5p Regulated by Hsa_circ_0000437 Ameliorates Bleomycin-Induced Skin Fibrosis. J Cell Biochem 2024; 125:e30629. [PMID: 39004898 DOI: 10.1002/jcb.30629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
The current treatment of skin fibrosis is limited in its effectiveness due to a lack of understanding of the underlying mechanisms. Previous research has shown a connection between microRNAs (miRNAs) and the development of skin fibrosis. Therefore, investigating miRNA for the treatment of skin fibrotic diseases is highly important and merits further exploration. In this study, we have discovered that let-7f-5p could suppress the proliferation, migration, and expression of collagen type I alpha 1 (COL1A1) in human dermal fibroblasts (HDFs). It was further determined that let-7f-5p could target thrombospondin-1 (THBS1), thereby inhibiting the TGF-β2/Smad3 signaling pathway and exerting its biological effects. Additionally, let-7f-5p is regulated by Hsa_circ_0000437, which acts as a sponge molecule for let-7f-5p and consequently regulates the biological function of HDFs. Furthermore, our findings indicate that in vivo overexpression of let-7f-5p leads to a reduction in dermal thickness and COL1A1 expression, effectively inhibiting the progression of bleomycin (BLM)-induced skin fibrosis in mice. Hence, our research enhances the comprehension of the Hsa_circ_0000437/let-7f-5p/THBS1/TGF-β2/Smad3 regulatory network, highlighting the potential of let-7f-5p as a therapeutic approach for the treatment of skin fibrosis.
Collapse
Affiliation(s)
- Baiting Liu
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Chenxi Li
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | | | - Guiping Tian
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Lijun Yang
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jianjun Si
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Lin Zhang
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, Southern Medical University, Guangzhou, China
| | - Yuan Yan
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Su L, Han J. Non-coding RNAs in hypertrophic scars and keloids: Current research and clinical relevance: A review. Int J Biol Macromol 2024; 256:128334. [PMID: 38007032 DOI: 10.1016/j.ijbiomac.2023.128334] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
Hypertrophic scars (HS) and keloids (KD) are lesions that develop as a result of excessive fibroblast proliferation and collagen deposition in response to dermal injury, leading to dysregulation of the inflammatory, proliferative, and remodeling phases during wound healing. HS and KD affect up to 90 % of the population and are associated with lower quality of life, physical health, and mental status in patients. Efficient targeted treatment represents a significant challenge, primarily due to our limited understanding of their underlying pathogenesis. Non-coding RNAs (ncRNAs), which constitute a significant portion of the human transcriptome with minimal or no protein-coding capacity, have been implicated in various cellular physiologies and pathologies and may serve as diagnostic indicators or therapeutic targets. NcRNAs have been found to be aberrantly expressed and regulated in HS and KD. This review provides a summary of the expression profiles and molecular mechanisms of three common ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in HS and KD. It also discusses their potential as biomarkers for the diagnosis and treatment of these diseases and provides novel insights into epigenetic-based diagnosis and treatment strategies for HS and KD.
Collapse
Affiliation(s)
- Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
7
|
Müller A, Lozoya M, Chen X, Weissig V, Nourbakhsh M. Farnesol Inhibits PI3 Kinase Signaling and Inflammatory Gene Expression in Primary Human Renal Epithelial Cells. Biomedicines 2023; 11:3322. [PMID: 38137543 PMCID: PMC10741437 DOI: 10.3390/biomedicines11123322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic inflammation and elevated cytokine levels are closely associated with the progression of chronic kidney disease (CKD), which is responsible for the manifestation of numerous complications and mortality. In addition to conventional CKD therapies, the possibility of using natural compounds with anti-inflammatory potential has attracted widespread attention in scientific research. This study aimed to study the potential anti-inflammatory effects of a natural oil compound, farnesol, in primary human renal proximal tubule epithelial cell (RPTEC) culture. Farnesol was encapsulated in lipid-based small unilamellar vesicles (SUVs) to overcome its insolubility in cell culture medium. The cell attachment of empty vesicles (SUVs) and farnesol-loaded vesicles (farnesol-SUVs) was examined using BODIPY, a fluorescent dye with hydrophobic properties. Next, we used multiple protein, RNA, and protein phosphorylation arrays to investigate the impact of farnesol on inflammatory signaling in RPTECs. The results indicated that farnesol inhibits TNF-α/IL-1β-induced phosphorylation of the PI3 kinase p85 subunit and subsequent transcriptional activation of the inflammatory genes TNFRSF9, CD27, TNFRSF8, DR6, FAS, IL-7, and CCL2. Therefore, farnesol may be a promising natural compound for treating CKD.
