1
|
Mashraqi MM, Alzamami A, Alturki NA, Alshamrani S, Alshahrani MM, Almasoudi HH, Basharat Z. Molecular Mimicry Mapping in Streptococcus pneumoniae: Cues for Autoimmune Disorders and Implications for Immune Defense Activation. Pathogens 2023; 12:857. [PMID: 37513704 PMCID: PMC10383125 DOI: 10.3390/pathogens12070857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Streptococcus pneumoniae contributes to a range of infections, including meningitis, pneumonia, otitis media, and sepsis. Infections by this bacterium have been associated with the phenomenon of molecular mimicry, which, in turn, may contribute to the induction of autoimmunity. In this study, we utilized a bioinformatics approach to investigate the potential for S. pneumoniae to incite autoimmunity via molecular mimicry. We identified 13 S. pneumoniae proteins that have significant sequence similarity to human proteins, with 11 of them linked to autoimmune disorders such as psoriasis, rheumatoid arthritis, and diabetes. Using in silico tools, we predicted the sequence as well as the structural homology among these proteins. Database mining was conducted to establish links between these proteins and autoimmune disorders. The antigenic, non-allergenic, and immunogenic sequence mimics were employed to design and validate an immune response via vaccine construct design. Mimic-based vaccine construct can prove effective for immunization against the S. pneumoniae infections. Immune response simulation and binding affinity was assessed through the docking of construct C8 to human leukocyte antigen (HLA) molecules and TLR4 receptor, with promising results. Additionally, these mimics were mapped as conserved regions on their respective proteins, suggesting their functional importance in S. pneumoniae pathogenesis. This study highlights the potential for S. pneumoniae to trigger autoimmunity via molecular mimicry and the possibility of vaccine design using these mimics for triggering defense response.
Collapse
Affiliation(s)
- Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah 11961, Saudi Arabia
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh 11433, Saudi Arabia
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mousa M Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | | |
Collapse
|
2
|
Al-Mamoori ZZ, Embaby AM, Hussein A, Mahmoud HE. A molecular study on recombinant pullulanase type I from Metabacillus indicus. AMB Express 2023; 13:40. [PMID: 37119334 PMCID: PMC10148936 DOI: 10.1186/s13568-023-01545-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/15/2023] [Indexed: 05/01/2023] Open
Abstract
Despite the great potential of cold-adapted pullulanase type I in tremendous industrial applications, the majority of commercialized pullulnases type I are of mesophilic and thermophilic origin so far. Hence, the present study underlines cloning, heterologous expression in Escherichia coli, characterization, and in silico structural modeling of Metabacillus indicus open reading frame of cold-adapted pullulanase type I (Pull_Met: 2133 bp & 710 a.a) for the first time ever. The predicted Pull_Met tertiary structure by I-TASSER, was structurally similar to PDB 2E9B pullulanase of Bacillus subtilis. Purified to homogeneity Pull_Met showed specific activity (667.6 U/mg), fold purification (31.7), molecular mass (79.1 kDa), monomeric subunit and Km (2.63 mg/mL) on pullulan. Pull_Met had optimal pH (6.0) and temperature (40 oC). After 10 h pre-incubation at pH 2.6-6.0, Pull_Met maintained 47.12 ± 0.0-35.28 ± 1.64% of its activity. After 120 min pre-incubation at 30 oC, the retained activity was 51.11 ± 0.29%. At 10 mM Mn2+, Na2+, Ca2+, Mg2+, and Cu2+ after 30 min preincubation, retained activity was 155.89 ± 8.97, 134.71 ± 1.82, 97.64 ± 7.06, 92.25 ± 4.18, and 71.28 ± 1.10%, respectively. After 30 min pre-incubation with Tween-80, Tween-20, Triton X-100, and commercially laundry detergents at 0.1% (v/v), the retained activity was 141.15 ± 3.50, 145.45 ± 0.20, 118.12 ± 11.00, and 90%, respectively. Maltotriose was the only end product of pullulan hydrolysis. Synergistic action of CA-AM21 (α-amylase) and Pull_Met on starch liberated 16.51 g reducing sugars /g starch after 1 h at 40 oC. Present data (cold-adeptness, detergent stability, and ability to exhibit starch saccharification of Pull_Met) underpins it as a promising pullulanase type I for industrial exploitation.
