1
|
Sajjad W, Muhammad M, Bukhari SMAUS, Abbasi SW, Mohamad OAA, Liu YH, Li WJ. Application of bacterioruberin from Arthrobacter sp. isolated from Xinjiang desert to extend the shelf-life of fruits during postharvest storage. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100239. [PMID: 39877001 PMCID: PMC11773480 DOI: 10.1016/j.fochms.2024.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 01/31/2025]
Abstract
Post-harvest losses and rapid fruit ripening at room temperature are major challenges in preserving fruit quality. This study aimed to reduce such losses by applying a red carotenoid pigment, bacterioruberin extracted from an Arthrobacter sp. The carotenoid was characterized as bacterioruberin and its derivative tetra anhydrous bacterioruberin (λmax 490 nm), and an m/z value of 675 and 742 (M+ 1H)+1. The annotated LIPID MAP demonstrated the presence of over 360 isoprenoids annotated transcripts. The compound exhibited significant antioxidant activity, with an IC50 of 22 μg/mL, iron chelation and antibacterial activities indicating its potential as a natural preservative. When applied to grapes, peaches, and apricots, bacterioruberin (2 %) effectively prevented spoilage for six days at room temperature. Statistical analysis using one-way ANOVA revealed a significant correlation (p = 0.05) between treated and control groups in subjective quality attributes. Computational investigation with phospholipase D and VQ22 motif protein further supported the preservative potential of bacterioruberin.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | | | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish 45511, Egypt
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Noby N, Khattab SN, Soliman NA. Sustainable production of bacterioruberin carotenoid and its derivatives from Arthrobacter agilis NP20 on whey-based medium: optimization and product characterization. BIORESOUR BIOPROCESS 2023; 10:46. [PMID: 38647623 PMCID: PMC10991996 DOI: 10.1186/s40643-023-00662-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/26/2023] [Indexed: 04/25/2024] Open
Abstract
Bacterioruberin and its rare glycosylated derivatives are produced by Arthrobacter agilis as an adaptation strategy to low temperature conditions. The high antioxidant properties of bacterioruberin held great promise for different future applications like the pharmaceutical and food industries. Microbial production of bacterioruberin via a cost-effective medium will help increase its commercial availability and industrial use. The presented study aims to optimize the production of the rare C50 carotenoid bacterioruberin and its derivatives from the psychotrophic bacteria Arthrobacter agilis NP20 strain on a whey-based medium as a cost effective and readily available nutritious substrate. The aim of the study is extended to assess the efficiency of whey treatment in terms of estimating total nitrogen content in treated and untreated whey samples. The significance of medium ingredients on process outcome was first tested individually; then the most promising factors were further optimized using Box Behnken design (BBD). The produced carotenoids were characterized using UV-visible spectroscopy, FTIR spectroscopy, HPLC-DAD chromatography and HPLC-APCI-MS spectrometry. The maximum pigment yield (5.13 mg/L) was achieved after a 72-h incubation period on a core medium composed of 96% sweet whey supplemented with 0.46% MgSO4 & 0.5% yeast extract and inoculated with 6% (v/v) of a 24 h pre-culture (109 CFU/mL). The cost of the formulated medium was 1.58 $/L compared with 30.1 $/L of Bacto marine broth medium. The extracted carotenoids were identified as bacterioruberin, bis-anhydrobacteriouberin, mono anhydrobacterioruberin, and glycosylated bacterioruberin. The presented work illustrates the possibility of producing bacterioruberin carotenoid from Arthrobacter agilis through a cost-effective and eco-friendly approach using cheese whey-based medium.
Collapse
Affiliation(s)
- Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| | - Sherine N Khattab
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, (SRTA-City), New Borg Elarab, Alexandria, Egypt
| |
Collapse
|
3
|
Lalwani MA, Kawabe H, Mays RL, Hoffman SM, Avalos JL. Optogenetic Control of Microbial Consortia Populations for Chemical Production. ACS Synth Biol 2021; 10:2015-2029. [PMID: 34351122 DOI: 10.1021/acssynbio.1c00182] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial co-culture fermentations can improve chemical production from complex biosynthetic pathways over monocultures by distributing enzymes across multiple strains, thereby reducing metabolic burden, overcoming endogenous regulatory mechanisms, or exploiting natural traits of different microbial species. However, stabilizing and optimizing microbial subpopulations for maximal chemical production remains a major obstacle in the field. In this study, we demonstrate that optogenetics is an effective strategy to dynamically control populations in microbial co-cultures. Using a new optogenetic circuit we call OptoTA, we regulate an endogenous toxin-antitoxin system, enabling tunability of Escherichia coli growth using only blue light. With this system we can control the population composition of co-cultures of E. coli and Saccharomyces cerevisiae. When introducing in each strain different metabolic modules of biosynthetic pathways for isobutyl acetate or naringenin, we found that the productivity of co-cultures increases by adjusting the population ratios with specific light duty cycles. This study shows the feasibility of using optogenetics to control microbial consortia populations and the advantages of using light to control their chemical production.
Collapse
Affiliation(s)
- Makoto A. Lalwani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Hinako Kawabe
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Rebecca L. Mays
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Shannon M. Hoffman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - José L. Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Coban HB. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst Eng 2019; 43:569-591. [PMID: 31758240 DOI: 10.1007/s00449-019-02256-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Food safety is a global health and socioeconomic concern since many people still suffer from various acute and life-long diseases, which are caused by consumption of unsafe food. Therefore, ensuring safety of the food is one of the most essential issues in the food industry, which needs to be considered during not only food composition formulation but also handling and storage. For safety purpose, various chemical preservatives have been used so far in the foods. Recently, there has been renewed interest in replacing chemically originated food safety compounds with natural ones in the industry, which can also serve as antimicrobial agents. Among these natural compounds, organic acids possess the major portion. Therefore, in this paper, it is aimed to review and compile the applications, effectiveness, and microbial productions of various widely used organic acids as antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Hasan Bugra Coban
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
5
|
Bostanghadiri N, Pormohammad A, Chirani AS, Pouriran R, Erfanimanesh S, Hashemi A. Comprehensive review on the antimicrobial potency of the plant polyphenol Resveratrol. Biomed Pharmacother 2017; 95:1588-1595. [PMID: 28950659 DOI: 10.1016/j.biopha.2017.09.084] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 02/09/2023] Open
Abstract
Treatment of some infectious diseases are becoming more complicated because of increasing drug resistance rate and lack of proper antibiotics. Because of the rapid increase in drug-resistance trend, there is an urgent need for alternative microbicides to control infectious diseases. Resveratrol (RSV) is a small plant polyphenol that is naturally produced and distributed in 72 particular families of plants. The usage of natural derivatives such as RSV, have become popular among researchers for curing acute and chronic diseases. The purpose of the preset study was to comprehensively review and survey the antimicrobial potency of RSV. The present study demonstrates RSV as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Salimi Chirani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soroor Erfanimanesh
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|