Collapse
Affiliation(s)
- Aline Müller
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (A.M.); (X.C.)
| | - Maria Lozoya
- College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA; (M.L.); (V.W.)
| | - Xiaoying Chen
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (A.M.); (X.C.)
| | - Volkmar Weissig
- College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA; (M.L.); (V.W.)
| | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (A.M.); (X.C.)
| |
Collapse
|
8
|
Han X, Li B, Zhang S. MIR503HG: A potential diagnostic and therapeutic target in human diseases. Biomed Pharmacother 2023; 160:114314. [PMID: 36736276 DOI: 10.1016/j.biopha.2023.114314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
LncRNAs are involved in many physiological and pathological processes, including chromatin remodeling, transcription, posttranscriptional gene expression, mRNA stability, translation, and posttranslational modification, and their functions depend on subcellular localization. MIR503HG is a lncRNA as well as a host gene for the miRNAs miR-503 and miR-424. MIR503HG functions independently or synergistically with miR-503. MIR503HG affects cell proliferation, invasion, metastasis, apoptosis, angiogenesis, and other biological behaviors. The mechanism of MIR503HG in disease includes interaction with protein, sponging miRNA to regulate downstream target gene, and participation in NF-κB, TGF-β, ERK/MAPK, and PI3K/AKT signaling pathways. In this review, we summarize the molecular mechanisms of MIR503HG in disease and its potential applications in diagnosis, prognosis, and treatment. We also raise some unanswered questions in this area, providing insights for future research.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China. libo--
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
9
|
Ding K, Li D, Zhang R, Zuo M. Circ_0047339 promotes the activation of fibroblasts and affects the development of urethral stricture by targeting the miR-4691-5p/TSP-1 axis. Sci Rep 2022; 12:14746. [PMID: 36042279 PMCID: PMC9428161 DOI: 10.1038/s41598-022-19141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Urethral stricture is related to scar tissue fibrosis, but its pathogenesis is still unclear. This study aims to explore the regulatory mechanism of circular RNA (circRNA) in the occurrence and development of urethral stricture. CircRNA microarray was employed to analyze circRNA expression profiles between human urethral scar tissue and normal urethral tissue. The results of circRNA microarray showed that there were 296 differentially expressed genes between urethral scar tissue and normal urethral tissue. The enrichment analysis of Kyoto encyclopedia of genes and genomes showed that these circRNAs were significantly correlated with ECM–receptor interaction. The first nine differentially expressed circRNA were selected to predict the circRNA–miRNA network. RT-qPCR results showed that circ_0047339 was upregulated considerably in urethral scar tissue. Urethral scar fibroblasts were isolated from human urethral scar tissue and cultured in vitro. After silencing circ_0047339, the proliferation of urethral scar cells decreased significantly, and the expressions of Collagen I (COL-1) and α-smooth muscle actin (α-SMA) also reduced. As a competing endogenous RNA, circ_0047339 could increase the expression of TSP-1 by competitively binding miR-4691-5p. In addition, miR-4691-5p mimic transfection could inhibit the proliferation of urethral scar fibroblasts and the presentation of thrombospondin-1 (TSP-1), α-SMA and COL-1, while circ_0047339 overexpression eliminated this inhibition. Our results showed that circ_0047339 might promote the growth and fibrosis of urethral scar fibroblasts through miR-4691-5p/TSP-1 axis, thus promoting the development of urethral stricture.
