1
|
Flück M, Kasper S, Benn MC, Clement Frey F, von Rechenberg B, Giraud MN, Meyer DC, Wieser K, Gerber C. Transplant of Autologous Mesenchymal Stem Cells Halts Fatty Atrophy of Detached Rotator Cuff Muscle After Tendon Repair: Molecular, Microscopic, and Macroscopic Results From an Ovine Model. Am J Sports Med 2021; 49:3970-3980. [PMID: 34714701 PMCID: PMC8649427 DOI: 10.1177/03635465211052566] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/13/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND The injection of mesenchymal stem cells (MSCs) mitigates fat accumulation in released rotator cuff muscle after tendon repair in rodents. PURPOSE To investigate whether the injection of autologous MSCs halts muscle-to-fat conversion after tendon repair in a large animal model for rotator cuff tendon release via regional effects on extracellular fat tissue and muscle fiber regeneration. STUDY DESIGN Controlled laboratory study. METHODS Infraspinatus (ISP) muscles of the right shoulder of Swiss Alpine sheep (n = 14) were released by osteotomy and reattached 16 weeks later without (group T; n = 6) or with (group T-MSC; n = 8) electropulse-assisted injection of 0.9 Mio fluorescently labeled MSCs as microtissues with media in demarcated regions; animals were allowed 6 weeks of recovery. ISP volume and composition were documented with computed tomography and magnetic resonance imaging. Area percentages of muscle fiber types, fat, extracellular ground substance, and fluorescence-positive tissue; mean cross-sectional area (MCSA) of muscle fibers; and expression of myogenic (myogenin), regeneration (tenascin-C), and adipogenic markers (peroxisome proliferator-activated receptor gamma [PPARG2]) were quantified in injected and noninjected regions after recovery. RESULTS At 16 weeks after tendon release, the ISP volume was reduced and the fat fraction of ISP muscle was increased in group T (137 vs 185 mL; 49% vs 7%) and group T-MSC (130 vs 166 mL; 53% vs 10%). In group T-MSC versus group T, changes during recovery after tendon reattachment were abrogated for fat-free mass (-5% vs -29%, respectively; P = .018) and fat fraction (+1% vs +24%, respectively; P = .009%). The area percentage of fat was lower (9% vs 20%; P = .018) and the percentage of the extracellular ground substance was higher (26% vs 20%; P = .007) in the noninjected ISP region for group T-MSC versus group T, respectively. Regionally, MCS injection increased tenascin-C levels (+59%) and the water fraction, maintaining the reduced PPARG2 levels but not the 29% increased fiber MCSA, with media injection. CONCLUSION In a sheep model, injection of autologous MSCs in degenerated rotator cuff muscle halted muscle-to-fat conversion during recovery from tendon repair by preserving fat-free mass in association with extracellular reactions and stopping adjuvant-induced muscle fiber hypertrophy. CLINICAL RELEVANCE A relatively small dose of MSCs is therapeutically effective to halt fatty atrophy in a large animal model.