Collapse
Affiliation(s)
- Zahraa Z Al-Mamoori
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amira M Embaby
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Ahmed Hussein
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hoda E Mahmoud
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Doukyu N, Ikehata Y, Sasaki T. Expression and characterization of cholesterol oxidase with high thermal and pH stability from Janthinobacterium agaricidamnosum. Prep Biochem Biotechnol 2023; 53:331-339. [PMID: 35697335 DOI: 10.1080/10826068.2022.2084626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cholesterol oxidases (COXases) have a diverse array of applications including analysis of blood cholesterol levels, synthesis of steroids, and utilization as an insecticidal protein. The COXase gene from Janthinobacterium agaricidamnosum was cloned and expressed in Escherichia coli. The purified COXase showed an optimal temperature of 60 °C and maintained about 96 and 72% of its initial activity after 30 min at 60 and 70 °C, respectively. In addition, the purified COXase exhibited a pH optimum at 7.0 and high pH stability over the broad pH range of 3.0-12.0. The pH stability of the COXase at pH 12.0 was higher than that of highly stable COXase from Chromobacterium sp. DS-1. The COXase oxidized cholesterol and β-cholestanol at higher rates than other 3β-hydroxysteroids. The Km, Vmax, and kcat values for cholesterol were 156 μM, 13.7 μmol/min/mg protein, and 14.4 s-1, respectively. These results showed that this enzyme could be very useful in the clinical determination of cholesterol in serum and the production of steroidal compounds. This is the first report to characterize a COXase from the genus Janthinobacterium.
Collapse
Affiliation(s)
| | - Yuuki Ikehata
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - Taichi Sasaki
- Department of Life Sciences, Toyo University, Gunma, Japan
| |
Collapse
|
4
|
Embaby AM, Mahmoud HE. Recombinant acetylxylan esterase of Halalkalibacterium halodurans NAH-Egypt: molecular and biochemical study. AMB Express 2022; 12:135. [DOI: 10.1186/s13568-022-01476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/15/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractAcetylxylan esterase plays a crucial role in xylan hydrolysis as the acetyl side-groups restrict endoxylanase action by stearic hindrance. In this study, an acetylxylan esterase (AXE-HAS10: 960 bp & 319 a.a) putative ORF from Halalkalibacterium halodurans NAH-Egypt was extensively studied through heterologous overexpression in Escherichia coli, biochemical characterization, and structural modeling. The AXE-HAS10 tertiary structure was predicted by the Local Meta Threading Server. AXE-HAS10 belongs to the carbohydrate esterase Family 7. Purified to homogeneity AXE-HAS10 showed specific activity (36.99 U/mg), fold purification (11.42), and molecular mass (41.39 kDa). AXE-HAS10 showed optimal pH (8.5) and temperature (40 oC). After 15 h of incubation at pH 7.0–9.0, AXE-HAS10 maintained 100% activity. After 120 min at 35 and 40 oC, the retained activity was 80 and 50%, respectively. At 10 mM Mn2+, Fe3+, K+, and Ca2+ after 30 min, retained activity was 329 ± 15, 212 ± 5.2, 123 ± 1.4, and 120 ± 3.0%, respectively. After 30 min of preincubation with triton x-100, SDS, and CTAB at 0.1% (v/v), the retained activity was 150 ± 19, 88 ± 4, and 82 ± 7%, respectively. At 6.0 M NaCl after 30 min, retained activity was 58%. A 1.44-fold enhancement of beechwood xylan hydrolysis was achieved by AXE-HAS10 and Penicillium chrysogenum DSM105774 β-xylanase concurrently. Present data underpins AXE-HAS10 as a promising AXE for industrial exploitation.