Collapse
Affiliation(s)
- Ke Ding
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Daoyuan Li
- Department of Urology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.,Department of Urology, Hainan General Hospital, Haikou, China
| | - Rui Zhang
- Hunan Traditional Chinese Medical College, Changsha, China
| | - Meilin Zuo
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
10
|
Wei W, Xu T, Zhang Y, Huang Y, Wang X. Upregulation of long noncoding RNA linc02544 and its association with overall survival rate and the influence on cell proliferation and migration in lung squamous cell carcinoma. Discov Oncol 2022; 13:41. [PMID: 35635595 PMCID: PMC9151984 DOI: 10.1007/s12672-022-00501-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) exert crucial biological functions by regulating miRNAs, which are implicated in cancer progression and tumorigenesis. A previous study has indicated that lncRNA linc02544 expression is upregulated in lung adenocarcinoma, whereas, the role of linc02544 in LUSC is elusive. METHODS The differential linc02544 expression in LUSC tissues and adjacent non-tumor tissues were evaluated with RT-qPCR. Kaplan-Meier curve was conducted to evaluate the clinical prognostic significance of linc02544. Then cellular experiments were performed to assess the influence of linc02544 in LUSC proliferation, invasion, and migration, and a western blot assay was used to measure the metastasis-related protein levels. The downstream miRNAs were verified using the LncBase Experimental v.2 database and dual-luciferase reporter assay. RESULTS Linc02544 was overexpressed in LUSC tissues from positive lymph node metastasis-positive and TNM high-stage patients. Low linc02544 expression was associated with a longer survival rate. Downregulation of linc02544 by si-linc02544 restrained cell growth capacities, migration, and invasion abilities. Expression of MMP-2, MMP-9, and vimentin was decreased while E-cadherin was increased in si-linc02544 cells compared with that in untreated cells. Mechanistically, we identified that linc02544 acted as a sponge of miR-138-5p, which expression had a negative correlation. E2F3 was a potential target of miR-138-5p, CONCLUSIONS: Notably, high linc02544 expression was associated with severe clinical parameters and was a putative prognostic predictor for patients with LUSC. Downregulation of linc02544 may weaken the LUSC cell proliferation, migration, and invasion by regulating miR-138-5p/E2F3, which maybe serve as a biomarker for the prognosis and target treatment of LUSC.
Collapse
Affiliation(s)
- Wei Wei
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Jiangsu, 210002, China
| | - Teng Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221000, China
| | - Ying Zhang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Yong Huang
- Department of Medical Oncology, Cancer Center of Jinling Hospital, No. 34, 34 Biao, Yanggongjing Street, Nanjing, 210002, Jiangsu, China.
| | - Xiang Wang
- Department of Medical Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, China.
| |
Collapse
|
11
|
Li D, Niu G, Landén NX. Beyond the Code: Noncoding RNAs in Skin Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041230. [PMID: 35197246 PMCID: PMC9438779 DOI: 10.1101/cshperspect.a041230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An increasing number of noncoding RNAs (ncRNAs) have been found to regulate gene expression and protein functions, playing important roles in diverse biological processes and diseases. Their crucial functions have been reported in almost every cell type and all stages of skin wound healing. Evidence of their pathogenetic roles in common wound complications, such as chronic nonhealing wounds and excessive scarring, is also accumulating. Given their unique expression and functional properties, ncRNAs are promising therapeutic and diagnostic entities. In this review, we discuss current knowledge about the functional roles of noncoding elements, such as microRNAs, long ncRNAs, and circular RNAs, in skin wound healing, focusing on in vivo evidence from studies of human wound samples and animal wound models. Finally, we provide a perspective on the outlook of ncRNA-based therapeutics in wound care.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|