Collapse
Affiliation(s)
- Martin Flück
- Laboratory of Muscle Plasticity,
Department of Orthopedics, University of Zurich, Balgrist Campus, Zürich,
Switzerland
| | - Stephanie Kasper
- Laboratory of Muscle Plasticity,
Department of Orthopedics, University of Zurich, Balgrist Campus, Zürich,
Switzerland
| | - Mario C. Benn
- Musculoskeletal Research Unit, Center
for Applied Biotechnology and Molecular Medicine, Department of Molecular
Mechanisms, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Flurina Clement Frey
- Musculoskeletal Research Unit, Center
for Applied Biotechnology and Molecular Medicine, Department of Molecular
Mechanisms, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Center
for Applied Biotechnology and Molecular Medicine, Department of Molecular
Mechanisms, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Marie-Noëlle Giraud
- Cardiology, Faculty of Sciences and
Medicine, University of Fribourg, Fribourg, Switzerland
| | - Dominik C. Meyer
- Author deceased
- Laboratory of Muscle Plasticity,
Department of Orthopedics, University of Zurich, Balgrist Campus, Zürich,
Switzerland
- University Hospital Balgrist,
Department of Orthopedics, University of Zurich, Zürich, Switzerland
| | - Karl Wieser
- University Hospital Balgrist,
Department of Orthopedics, University of Zurich, Zürich, Switzerland
| | - Christian Gerber
- University Hospital Balgrist,
Department of Orthopedics, University of Zurich, Zürich, Switzerland
| |
Collapse
|
2
|
Tang H, Zhang Y, Jansen JA, van den Beucken JJJP. Effect of monocytes/macrophages on the osteogenic differentiation of adipose-derived mesenchymal stromal cells in 3D co-culture spheroids. Tissue Cell 2017; 49:461-469. [PMID: 28684045 DOI: 10.1016/j.tice.2017.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the distinctive roles of the monocytes and macrophages on osteogenic differentiation of adipose-derived mesenchymal stromal cells (ADMSCs) in 3D spheroid co-cultures. We hypothesized that monocytes or macrophages (subtypes pro-inflammatory M1 and pro-wound healing M2) would affect the osteogenic differentiation of ADMSCs in 3D spheroids and that cell-cell interactions between monocytes/macrophages and ADMSCs play an important role in the osteogenic differentiation process of ADMSCs. The obtained results indicated that the osteogenic differentiation of ADMSCs was inhibited by monocytes and both macrophage subtypes in 3D spheroids. Monocytes and M2 macrophages had a stronger inhibiting effect than M1 macrophages. Cell-cell interactions mediated by N-cadherin likely played a role in the inhibiting effect of monocytes/macrophages on the osteogenic differentiation of ADMSCs.
Collapse
Affiliation(s)
- Hongbo Tang
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands; Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Zhang
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | | |
Collapse
|
3
|
Kuemmerle JM, Theiss F, Okoniewski MJ, Weber FA, Hemmi S, Mirsaidi A, Richards PJ, Cinelli P. Identification of Novel Equine (Equus caballus) Tendon Markers Using RNA Sequencing. Genes (Basel) 2016; 7:genes7110097. [PMID: 27834918 PMCID: PMC5126783 DOI: 10.3390/genes7110097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023] Open
Abstract
Although several tendon-selective genes exist, they are also expressed in other musculoskeletal tissues. As cell and tissue engineering is reliant on specific molecular markers to discriminate between cell types, tendon-specific genes need to be identified. In order to accomplish this, we have used RNA sequencing (RNA-seq) to compare gene expression between tendon, bone, cartilage and ligament from horses. We identified several tendon-selective gene markers, and established eyes absent homolog 2 (EYA2) and a G-protein regulated inducer of neurite outgrowth 3 (GPRIN3) as specific tendon markers using RT-qPCR. Equine tendon cells cultured as three-dimensional spheroids expressed significantly greater levels of EYA2 than GPRIN3, and stained positively for EYA2 using immunohistochemistry. EYA2 was also found in fibroblast-like cells within the tendon tissue matrix and in cells localized to the vascular endothelium. In summary, we have identified EYA2 and GPRIN3 as specific molecular markers of equine tendon as compared to bone, cartilage and ligament, and provide evidence for the use of EYA2 as an additional marker for tendon cells in vitro.