Collapse
|
5
|
Matrawy AA, Khalil AI, Embaby AM. Molecular study on recombinant cold-adapted, detergent- and alkali stable esterase (EstRag) from Lysinibacillus sp.: a member of family VI. World J Microbiol Biotechnol 2022; 38:217. [PMID: 36070019 PMCID: PMC9452428 DOI: 10.1007/s11274-022-03402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Cold-adapted esterases have potential industrial applications. To fulfil the global continuous demand for these enzymes, a cold-adapted esterase member of family VI from Lysinibacillus sp. YS11 was cloned on pET-28b (+) vector and expressed in E. coli BL21(DE3) Rosetta cells for the first time. The open reading frame (654 bp: GenBank MT120818.1) encodes a polypeptide (designated EstRag: 217 amino acid residues). EstRag amino acid sequence has conserved esterase signature motifs: pentapeptide (GFSQG) and catalytic triad Ser110-Asp163-His194. EstRag 3D predicted model, built with LOMETS3 program, showed closest structural similarity to PDB 1AUO_A (esterase: Pseudomonas fluorescens); TM-align score program inferences. Purified EstRag to 9.28-fold, using Ni2+affinity agarose matrix, showed a single protein band (25 kDa) on SDS-PAGE, Km (0.031 mM) and Kcat/Km (657.7 s−1 mM−1) on p-NP-C2. Temperature and pH optima of EstRag were 35 °C and 8.0, respectively. EstRag was fully stable at 5–30 °C for 120 min and at pH(s) 8.0–10.0 after 24 h. EstRag activity (391.46 ± 0.009%) was impressively enhanced after 30 min preincubation with 5 mM Cu2+. EstRag retained full stability after 30 min pre-incubation with 0.1%(v/v) SDS, Triton X-100, and Tween-80. EstRag promising characteristics motivate performing guided evolution and industrial applications prospective studies.
Collapse
Affiliation(s)
- Amira A Matrawy
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Chatby, 21526, Alexandria, Egypt
| | - Ahmed I Khalil
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Chatby, 21526, Alexandria, Egypt
| | - Amira M Embaby
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Chatby, 21526, Alexandria, Egypt.
| |
Collapse
|
6
|
Karaiyan P, Chang CCH, Chan ES, Tey BT, Ramanan RN, Ooi CW. In silico screening and heterologous expression of soluble dimethyl sulfide monooxygenases of microbial origin in Escherichia coli. Appl Microbiol Biotechnol 2022; 106:4523-4537. [PMID: 35713659 PMCID: PMC9259527 DOI: 10.1007/s00253-022-12008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Abstract Sequence-based screening has been widely applied in the discovery of novel microbial enzymes. However, majority of the sequences in the genomic databases were annotated using computational approaches and lacks experimental characterization. Hence, the success in obtaining the functional biocatalysts with improved characteristics requires an efficient screening method that considers a wide array of factors. Recombinant expression of microbial enzymes is often hampered by the undesirable formation of inclusion body. Here, we present a systematic in silico screening method to identify the proteins expressible in soluble form and with the desired biological properties. The screening approach was adopted in the recombinant expression of dimethyl sulfide (DMS) monooxygenase in Escherichia coli. DMS monooxygenase, a two-component enzyme consisting of DmoA and DmoB subunits, was used as a model protein. The success rate of producing soluble and active DmoA is 71% (5 out of 7 genes). Interestingly, the soluble recombinant DmoA enzymes exhibited the NADH:FMN oxidoreductase activity in the absence of DmoB (second subunit), and the cofactor FMN, suggesting that DmoA is also an oxidoreductase. DmoA originated from Janthinobacterium sp. AD80 showed the maximum NADH oxidation activity (maximum reaction rate: 6.6 µM/min; specific activity: 133 µM/min/mg). This novel finding may allow DmoA to be used as an oxidoreductase biocatalyst for various industrial applications. The in silico gene screening methodology established from this study can increase the success rate of producing soluble and functional enzymes while avoiding the laborious trial and error involved in the screening of a large pool of genes available. Key points • A systematic gene screening method was demonstrated. • DmoA is also an oxidoreductase capable of oxidizing NADH and reducing FMN. • DmoA oxidizes NADH in the absence of external FMN. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12008-8.