Collapse
Affiliation(s)
- Jan M Kuemmerle
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- Equine Hospital, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Felix Theiss
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- Equine Hospital, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Michal J Okoniewski
- Scientific IT Services, Swiss Federal Institute of Technology, CH 8092 Zurich, Switzerland.
| | - Fabienne A Weber
- Institute of Laboratory Animal Science, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Sonja Hemmi
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| | - Ali Mirsaidi
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Peter J Richards
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Paolo Cinelli
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| |
Collapse
|
4
|
Müller-Edenborn K, Léger K, Glaus Garzon JF, Oertli C, Mirsaidi A, Richards PJ, Rehrauer H, Spielmann P, Hoogewijs D, Borsig L, Hottiger MO, Wenger RH. Hypoxia attenuates the proinflammatory response in colon cancer cells by regulating IκB. Oncotarget 2016; 6:20288-301. [PMID: 25978030 PMCID: PMC4653005 DOI: 10.18632/oncotarget.3961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 04/10/2015] [Indexed: 12/12/2022] Open
Abstract
Two main features common to all solid tumors are tissue hypoxia and inflammation, both of which cause tumor progression, metastasis, therapy resistance and increased mortality. Chronic inflammation is associated with increased cancer risk, as demonstrated for inflammatory bowel disease patients developing colon cancer. However, the interplay between hypoxia and inflammation on the molecular level remains to be elucidated. We found that MC-38 mouse colon cancer cells contain functional hypoxic (HIF-1α) and inflammatory (p65/RelA) signaling pathways. In contrast to cells of the myeloid lineage, HIF-1α levels remained unaffected in MC-38 cells treated with LPS, and hypoxia failed to induce NF-κB. A similar regulation of canonical HIF and NF-κB target genes confirmed these results. RNA deep sequencing of HIF-1α and p65/RelA knock-down cells revealed that a surprisingly large fraction of HIF target genes required p65/RelA for hypoxic regulation and a number of p65/RelA target genes required HIF-1α for proinflammatory regulation, respectively. Hypoxia attenuated the inflammatory response to LPS by inhibiting nuclear translocation of p65/RelA independently of HIF-1α, which was associated with enhanced IκBα levels and decreased IKKβ phosphorylation. These data demonstrate that the interaction between hypoxic and inflammatory signaling pathways needs to be considered when designing cancer therapies targeting HIF or NF-κB.
Collapse
Affiliation(s)
- Kamila Müller-Edenborn
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Karolin Léger
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Jesus F Glaus Garzon
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Carole Oertli
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Ali Mirsaidi
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| | - Peter J Richards
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Patrick Spielmann
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - David Hoogewijs
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Glanz S, Mirsaidi A, López-Fagundo C, Filliat G, Tiaden AN, Richards PJ. Loss-of-Function of HtrA1 Abrogates All-Trans Retinoic Acid-Induced Osteogenic Differentiation of Mouse Adipose-Derived Stromal Cells Through Deficiencies in p70S6K Activation. Stem Cells Dev 2016; 25:687-98. [PMID: 26950191 DOI: 10.1089/scd.2015.0368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
All-trans retinoic acid (ATRA) is a potent inducer of osteogenic differentiation in mouse adipose-derived stromal cells (mASCs), although the underlying mechanisms responsible for its mode of action have yet to be completely elucidated. High temperature requirement protease A1 (HtrA1) is a newly recognized modulator of human multipotent stromal cell (MSC) osteogenesis and as such, may play a role in regulating ATRA-dependent osteogenic differentiation of mASCs. In this study, we assessed the influence of small interfering RNA (siRNA)-induced repression of HtrA1 production on mASC osteogenesis and examined its effects on ATRA-mediated mammalian target of rapamycin (mTOR) signaling. Inhibition of HtrA1 production in osteogenic mASCs resulted in a significant reduction of alkaline phosphatase activity and mineralized matrix formation. Western blot analyses revealed the rapid activation of Akt (Ser473) and p70S6K (Thr389) in ATRA-treated mASCs, and that levels of phosphorylated p70S6K were noticeably reduced in HtrA1-deficient mASCs. Further studies using mTOR inhibitor rapamycin and siRNA specific for the p70S6K gene Rps6kb1 confirmed ATRA-mediated mASC osteogenesis as being dependent on p70S6K activation. Finally, transfection of cells with a constitutively active rapamycin-resistant p70S6K mutant could restore the mineralizing capacity of HtrA1-deficient mASCs. These findings therefore lend further support for HtrA1 as a positive mediator of MSC osteogenesis and provide new insights into the molecular mode of action of ATRA in regulating mASC lineage commitment.
Collapse
Affiliation(s)
- Stephan Glanz
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland .,2 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich , Zurich, Switzerland
| | - Ali Mirsaidi
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland
| | | | - Gladys Filliat
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland .,2 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich , Zurich, Switzerland
| | - André N Tiaden
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland
| | - Peter J Richards
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland .,2 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich , Zurich, Switzerland
| |
Collapse
|
6
|
König MA, Canepa DD, Cadosch D, Casanova E, Heinzelmann M, Rittirsch D, Plecko M, Hemmi S, Simmen HP, Cinelli P, Wanner GA. Direct transplantation of native pericytes from adipose tissue: A new perspective to stimulate healing in critical size bone defects. Cytotherapy 2015; 18:41-52. [PMID: 26563474 DOI: 10.1016/j.jcyt.2015.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/22/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS Fractures with a critical size bone defect (e.g., open fracture with segmental bone loss) are associated with high rates of delayed union and non-union. The prevention and treatment of these complications remain a serious issue in trauma and orthopaedic surgery. Autologous cancellous bone grafting is a well-established and widely used technique. However, it has drawbacks related to availability, increased morbidity and insufficient efficacy. Mesenchymal stromal cells can potentially be used to improve fracture healing. In particular, human fat tissue has been identified as a good source of multilineage adipose-derived stem cells, which can be differentiated into osteoblasts. The main issue is that mesenchymal stromal cells are a heterogeneous population of progenitors and lineage-committed cells harboring a broad range of regenerative properties. This heterogeneity is also mirrored in the differentiation potential of these cells. In the present study, we sought to test the possibility to enrich defined subpopulations of stem/progenitor cells for direct therapeutic application without requiring an in vitro expansion. METHODS We enriched a CD146+NG2+CD45- population of pericytes from freshly isolated stromal vascular fraction from mouse fat tissue and tested their osteogenic differentiation capacity in vitro and in vivo in a mouse model for critical size bone injury. RESULTS Our results confirm the ability of enriched CD146+NG2+CD45- cells to efficiently generate osteoblasts in vitro, to colonize cancellous bone scaffolds and to successfully contribute to regeneration of large bone defects in vivo. CONCLUSIONS This study represents proof of principle for the direct use of enriched populations of cells with stem/progenitor identity for therapeutic applications.
Collapse
Affiliation(s)
- Matthias A König
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | - Daisy D Canepa
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | - Dieter Cadosch
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | - Elisa Casanova
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | | | - Daniel Rittirsch
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | - Michael Plecko
- Trauma Hospital Graz, Göstinger Strasse 24, A-8020 Graz, Austria
| | - Sonja Hemmi
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | - Hans-Peter Simmen
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | - Paolo Cinelli
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| | - Guido A Wanner
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| |
Collapse
|
7
|
Theiss F, Mirsaidi A, Mhanna R, Kümmerle J, Glanz S, Bahrenberg G, Tiaden AN, Richards PJ. Use of biomimetic microtissue spheroids and specific growth factor supplementation to improve tenocyte differentiation and adaptation to a collagen-based scaffold in vitro. Biomaterials 2015; 69:99-109. [PMID: 26283157 DOI: 10.1016/j.biomaterials.2015.08.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022]
Abstract
Tenocytes represent a valuable source of cells for the purposes of tendon tissue engineering and regenerative medicine and as such, should possess a high degree of tenogenic differentiation prior to their use in vivo in order to achieve maximal efficacy. In the current report, we identify an efficient means by which to maintain differentiated tenocytes in vitro by employing the hanging drop technique in combination with defined growth media supplements. Equine tenocytes retained a more differentiated state when cultured as scaffold-free microtissue spheroids in low serum-containing medium supplemented with L-ascorbic acid 2-phosphate, insulin and transforming growth factor (TGF)-β1. This was made evident by significant increases in the expression levels of pro-tenogenic markers collagen type I (COL1A2), collagen type III (COL3A1), scleraxis (SCX) and tenomodulin (TNMD), as well as by enhanced levels of collagen type I and tenomodulin protein. Furthermore, tenocytes cultured under these conditions demonstrated a typical spindle-like morphology and when embedded in collagen gels, became highly aligned with respect to the orientation of the collagen structure following their migration out from the microtissue spheroids. Our findings therefore provide evidence to support the use of a biomimetic microtissue approach to culturing tenocytes and that in combination with the defined growth media described, can improve their differentiation status and functional repopulation of collagen matrix.