Collapse
Affiliation(s)
- Prasanth Karaiyan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Catherine Ching Han Chang
- Arkema Thiochemicals Sdn. Bhd., Jalan PJU 1A/7A OASIS Ara Damansara, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.,Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Arkema Thiochemicals Sdn. Bhd., Jalan PJU 1A/7A OASIS Ara Damansara, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
7
|
Chandra P, Coullon H, Agarwal M, Goss CW, Philips JA. Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection. J Clin Invest 2022; 132:152509. [PMID: 35104812 PMCID: PMC8803325 DOI: 10.1172/jci152509] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) causes an enormous burden of disease worldwide. As a central aspect of its pathogenesis, M. tuberculosis grows in macrophages, and host and microbe influence each other's metabolism. To define the metabolic impact of M. tuberculosis infection, we performed global metabolic profiling of M. tuberculosis-infected macrophages. M. tuberculosis induced metabolic hallmarks of inflammatory macrophages and a prominent signature of cholesterol metabolism. We found that infected macrophages accumulate cholestenone, a mycobacterial-derived, oxidized derivative of cholesterol. We demonstrated that the accumulation of cholestenone in infected macrophages depended on the M. tuberculosis enzyme 3β-hydroxysteroid dehydrogenase (3β-Hsd) and correlated with pathogen burden. Because cholestenone is not a substantial human metabolite, we hypothesized it might be diagnostic of M. tuberculosis infection in clinical samples. Indeed, in 2 geographically distinct cohorts, sputum cholestenone levels distinguished subjects with tuberculosis (TB) from TB-negative controls who presented with TB-like symptoms. We also found country-specific detection of cholestenone in plasma samples from M. tuberculosis-infected subjects. While cholestenone was previously thought to be an intermediate required for cholesterol degradation by M. tuberculosis, we found that M. tuberculosis can utilize cholesterol for growth without making cholestenone. Thus, the accumulation of cholestenone in clinical samples suggests it has an alternative role in pathogenesis and could be a clinically useful biomarker of TB infection.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine.,Department of Molecular Microbiology, and
| | - Héloise Coullon
- Division of Infectious Diseases, Department of Medicine.,Department of Molecular Microbiology, and
| | - Mansi Agarwal
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles W Goss
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine.,Department of Molecular Microbiology, and
| |
Collapse
|
8
|
Abady SM, M Ghanem K, Ghanem NB, Embaby AM. Molecular cloning, heterologous expression, and in silico sequence analysis of Enterobacter GH19 class I chitinase (chiRAM gene). Mol Biol Rep 2021; 49:951-969. [PMID: 34773550 DOI: 10.1007/s11033-021-06914-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/30/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Using in silico sequence analyses, the present study aims to clone and express the gene-encoding sequence of a GH19 chitinase from Enterobacter sp. in Escherichia coli. METHODS AND RESULTS The putative open reading frame of a GH19 chitinase from Enterobacter sp. strain EGY1 was cloned and expressed into pGEM®-T and pET-28a (+) vectors, respectively using a degenerate primer. The isolated nucleotide sequence (1821 bp, GenBank accession no.: MK533791.2) was translated to a chiRAM protein (606 amino acids, UniProt accession no.: A0A4D6J2L9). The in silico protein sequence analysis of chiRAM revealed a class I GH19 chitinase: an N-terminus signal peptide (Met1-Ala23), a catalytic domain (Val83-Glu347 and the catalytic triad Glu149, Glu171, and Ser218), a proline-rich hinge region (Pro414 -Pro450), a polycystic kidney disease protein motif (Gly 465-Ser 533), a C-terminus chitin-binding domain (Ala553- Glu593), and conserved class I motifs (NYNY and AQETGG). A three-dimensional model was constructed by LOMETS MODELLER of PDB template: 2dkvA (class I chitinase of Oryza sativa L. japonica). Recombinant chiRAM was overexpressed as inclusion bodies (IBs) (~ 72 kDa; SDS-PAGE) in 1.0 mM IPTG induced E. coli BL21 (DE3) Rosetta strain at room temperature 18 h after induction. Optimized expression yielded active chiRAM with 1.974 ± 0.0002 U/mL, on shrimp colloidal chitin (SCC), in induced E. coli BL21 (DE3) Rosetta cells growing in SB medium. LC-MS/MS identified a band of 72 kDa in the soluble fraction with a 52.3% coverage sequence exclusive to the GH19 chitinase of Enterobacter cloacae (WP_063869339.1). CONCLUSIONS Although chiRAM of Enterobacter sp. was successfully cloned and expressed in E. coli with appreciable chitinase activity, future studies should focus on minimizing IBs to facilitate chiRAM purification and characterization.
Collapse
Affiliation(s)
- Shahinaz M Abady
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, 1 Baghdad Street-Moharam Bek, Alexandria, 21568, Egypt
| | - Khaled M Ghanem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, 1 Baghdad Street-Moharam Bek, Alexandria, 21568, Egypt
| | - Nevine B Ghanem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, 1 Baghdad Street-Moharam Bek, Alexandria, 21568, Egypt
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, P.O.Box 832, 163 Horreya Avenue, Chatby, Alexandria, 21526, Egypt.
| |
Collapse
|