Collapse
Affiliation(s)
- Felix Theiss
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Equine Department, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Ali Mirsaidi
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Rami Mhanna
- Cartilage Engineering and Regeneration, ETH Zurich, 8093 Zurich, Switzerland; American University of Beirut, Faculty of Engineering and Architecture, Riad El Solh, 1107 2020 Beirut, Lebanon
| | - Jan Kümmerle
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Equine Department, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Stephan Glanz
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Gregor Bahrenberg
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - André N Tiaden
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Peter J Richards
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
8
|
Mirsaidi A, Genelin K, Vetsch JR, Stanger S, Theiss F, Lindtner RA, von Rechenberg B, Blauth M, Müller R, Kuhn GA, Hofmann Boss S, Ebner HL, Richards PJ. Therapeutic potential of adipose-derived stromal cells in age-related osteoporosis. Biomaterials 2014; 35:7326-35. [PMID: 24933514 DOI: 10.1016/j.biomaterials.2014.05.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
Adipose-derived stromal cells (ASCs) are increasingly being used for orthopedic-based tissue engineering approaches due to their ability to readily undergo osteogenic differentiation. In the present study, we used in vitro and in vivo approaches to evaluate the use of ASCs as a treatment strategy for age-related osteoporosis. Molecular, histological and micro-computed tomography (micro-CT) based approaches confirmed that ASCs isolated from 18-week-old osteoporotic senescence-accelerated mice (SAMP6) were capable of undergoing osteogenesis when cultured in either silk fibroin (SF) scaffolds or scaffold-free microtissues (ASC-MT). A single intratibial injection of CM-Dil-labeled isogeneic ASCs or ASC-MT into SAMP6 recipients significantly improved trabecular bone quality after 6 weeks in comparison to untreated contralateral bones, as determined by micro-CT. Injected ASCs could be observed in paraffin wax bone sections at 24 h and 6 weeks post treatment and induced a significant increase in several molecular markers of bone turnover. Furthermore, a significant improvement in the osteogenic potential of osteoporotic patient-derived human bone marrow stromal cells (BMSCs) was observed when differentiated in conditioned culture media harvested from osteoporotic patient-derived human ASCs. These findings therefore support the use of ASCs as an autologous cell-based approach for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Ali Mirsaidi
- Bone and Stem Cell Research Group, CABMM, University of Zurich, 8057 Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Konstantin Genelin
- Department of Trauma Surgery and Sports Medicine, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Jolanda R Vetsch
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland
| | - Scott Stanger
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland
| | - Felix Theiss
- Musculoskeletal Research Unit, CABMM, University of Zurich, 8057 Zurich, Switzerland
| | - Richard A Lindtner
- Department of Trauma Surgery and Sports Medicine, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | - Michael Blauth
- Department of Trauma Surgery and Sports Medicine, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland
| | - Sandra Hofmann Boss
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland; Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Hannes L Ebner
- Department of Trauma Surgery and Sports Medicine, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Peter J Richards
- Bone and Stem Cell Research Group, CABMM, University of Zurich, 8057 Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|